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Abstract

Background

The postoperative imaging assessment of Cochlear Implant (CI) patients is imperative. The

main obstacle is that Magnetic Resonance imaging (MR) is contraindicated or hindered by

significant artefacts in most cases with CIs. This study describes an automatic cochlear

image registration and fusion method that aims to help radiologists and surgeons to process

pre-and postoperative 3D multimodal imaging studies in cochlear implant (CI) patients.

Methods and findings

We propose a new registration method, Automatic Cochlea Image Registration (ACIR-v3),

which uses a stochastic quasi-Newton optimiser with a mutual information metric to find 3D

rigid transform parameters for registration of preoperative and postoperative CI imaging.

The method was tested against a clinical cochlear imaging dataset that contains 131 multi-

modal 3D imaging studies of 41 CI patients with preoperative and postoperative images.

The preoperative images were MR, Multidetector Computed Tomography (MDCT) or Cone

Beam Computed Tomography (CBCT) while the postoperative were CBCT. The average

root mean squared error of ACIR-v3 method was 0.41 mm with a standard deviation of 0.39

mm. The results were evaluated quantitatively using the mean squared error of two 3D land-

marks located manually by two neuroradiology experts in each image and compared to

other previously known registration methods, e.g. Fast Preconditioner Stochastic Gradient

Descent, in terms of accuracy and speed.

Conclusions

Our method, ACIR-v3, produces high resolution images in the postoperative stage and

allows for visualisation of the accurate anatomical details of the MRI with the absence of sig-
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nificant metallic artefacts. The method is implemented as an open-source plugin for 3D

Slicer tool.

Introduction

The cochlea is a principal part of the inner ear that plays a crucial role in hearing, filtering fre-

quency coded auditory signals, and transmitting them to the brain. The number of patients

presenting with sensorineural hearing loss has increased over the years and Cochlear Implan-

tation (CI) is gaining popularity as a treatment option for these patients. The electrode array in

CIs simulate the function of the cochlea, which in many cases allows patients to communicate

with others and enjoy a normal social life.

The preoperative CI imaging examination relies on Multidetector CT (MDCT) or more

recently the Cone Beam CT (CBCT) for the assessment of the bony labyrinth. The Magnetic

Resonance imaging (MR) is used mainly for evaluation of the membranous labyrinth and the

intracranial vestibulocochlear nerve.

However, in the postoperative period, MR is contraindicated in most cases with CIs, and

even if performed, assessment is impossible due to the pronounced metallic artefact of the CI

electrode within the cochlea. Therefore postoperative assessment relies entirely on computed

tomographic imaging (including MDCT or CBCT) or the conventional projection radiogra-

phy (X-ray) [1]. In the postoperative stage, it is important to accurately assess the position of

the intracochlear electrode in the scala tympani to rule out intracochlear malpositioning.

MDCT and CBCT can only visualise the bony cochlea; a direct assessment of the cochlea scalae

is only possible to a limited extent. Multimodal image fusion between preoperative MR imag-

ing and postoperative MDCT/CBCT examination can provide a solution to this problem.

Image fusion combines different images to create a single more informative image. The

new fused image has features from all the input images e.g. one can see the bones and the soft

tissue simultaneously from fused CT and MR images, see Fig 1. There are many methods of

image fusion [2]. The method we used is a simple matrix addition which is a very fast opera-

tion that takes only a small part of a second in today’s computers e.g.:

Ifused ¼ IA þ IB ð1Þ

For an efficient fusion, images must be correctly aligned to the same physical space using

image registration. Manually performing this process takes a lot of time and neuroradiological

expertise. Automating this process using an image registration method not only saves a huge

amount of time but can also significantly improve the repeatable quality of the results.

Image registration

The image registration [3–5] is the problem of finding a transformation T that aligns one or

more images to a reference image. This transformation transforms the points of an image to

the same location of the points in the reference image. Intra-subject medical image registration

aligns images of the same patient while inter-subject registration aligns images of different

patients. Fig 2 shows the main registration components: a fixed and a moving image, a cost

function, an optimiser, and a transformation. The first transformation handles the issue of dif-

ferent resolutions by mapping both input images to a virtual domain in the images’ physical
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Fig 1. Two input 3D cochlea images of the same patient, CT as a fixed image (top) and MR as a moving image

(middle). The bottom image is the registered and fused 3D image, with magenta colour representing the MR part and

green colour representing the CT part. Each image has 3 views, from left to right: axial, sagittal and coronal.

https://doi.org/10.1371/journal.pone.0264449.g001
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space. This takes place before the optimisation process starts. In this implementation, medical

image registration is not performed in the images’ space [6].

Mathematically, the transform is a function of the image points P and the transform’s

parameters μ where it takes an image point (or a vector of points) and outputs the image trans-

formed point (or a vector of transformed points). We can write this transform as T(P, μ)

where P is the image coordinates vector. The second input to the transformation’s function T
is μ which is a vector that contains the transformation’s parameters.

The transformation transforms an image called a moving image IM(P) to another image

called a fixed image IF(P), where P is a vector of all image point coordinates. The image itself

can be considered a function of points where the output is the intensity (or color) values of the

point locations.

Finding the parameters of this transformation is a challenging task. Hence, the general reg-

istration problem is still unsolved and many papers are published every year trying to solve dif-

ferent aspects of this problem.

Optimisation techniques [7] are usually used to find these parameters. An optimiser, such

as Gradient Descent (GD) [8], tries to find these parameters by minimising a cost function of

the input images. Popular image registration cost functions use similarity metrics such as

Mean Squared Error SMSE(IF, IM) [9] or Mutual Information SMI(IF, IM) [10]. Note that by min-

imising the similarity metric value, we are maximizing the similarity between the fixed and the

transformed moving images.

The optimisation problem is stated as follows:

~m ¼ arg min SðIFðPÞ; IMðTðP; mÞÞÞ; ð2Þ

Fig 2. The main components of image registration: Input images, cost function, optimiser, and a transform. The virtual domain transform deals

with the issue of different image resolution.

https://doi.org/10.1371/journal.pone.0264449.g002
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where μ is the transformation’s parameters’ vector, IF and IM are the fixed and the moving

images, P is the points’ coordinate vector, S is the similarity metric function, and T(P, μ) is the

transformation’s function.

In the GD optimiser, the new parameters are updated using the derivative of the cost func-

tion with respect to the transformation’s parameters, e.g.:

mkþ1 ¼ mk � l
@SðIFðPÞ; IMðTðP; mkÞÞÞ

@m
; ð3Þ

where k is the optimisation iteration, λ represents the step-size or the learning rate of the GD.

The derivative of the similarity metric with respect to the transformation’s parameters is

required for Eq (3). Using the chain rule, this derivative can be divided into two main parts:

@S
@m
¼
Xn� 1

j¼0

@SðIFðpjÞ; IMðTðpj; mkÞÞÞ

@TðpjÞ

@Tðpj; mkÞ

@m

 !

; ð4Þ

where @S
@m

is the first order derivative of the similarity metric S with respect to the transforma-

tion’s parameters μ at k optimisation’s iteration, pj is an image pixel coordinate, and n is the

total number of the image’s pixels. The first part of the right-hand side in Eq (4) requires the

derivative of the similarity metric and the transformed moving image. The second part
@Tðpj ;mkÞ

@m

is called Jμ and it is similar to the Jacobian matrix of the transformation as it represents the

transformation’s partial derivatives at each image point with respect to the transformation’s

parameters. The term Jμ is computed at each optimisation iteration. For a large image size and

complex transformation, the computation requires a lot of time to complete. To solve this

issue, the Stochastic Gradient Descent (SGD) optimisation approach [11, 12] uses samples

instead of the whole image. Sometimes these samples are taken randomly. The stochastic

approach allows fewer computations and provides better results in practice. The parameters

updating rule of SGD is:

mkþ1 ¼ mk � l
@SðÎ FðPÞ; ÎMðTðP; mkÞÞÞ

@m
; ð5Þ

where Î F and ÎM represent samples from the input images IF and IM.

Aim of the work

The aim of this work is to propose and evaluate a new relatively easy and fast automatic

cochlear image registration and fusion method utilizing simple computer hardware and soft-

ware to align and fuse pre-and postoperative multimodal cochlear images in cochlear implant

(CI) patients.

Materials and methods

Ethics statement

The use of all human datasets in our experiments were approved by the Ethics Committee of

the Rheinland-Pfalz state, Germany (Landesaerztekammer Rheinland-Pfalz, Koerperschaft des

oeffentlichen Rechts) with request number 2021–15895-retrospektiv.

We conducted a retrospective review from 2014 to 2020 using our institution’s CI database

to retrieve the preoperative and postoperative imaging data of patients who underwent CI sur-

gery. Exclusion criteria were the presence of congenital cochlear anomalies or severe artifacts

distorting the image quality.
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Dataset

The study included 41 CI patients of different genders and ages with a total of about 131 pre-

operative and postoperative imaging studies from different modalities (MR, MDCT and

CBCT). All the patients’ information was anonymised.

All preoperative MR images were done on a Siemens Avanto 1.5 Tesla device. The sequence

used was transverse T2-spc 3D sequence with the following specifications: Repetition time

(TR) 9.1 ms Echo time (TE) 3.62 ms, Flip angle 80 degrees; pixel bandwidth 130Hz/Px; thick-

ness 0.8 mm; voxel size 0.7x0.5x;0.8 mm; FOV selection 200 mm; Matrix size 384x384; SNR

1.0; Acquisition time 3:30 min. Each used image has a size of 384 × 512 × 64 voxels with

0.39x0.39x × 0.7 mm spacing.

All preoperative MDCT images were done on a Siemens Sensation Cardiac 64 Slice. Each

image was taken with these parameters: KV = 120; mAS = 140; matrix = 512x512; FOV = 65–

75 mm; slice thickness = 0.6 mm; Kernel = U90 μ. Each MDCT image has a size of 512 × 512 ×
58 voxels with 0.12x0.12x1.0 mm spacing.

Preoperative and postoperative CBCT images were done on a Morita 3D Accuitomo 170 (J.

Morita). Each ear was imaged separately using the following parameters: 90-kV tube voltage;

5-mA current; a high-resolution mode (Hi-Res J.Morita) with a rotation of 180 degrees; voxel

size of 0.125 mm and FOV of 80x80x80 mm. The final postoperative CBCT images have a size

of 485 × 485 × 121 voxels with 0.12 × 0.12 × 0.5mm spacing and the final preoperative CBCT

images have a size of 483 × 483 × 161 voxels with 0.12 × 0.12 × 0.3 mm spacing. These CBCT

images were probably cropped as they don’t have isotropic spacing.

ACIR: Automatic Cochlea Image Registration

The multi-registration Automatic Cochlea Image Registration (ACIR-v1) was proposed in

[13] to provide practical cochlea image registration in a few seconds. It combined different

standard techniques and tuned parameters in a customized way that worked for cochlea

images. It combined different registration elements in a hierarchical approach of two stages. In

the first stage, a rigid registration was used while in the second stage, a non-rigid B-spline regis-

tration was used. Moreover, the metric was based on the input image types i.e SMSE for mono-

modal images i.e CBCT and CBCT, and SMMI for multimodal images e.g. MDCT and MR, or

MDCT and CBCT. Even though CBCT and MDCT are very similar, in practice, CBCT and

CT had better image registration result when SMMI was used. It used the Adaptive Stochastic

Gradient Descent (ASGD) as an optimiser [14]. The step-size λ, in Eqs (3) and (5), was an

important optimisation factor that had to be set manually. It had a large influence on the GD

optimisation results. This factor is data-dependent, so finding a suitable value for different

problems was challenging. ASGD is an optimiser that adapts the step-size factor λ automati-

cally, using an image-driven mechanism, to predict its value. It replaces λ with a parameter δ
that defines the maximum incremental displacement allowed between the optimisation’s itera-

tions. The δ parameter was computed using the voxel size of the input image. The mean voxel

spacing (in mm) was found to be a good value.

The cochlear image registration problem in this study is an intra-subject image registration

problem. Hence, it belongs to rigid image registration problems. For such images, the same

transform applies to all pixels in the moving image. Finding the correct transform for any part

of the moving image may solve the problem for other parts in the image. Some areas in these

images have clear structures and less noise. Cropping the original images to one of these small

areas and registering them is an efficient way to produce a transform that registers the original

images. Another method, ACIR-v2, which uses prior knowledge of the images’ characteristics

was introduced in [15]. ACIR-v2 uses the ASGD optimiser to minimise negative Mattes’
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mutual information SMMI similarity metric of two images [16] by modifying 3D rigid transfor-

mation’s parameters.

ACIR-v1 and ACIR-v2 were GD methods. In GD, the second order derivative of the simi-

larity metric function, also called the Hessian H, was the identity matrix I, hence, it was omit-

ted from (3). In some cases where the Hessian matrix is ill-conditioned, this assumption leads

to an inefficient optimisation result. In this case, one should use a Newton optimiser method

where the second-order partial derivatives of the cost function are considered. This approach

is very computationally expensive as the computation of the Hessian requires a lot of time and

memory capacity.

The proposed idea

Quasi-Newton methods [7] use an approximation of the Hessian of the cost function which

reduces the computation time. The update function in quasi-Newton optimiser is:

mkþ1 ¼ mk � l

@SkðIFðPÞ; IMðTðP; mkÞÞÞ

@m

� �

@
2SkðIFðPÞ; IMðTðP; mkÞÞÞ

@m2

� �

0

B
B
B
@

1

C
C
C
A
; ð6Þ

where k is the current optimisation iteration,
@Sk
@m

is the first order derivative of the similarity

metric function at iteration k, λ is the step-size and
@2Sk
@m2 is a symmetric positive definite approx-

imation of the Hessian matrix. A popular quasi-Newton update rule is Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [7] which uses the first-order derivatives to update the inverse Hes-

sian directly. This produces a linear rate convergence. The BFGS update rule is described in Eq

(7):

Hkþ1 ¼ VT
k H� 1

k Vk þ
m0km

0T
k

g 0Tkm0k
; ð7Þ

where Vk ¼ I � g0km
0
kT

g0kTm0k
, I is the identity matrix, g 0k ¼

@Skþ1

@m
�

@Sk
@m

, m0k ¼ mkþ1 � mk, H� 1
k is the inverse

matrix of
@2Sk
@m2 , VT is the transpose of V, and μT is the transpose of μ.

This still requires a long computation time and large memory. The memory issue is solved

by the Limited-memory BFGS (LBFGS) [17] method which saves only a few numbers of the

previous Hessian approximations. The computation time issue is solved using a stochastic

approach.

This paper introduces the Automatic Cochlea Image Registration (ACIR-v3) method which

is based on the stochastic quasi-Newton with Limited-memory BFGS (s-LBFGS) updating

rule.

The proposed method replaces the ASGD optimiser in ACIR-v2 with the s-LBFGS optimi-

ser [18]. The s-LBFGS combines the stochastic approach with the LBFGS approach. This

allows for faster convergence and more robust results.

Evaluation method and statistical analysis

The ACIR-v3 method was compared to its previous versions (ACIR-v1, ACIR-v2), and three

other optimisers i.e. ASGD, Fast Adaptive Stochastic Gradient Descent (FASGD) [19], and

Fast Preconditioner Stochastic Gradient Descent (FPSGD) [20]. Since the result time recorded

might differ according to the hardware used, all the experiments were done using the same

hardware. The hardware used was a computer equipped with AMD Ryzen 3900 CPU, a 32 GB
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memory and a Nvidia RTX2080Ti graphics card. We used the same parameters for all methods

and the original implementations of ACIR-v1, ACIR-v2, ASGD, s-LBFGS, FPSGD by their

authors which are provided as an open-source in 3D Slicer software and Elastix 5.0.0 tool-

box [21, 22].

In the ASGD method, we used the original images and no cropping was involved. The

ASGD parameters were: rigid transformation, no multi-stages, and no multi-resolution. The

optimiser was changed in order to make fair comparisons between FASGD, FPSGD, ACIR-v2,

and ACIR-v3. The comparison between the methods included three criteria: the image regis-

tration accuracy, the required time to align a pair of images, and the robustness of the method.

The time was recorded using a fixed number of iterations (n = 100) and the pre-processing

and post-processing steps, e.g. image cropping, were included. The robustness of the method

was evaluated using the percentage of the missing results according to Eq (8):

Nsuccess

Nsuccess þ Nfail
; ð8Þ

where Nsuccess is the number of cases where the method produced a valid result, and Nfail is the

number of cases where the method failed to produce a valid result e.g. the optimisation

stopped.

Algorithm 1: ACIR-v3
1 Input: two cochlea images IF(P), and IM(P);
2 Output: a registered and fused image Iresult(P);
3 Locate the cochlea locations in input images;
4 ~IF, ~IM ¼ CropðIF; IMÞ;
5 Set transform T = 3D rigid transform;
6 Set k = 0.;
7 While � SMMIð

~IFðPÞ;~IMðTðP; mÞÞ is large and k < 100 do;
8 μ = update the old μ using s-LBFGS.;
9 Set k = k + 1;
10 Transform the moving image, Iresult(P) = IM(T(P, μ));
11 Fuse the result, Iresult = Iresult + IF

Two neuroradiology experts added two 3D landmark points (fiducial points) (in consensus)

to all the imaging studies using the 3D Slicer software version 4.10 [23, 24]. The two landmark

points represent the round window and the cochlear apex, see Fig 3. These landmarks were

saved for each imaging study and were used later for validation of the image registration

results. After aligning the images, the landmarks of the moving image were transformed using

the same transformation. Thereafter, RMSE in mm was measured between these transformed

landmarks and the related fixed image landmarks.

For justification, the results were repeated 3 times and the average values were used. The

results have been divided into 4 groups based on image modalities to obtain more details on

how each method performs on a specific modality. This allowed for more detailed evaluation

as some methods may be biased to specific types of images. These groups were (CBCT,

CBCT), (CBCT, MR), (CBCT, MDCT), and (MR, MDCT). In addition to these group results,

the total results were presented to give a global evaluation of each method. The average RMSE

and average time calculated for each registration process in each of the 6 methods were then

used to compare (ACIR-v3) to each of the other 5 methods using independent T-tests.

Other optimisers (used for comparisons)

FASGD is another adaptive stochastic optimiser that estimates the step-size automatically

using the observed voxel displacement. During the computation of the step-size, two ASGD
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parameters are fixed in FASGD, while they have to be computed in each iteration in ASGD.

This makes FASGD faster but less adaptive than ASGD.

Preconditioned Stochastic Gradient Descent (PSGD) [25] is proposed to improve the rate

of convergence of GD methods. It adds a preconditioning strategy to Robbins-Monro stochas-

tic gradient descent (SGDRM) [11] and ASGD methods. The updating rule for PSGD is:

mkþ1 ¼ mk � lM
@SkðÎ FðPÞ; ÎMðTðP; mkÞÞÞ

@m
: ð9Þ

The equation is similar to Eq (5), the only difference is adding the preconditioner matrix M
which is a symmetric positive definite matrix with size equal to the number of the transforma-

tion’s parameters, i.e. |μ|. When M is the identity matrix, we get the standard SGD method as

in Eq (5). In [25] the step-size is defined to be a non-increasing and non-zero sequence to

Fig 3. Cochlea 3D models and two landmarks. This model is generated in our lab by manual segmentation of a high quality μCT image using 3D

Slicer software. The red colour represent scala media and scala vestibuli. The green colour represent the scala tympani.

https://doi.org/10.1371/journal.pone.0264449.g003
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guarantee convergence:

lk ¼

1 if k ¼ 0

Z

ððtk þ 1Þ=AÞ þ 1
if k > 0

;

8
>>><

>>>:

ð10Þ

where t0 = t1 = 0, tk ¼ maxð0; tk� 1 þ sigmoidð~g k� 1M~gk� 2Þ, ~g is an approximation of
@Sk
@m

, M is the

preconditioner matrix, A = 20 is a decay speed factor, and η is a noise factor and is defined as:

Z ¼
EjjgTMgjj
Ejj~gTM~g jj

¼
EjjgTMgjj

EjjgTMgjj þ Ejj�TM�jj
; ð11Þ

where g is the exact gradient and � is a random noise added to the exact gradient. Unfortu-

nately, PSGD is limited to monomodal image registration where the fixed and the moving

images are the same type e.g. MDCT. The FPSGD solved this issue and can be used for multi-

modal image registration. The authors mention that FPSGD is 2 to 5 times faster than SGD

methods while retaining the same accuracy [20].

FPSGD estimates the diagonal entries of a preconditioning matrix M on the distribution of

voxel displacements. This rescales the registration similarity metric and allows for more effi-

cient optimisation. Let M be a preconditioning matrix with the same length of the parameter

vector μ, and mi is an element in the diagonal of M that can be computed using Eq (12):

mi ¼
d

EðjjJmi
jj:jj~gi jjÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðjjJmi

Þjj:jj~gi jjÞ
q

þ �
; ð12Þ

where δ is a pre-defined value representing the maximum voxel displacement, E||X|| is the

expectation of the l2 norm, Var||X|| is the variance of the l2 norm, Jmi
is the ith column in the

Jacobian matrix Jm ¼
@TðP;mÞ
@m

which is mentioned earlier in Eq (4), and � is a small number to

avoid dividing by zero.

Results

Out of the 131 imaging studies included in the experiments, 124 registration processes (CBCT,

CBCT), (CBCT, MR), (CBCT, MDCT), and (MR, MDCT) were performed using the 6

included methods (ASGD2009, FASGD2015, FPSGD2019, ACIR-v1, ACIR-v2, and ACIR-v3).

The mean RMSE, the mean time used for each method, and the results of their comparison to

ACIR-v3 using the independent samples T-test are shown in Tables 1 and 2. N represents the

number of registration processes, and SD represents the standard deviation. The registration

processes failed in FASGD2019 in 2/124 and in FPSGD2019 in 13/124.

In Figs 4 and 5, visual samples of CBCT to CBCT, and CBCT to MDCT image results of all

6 methods are shown. The fixed image is in magenta and the moving image is in green. The

distance between the ground truth and the registered ground truth landmarks is also shown.

When more green and magenta can be seen, the registration process is inadequate as seen in

the bottom right image of Fig 4 where FPSGD2019 method is used. When the green and

magenta are mixed, the registration process is successful as seen in the bottom left of Fig 4

where ACIR-v3 is used. Similarly, Figs 6 and 7 show visual samples of CBCT to MR, and MR

to MDCT image registration and fusion results. We selected different modalities and different

views to give a visual sample of the results.
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The three charts in Fig 8 show a comparison of the 6 methods in terms of accuracy, time,

and robustness. ASGD, ACIR-v2, and ACIR-v3 methods were 100% robust.

Discussion

There are few scientific papers related to cochlea image registration. Manual image registration

and fusion are usually done by doctors which requires much effort and time as described in

[26]. The authors proposed a manual procedure for image registration and fusion of CT and

MR of the temporal bone using bony surgical landmarks. This procedure took 13 minutes per

scan.

In [27], an automatic cochlea image registration for CT was proposed for Percutaneous

Cochlear Implantation (PCI) surgery. The authors reported a maximum of 0.19 mm error

when using their method. The method was complex as it involved using segmentation and

two-stage registration. The computation time required to complete the registration was

approximately 21 minutes which was larger than the time required for manual registration

(approximately 10 minutes based on our experiments). The authors investigated only complete

head CT scans so the functionality of their method with multi-modal images or small images

focused on the cochlea aspect is not clear.

In the other research, high-resolution μCT data was used in [28, 29] where two methods

were proposed for cochlea image registration. The first method was based on heat distribution

similarity in a cubic B-splines registration model. The second method was based on skeleton

similarity as an anatomical prior. Their methods required cropped and segmented images

which was a time consuming process that took approximately 48 minutes per scan.

Table 1. Independent samples T-test for the RMSE of each method in comparison to ACIR-v3.

Method N RMSE (mm) SD p-value

ASGD2019 124 14.98 8.63 <0.0001

FASGD2015 122 2.77 11.85 0.03

FPSGD2019 111 1.45 8.39 0.194

ACIR-v1 124 10.95 9.497 <0.0001

ACIR-v2 124 0.36 0.17 0.125

ACIR-v3 124 0.41 0.30 -

N: number of registration experiments. RMSE: root mean squared error. SD: standard deviation. p-value: statistical samples t-test p-value comparison to ACIR-v3.

https://doi.org/10.1371/journal.pone.0264449.t001

Table 2. Independent samples T-test for the time of each method in comparison to ACIR-v3.

Method N Time (seconds) SD p-value

ASGD2019 124 6.45 0.83 <0.0001

FASGD2015 122 4.76 1.23 0.37

FPSGD2019 111 4.70 1.19 0.601

ACIR-v1 124 15.97 3.37 <0.0001

ACIR-v2 124 4.65 1.2 0.86

ACIR-v3 124 4.62 1.2 -

N: number of registration experiments. SD: standard deviation. p-value: statistical samples t-test p-value comparison to ACIR-v3.

https://doi.org/10.1371/journal.pone.0264449.t002
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Fig 4. Sample results of registration CBCT to CBCT (coronal views). The figure shows image types, methods, and RMSE information. Magenta

represents the fixed image and green represents the moving image.

https://doi.org/10.1371/journal.pone.0264449.g004

Fig 5. Sample results of registration CBCT to MDCT (axial views). The figure shows image types, methods, and RMSE information. Magenta

represents the fixed image and green represents the moving image.

https://doi.org/10.1371/journal.pone.0264449.g005
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Fig 6. Sample results of registration CBCT to MR. The figure shows the axial views with image types, methods, and RMSE information. Magenta

represents the fixed image and green represents the moving image.

https://doi.org/10.1371/journal.pone.0264449.g006

Fig 7. Sample results of registration MR to MDCT. The figure shows the axial views with image types, methods, and RMSE information.

Magenta represents the fixed image and green represents the moving image.

https://doi.org/10.1371/journal.pone.0264449.g007
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Lately, a proposed cochlea registration method was used in [30]. The fusion of sequential

CBCT was compared to the gold standard fiducial in order to analyse clinical CI migration.

BRAINSFit tool in 3D Slicer was used which reduced the duration of the registration to less

than 2 minutes. A mean error of 0.16 mm was reported. However, this method did not support

multimodal images, and the images used did not include cochlea implants which made the

registration problem less challenging.

Automatic Cochlea Image Registration and fusion (ACIR-v1) was the first attempt to

achieve practical automatic cochlea image registration. The method’s robustness was very

Fig 8. Results chart, the average RMSE, time, and robustness of each tested method grouped based on image-

modalities. The robustness is computed based on Eq (8).

https://doi.org/10.1371/journal.pone.0264449.g008
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high, only one case lacked results, but some images required a manual correction step which

took a few seconds. The average RMSE error was less than 5 mm for all image types except

(CBCT, MR) where it was 15.47mm. It seems that for these two image types, the noise level

was too high which made the mutual information unclear and so it could not be maximised.

The time required to process a pair of images was high because of the use of the B-spline trans-

form which has thousands of parameters. Compared to ASGD, ACIR-v1 produced a 3.8%

improvement in accuracy.

The cropping in ACIR-v1 divided the input images to include the targeted cochlea i.e. 50%

of the image represents either the left or the right ear. In ACIR-v2, the cropping was reduced

to the cochlea region which was around 10x10x10 mm. Additionally, the multi-resolution and

the multi-registration approaches were removed. This produced better accuracy and faster

computation. This showed that the cropping approach in ACIR-v2 was instrumental in achiev-

ing practical results and using ASGD alone was not enough.

In this study, the ACIR-v3 method has been proposed based on the quasi-Newton s-LBFGS

method. The history of the method’s development was outlined i.e. ACIR-v1, and ACIR-v2.

The method presents a practical and fast solution for the multimodal cochlea 3D image regis-

tration and fusion problem. The method results have been validated using landmarks located

by two experts and tested using 131 multimodal cochlea 3D images of 41 patients from CBCT,

MDCT, and MR modalities. The method aligned all the images successfully in a few seconds.

The results showed that using ASGD or s-LBFGS has higher accuracy than FASGD or FPSGD

optimisers, especially concerning multimodal images. This is due to the FASGD method being

less adaptive than ASGD, whilst the FPSGD method has higher sensitivity to noise. In low-res-

olution images with complicated structures, such as clinical images of the cochlea, more noise

is included which leads to poor alignment when FPSGD is used. ACIR-v3 has 4.8% accuracy

and 0.05% speed enhancement over the FPSGD method on average.

The comparison of the ACIR-v3 to its previous versions (ACIR-v1 and ACIR-v2), showed a

statistically significant difference between ACIR-v3 and ACIR-v1 with much improvement in

the time used and lower RMSE. However, there was no statistically significant difference

between ACIR-v3 and ACIR-v2.

The comparisons of ACIR-v3 with the known methods showed no statistically significant

differences in terms of the mean time used except for (ASGD2009), where ACIR-v3 was rela-

tively faster (p< 0.0001). The comparison of the RMSE in ACIR-v3 to ASGD2009

(p< 0.0001) and FASGD2015 (p = 0.03) was statistically significant. The comparison of the

RMSE of the FPSGD2019 to ACIR-v3 showed no statistical significance, yet the mean RMSE

was relatively higher in FPSGD2019 (1.45±8.4 mm compared to only 0.41±0.3 mm in ACIR-

v3). However, the registration process failed in 11 out of the 124 processes in FPSGD2019

which demonstrated instability.

Limitation

The image registration field is very rich. There are many methods published every year and

one cannot cover all the related work in one paper. Hence we selected related work close to

our problem which involves rigid transformation and cochlea images. However there is some

interesting work which can be used for problems involving non-rigid image registration and

different datasets as in [31–35]. Deep learning methods are increasing in popularity in medical

image registration e.g. as in [36, 37]. However, they require expensive specialized hardware

and thousands of medical images for training which are often unavailable. Moreover, the accu-

racy of these methods is poor in some tasks [38].
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Conclusions

The proposed method’s source-code is provided as a public open-source and can be down-

loaded from a public server. The raw cochlea medical image dataset cannot be made publicly

available at present for legal reasons. However, all the original results tables are publicly avail-

able. This enables other researchers to reproduce these experiments and for people to benefit

from the results.

Future work will include studying more s-LBFGS parameters and testing the method

against different problems and on different datasets.

Supporting information

S1 Data.

(CSV)

Author Contributions

Conceptualization: Ibraheem Al-Dhamari, Rania Helal, Olesia Morozova, Tougan Abdelaziz,

Roland Jacob, Dietrich Paulus, Stephan Waldeck.

Data curation: Ibraheem Al-Dhamari, Stephan Waldeck.

Formal analysis: Ibraheem Al-Dhamari, Rania Helal, Tougan Abdelaziz, Roland Jacob, Die-

trich Paulus, Stephan Waldeck.

Investigation: Ibraheem Al-Dhamari, Roland Jacob, Dietrich Paulus, Stephan Waldeck.

Methodology: Ibraheem Al-Dhamari, Rania Helal, Tougan Abdelaziz, Roland Jacob, Dietrich

Paulus, Stephan Waldeck.

Project administration: Tougan Abdelaziz, Roland Jacob, Dietrich Paulus, Stephan Waldeck.

Resources: Ibraheem Al-Dhamari, Roland Jacob, Dietrich Paulus, Stephan Waldeck.

Software: Ibraheem Al-Dhamari, Olesia Morozova.

Supervision: Tougan Abdelaziz, Roland Jacob, Dietrich Paulus, Stephan Waldeck.

Validation: Ibraheem Al-Dhamari, Rania Helal, Olesia Morozova, Tougan Abdelaziz, Roland

Jacob, Dietrich Paulus, Stephan Waldeck.

Visualization: Ibraheem Al-Dhamari.

Writing – original draft: Ibraheem Al-Dhamari, Rania Helal, Olesia Morozova, Tougan

Abdelaziz, Roland Jacob, Dietrich Paulus, Stephan Waldeck.

Writing – review & editing: Ibraheem Al-Dhamari, Rania Helal, Olesia Morozova, Tougan

Abdelaziz, Roland Jacob, Dietrich Paulus, Stephan Waldeck.

References
1. Vogl T, Tawfik A, Emam A, Naguib, Nour-Eldin A, Naguib N, et al. Pre-, Intra- and Post-Operative Imag-

ing of Cochlear Implants. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearme-

dizin. 2015; 187(11):980–989. https://doi.org/10.1055/s-0035-1553413 PMID: 26327670

2. Wang Z, Ziou D, Armenakis C, Li D, Qingquan L. A comparative analysis of image fusion methods.

IEEE Transactions on Geoscience and Remote Sensing. 2005; 43(6):1391–1402. https://doi.org/10.

1109/TGRS.2005.846874

3. Hajnal J, Hill D. Medical Image Registration. 1st ed. CRC press; 2001.

4. Gonzalez R, Woods R. Digital Image Processing. 4th ed. Pearson; 2018.

PLOS ONE Automatic registration and fusion of multimodal cochlea clinical images

PLOS ONE | https://doi.org/10.1371/journal.pone.0264449 March 2, 2022 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264449.s001
https://doi.org/10.1055/s-0035-1553413
http://www.ncbi.nlm.nih.gov/pubmed/26327670
https://doi.org/10.1109/TGRS.2005.846874
https://doi.org/10.1109/TGRS.2005.846874
https://doi.org/10.1371/journal.pone.0264449


5. Yoo T. Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis.

AK Peters Ltd; 2012.

6. Hans Johnson, Matthew McCormick, Luis Ibanez, and the Insight Software Consortium. The ITK Soft-

ware Guide, Book 2: Design and Functionality, Fourth Edition. 2019 May 28. [Cited 2022 February 16].

Available from https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html;.

7. Nocedal J, Wright S. Numerical Optimization. 2nd ed. New York, NY, USA: Springer; 2006.

8. Snyman J. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Clas-

sical and New Gradient-Based Algorithms. Springer Publishing; 2005.

9. Diez D, Cetinkaya-Rundel M, Barr C. OpenIntro Statistics. 4th ed. Electronic copy; 2019. Available

from: https://leanpub.com/openintro-statistics.

10. Viola P, Wells W. Alignment by Maximization of Mutual Information. International Journal of Computer

Vision. 1997; 24(2):137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb

11. Robbins H, Monro S. A Stochastic Approximation Method. The Annals of Mathematical Statistics,.

1951; 22(3):400–407. https://doi.org/10.1214/aoms/1177729586

12. Klein S, Staring M, Pluim J. Evaluation of Optimization Methods for Nonrigid Medical Image Registration

Using Mutual Information and B-Splines. IEEE Transactions on Image Processing. 2007; 16(12):2879–

2890. https://doi.org/10.1109/TIP.2007.909412 PMID: 18092588

13. Al-Dhamari I, Bauer S, Paulus D, Lissek F, Jacob R. Automatic Multimodal Registration and Fusion of

3D Human Cochlea Images. In: The 14TH INTERNATIONAL CONFERENCE ON COCHLEAR

IMPLANTS CI2016. Canada: American Cochlear Implant Alliance; 2016.

14. Klein S, Pluim J, Staring M, Viergever M. Adaptive stochastic gradient descent optimisation for image

registration. International Journal of Computer Vision. 2009; 81(3):227–239. https://doi.org/10.1007/

s11263-008-0168-y

15. Al-Dhamari I, Bauer S, Paulus D, Lesseck F, Jacob R, Gessler A. ACIR: Automatic Cochlea Image Reg-

istration. In: Proc. SPIE 10133, Medical Imaging 2017: Image Processing. vol. 10133; 2017. p. 1–5.

16. Mattes D, Haynor D, Vesselle H, Lewellyn T, Eubank W. Non-rigid multimodality image registration.

Medical Imaging 2001: Image Processing, SPIE Publications. 2001; p. 1609–1620.

17. Saputroa D, Widyaningsih P. Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method

for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR).

AIP Conference Proceedings. 2017;1868(1):0400091–0400099.

18. Qiao Y, Sun Z, Lelieveldt B, Staring M. A Stochastic Quasi-Newton Method for Non-Rigid Image Regis-

tration. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical Image Computing and Com-

puter-Assisted Intervention—MICCAI 2015. Cham: Springer International Publishing; 2015. p. 297–

304.

19. Qiao Y, van Lew B, Lelieveldt B, Staring M. Fast Automatic Step Size Estimation for Gradient Descent

Optimization of Image Registration. IEEE Transactions on Medical Imaging. 2016; 35(2):391–403.

https://doi.org/10.1109/TMI.2015.2476354 PMID: 26353367

20. Qiao Y, Lelieveldt B, Staring M. An Efficient Preconditioner for Stochastic Gradient Descent Optimiza-

tion of Image Registration. IEEE Transactions on Medical Imaging. 2019; 38(10):2314–2325. https://

doi.org/10.1109/TMI.2019.2897943 PMID: 30762536

21. Klein Staring, Murphy,Viergever, Pluim. elastix: a toolbox for intensity-based medical image registra-

tion. IEEE Trans Med Imaging 2010. 2010; 29(1):196–205. https://doi.org/10.1109/TMI.2009.2035616

PMID: 19923044

22. The elastix tool web site. [Cited 2022 February 16]. Available from http://elastix.isi.uu.nl;.

23. Kikinis R, Pieper S, Vosburgh K. 3D Slicer: a platform for subject-specific image analysis, visualization,

and clinical support. Intraoperative Imaging Image-Guided Therapy, Ferenc A Jolesz. 2014; 3(19):277–

289. https://doi.org/10.1007/978-1-4614-7657-3_19

24. The slicer website [Cited 2022 February 16]. Available from https://slicer.org;.

25. Klein S, Staring M, Andersson P, Pluim J. Preconditioned Stochastic Gradient Descent Optimisation for

Monomodal Image Registration. In: Fichtinger G, Martel A, Peters T, editors. Medical Image Computing

and Computer-Assisted Intervention—MICCAI 2011. Berlin, Heidelberg: Springer Berlin Heidelberg;

2011. p. 549–556.

26. Bartling S, Peldschus K, Rodt T, Kral F, Matthies H, Kikinis R, et al. Registration and Fusion of CT and

MRI of the Temporal Bone. Journal of Computer Assisted Tomography. 2005; 29(3):305–310. https://

doi.org/10.1097/01.rct.0000160425.63884.5b PMID: 15891495

27. Reda F, Noble J, Labadie R, Dawant B. Fully Automatic Surface-Based Pre- to Intra-operative CT Reg-

istration for Cochlear Implant. In: Dawant B, Christensen G, Fitzpatrick M, Rueckert D, editors.

PLOS ONE Automatic registration and fusion of multimodal cochlea clinical images

PLOS ONE | https://doi.org/10.1371/journal.pone.0264449 March 2, 2022 17 / 18

https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html
https://leanpub.com/openintro-statistics
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1109/TIP.2007.909412
http://www.ncbi.nlm.nih.gov/pubmed/18092588
https://doi.org/10.1007/s11263-008-0168-y
https://doi.org/10.1007/s11263-008-0168-y
https://doi.org/10.1109/TMI.2015.2476354
http://www.ncbi.nlm.nih.gov/pubmed/26353367
https://doi.org/10.1109/TMI.2019.2897943
https://doi.org/10.1109/TMI.2019.2897943
http://www.ncbi.nlm.nih.gov/pubmed/30762536
https://doi.org/10.1109/TMI.2009.2035616
http://www.ncbi.nlm.nih.gov/pubmed/19923044
http://elastix.isi.uu.nl
https://doi.org/10.1007/978-1-4614-7657-3_19
https://slicer.org
https://doi.org/10.1097/01.rct.0000160425.63884.5b
https://doi.org/10.1097/01.rct.0000160425.63884.5b
http://www.ncbi.nlm.nih.gov/pubmed/15891495
https://doi.org/10.1371/journal.pone.0264449


Biomedical Image Registration. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 89–98. https://

doi.org/10.1007/978-3-642-31340-0_10
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