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Minnesota, United States of America, 3 MLG, Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium, 4 AI-LAB Computer Science Department, Vrije
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Abstract

Most tissues in multicellular organisms are maintained by continuous cell renewal processes. However, high turnover of
many cells implies a large number of error-prone cell divisions. Hierarchical organized tissue structures with stem cell driven
cell differentiation provide one way to prevent the accumulation of mutations, because only few stem cells are long lived.
We investigate the deterministic dynamics of cells in such a hierarchical multi compartment model, where each
compartment represents a certain stage of cell differentiation. The dynamics of the interacting system is described by
ordinary differential equations coupled across compartments. We present analytical solutions for these equations, calculate
the corresponding extinction times and compare our results to individual based stochastic simulations. Our general
compartment structure can be applied to different tissues, as for example hematopoiesis, the epidermis, or colonic crypts.
The solutions provide a description of the average time development of stem cell and non stem cell driven mutants and can
be used to illustrate general and specific features of the dynamics of mutant cells in such hierarchically structured
populations. We illustrate one possible application of this approach by discussing the origin and dynamics of PIG-A mutant
clones that are found in the bloodstream of virtually every healthy adult human. From this it is apparent, that not only the
occurrence of a mutant but also the compartment of origin is of importance.
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Introduction

Many tissues have a hierarchical multi compartment structure

in which each compartment represents a cell type at a certain stage

of differentiation. This architecture has been well described for

hematopoiesis [1,2] and epidermal cell turnover in the skin [3,4]

or in the colonic crypt [5]. At the root of this process are the tissue

specific stem cells that have the capacity to differentiate into more

specialized cells [6]. Each cell undergoes a series of cell divisions

and differentiation steps until the whole diversity of the tissue is

obtained [1,2,7–11]. The model presented here closely follows this

concept. We introduce in total kz1 compartments, where each

compartment i represents a certain stage of cell differentiation with

i~0 representing the stem cell pool. Each cell in a compartment i
replicates at a rate ri. If a cell in a non stem cell compartment iw0
replicates, it can undergo three different processes: With

probability ei, it divides into two more differentiated cells that

migrate into the adjacent downstream compartment iz1. With

probability li, the cell dies. With probability 1{ei{li, it divides

into two cells that retain the properties of their parent cell and

therefore remain in the same compartment i (self-renewal), as

shown in Fig. 1. Thus in compartment i, the number of cells Ni is

increased by influx from the adjacent upstream compartment i{1
and self-renewal within compartment i, and decreased by cell

death in compartment i and cell differentiation into the adjacent

downstream compartment iz1. One could also allow asymmetric

cell divisions in non stem cell compartments. But the average

dynamics in this case can be captured by modifying the

differentiation probabilities e. Thus, this case is implicitly included

in our model. In the following, we shall assume a constant number

of stem cells N0, following [1,12]. This can be achieved via

asymmetric cell division [13,14]. However, one can also assume a

process at the stem cell level in which cell differentiation, cell death

and self renewal are balanced such that the average number of

cells remains constant, i.e. 2e0z2l0~1. For immortal stem cells,

l0~0, this means e0~0:5. However, for our purpose details of the

dynamics in the stem cell compartment are not relevant, as long as

the number of stem cells is constant.

This model does neglect several aspects that may have an

impact on the dynamics of the system under consideration, such as

biochemical feedback or spatial population structure [15–19].

However, due to the generality, our model can be seen as a

benchmark and thus allows to infer when such aspects are of

importance and when they can be ignored by a comparison

between the different model classes.

One special case of our framework is the model of hematopoi-

esis discussed in [1]. There, cell death is neglected, li~0 for all i.
Furthermore, an exponentially increasing proliferation rate

ri~cir0 and a constant differentiation probability ei~e are

assumed for all non stem cell compartments. In this work, we
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relax these conditions and therefore our analytical arguments hold

for general values of ri, ei and li in each compartment and thus for

a wide class of related models and different tissues.

Methods

Mathematical model
The individual cell model is based on a finite number of cells

that divide and differentiate with certain probabilities. Thus, it is a

stochastic process [20] and fits the current view of the stochastic

nature of such cell differentiation processes [21]. However, the

average cell numbers can be captured by a system of coupled

differential equations that is deterministic. These equations follow

from a proper counting of incoming and outgoing cells within each

compartment i.
Let us assume that the number of stem cells N0 is constant,

following [1,12]. The number of cells in the first non stem cell

compartment i~1 increases by influx from the stem cell pool at a

rate r0N0 and due to self renewal at a rate 1{e1{l1ð Þr1N1. In

addition, the average number of cells in the compartment i~1 is

lowered by cell differentiation into the next compartment i~2 at

rate e1r1N1. Cell death in compartment i~1 occurs at rate

l1r1N1. The dynamics in all other compartments is the same,

except that the number of cells Ni in the compartment i increases

due to influx from the adjacent upstream compartment at rate

2ei{1ri{1Ni{1. Self renewal occurs at rate 1{ei{lið ÞriNi. Ni

decreases due to cell death at rate liriNi and cell differentiation at

rate eiriNi. Combining these terms and assuming in total kz1
compartments, we obtain a system of coupled differential

equations

_NN0 tð Þ~0 ð1aÞ

_NN1 tð Þ~{ 2e1z2l1{1ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
a1

r1N1zr0N0 ð1bÞ

_NNi tð Þ~{ 2eiz2li{1ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ai

riNiz2ei{1ri{1Ni{1 ð1cÞ

where 1viƒk and the dots denote derivatives with respect to the

time t. From now on, we use the abbreviation ai to denote the

difference between the loss from compartment i due to

differentiation and cell death and the gain from self renewal.

Figure 1. Cell proliferation and compartment structure. a) We consider three possible events during the cell division of a non-stem cell. Cells
can differentiate, die, or reproduce. This happens with probabilities e,l, and 1{e{l, respectively. b) Compartment structure: The first compartment
represents stem cells dividing asymmetric. These stem cells replicate with a rate r0 and their number N0 is constant. Cells in a non stem cell
compartment i replicate with a rate ri . They will differentiate into the next compartment with probability ei , die with probability li or produce cell
types of compartment i with probability 1{ei{li .
doi:10.1371/journal.pcbi.1002290.g001

Author Summary

We investigate the average stem cell driven dynamics of
cell counts in an abstract multi compartment model.
Within this framework one can represent different tissue
structures, as for example hematopoiesis, the skin or the
colonic crypt. Our analysis is based on an individual cell
model in which cells can differentiate, reproduce or die.
We give closed solutions to the corresponding system of
coupled differential equations, that describe the average
dynamics of all cell types. There are three cases of interest:
(i) Mutations at the stem cell level, (ii) Mutations in
downstream compartments associated with more mature,
non stem cell types, (iii) Mutations in downstream
compartments with cells acquiring stem cell like proper-
ties. The average dynamics shows for (i) and (iii) an
increase of mutants towards an equilibrium, in case (ii) the
average mutant cell count goes through a maximum, but
mutants die out in the long run. We calculate the
corresponding extinction times for every compartment.
We discuss applications to hematopoietic diseases such as,
PIG-A mutant cells or the classic oncogene BCR-ABL.
Although the abstract model is a simplified sketch of cell
differentiation, it is capable of describing many aspects of
a wide variety of such tissues and associated diseases.

Mutant Cells Dynamics
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Thus, ai~eizli{(1{ei{li)~2eiz2li{1. Typically, we will

have aiw0, and this net loss of cells will be compensated from the

influx of cells from the upstream compartment.

Stochastic simulation
The simulations presented in this paper are individual based

stochastic simulations. We implement all elements of the first i
compartments separately, thus we are able to record the

dynamics of every single cell. Every cell division is called an

event. We use a standard Gillespie algorithm [22] to determine

in which compartment the next event takes place. After the

compartment is determined, one cell in this compartment is

chosen to divide proportional to the reproduction rate. The

outcome of this event is determined by the cell death and

differentiation probabilities li and ei. The dynamics in the stem

cell compartment is different: in our realization stem cells are

allowed to divide asymmetrically only, thus we keep the number

of stem cells constant. One could implement a Moran process

on the stem cell level also and therefore allow dynamics on the

stem cells [14]. However this would not change the aspects we

look at in this paper. The number of stem cell events determine

the time scale. We define 1 time unit as n stem cell events. For

example, in the hematopoietic system of a healthy adult human

we assume that there are approximately 400 stem cell divisions

a year.

Results

Stem cell driven dynamics
The equilibrium of the process is obtained from setting the left

hand side of our system of differential equations to zero.

Biologically, this corresponds to tissue homeostasis. In this case,

we have

Ni~N0
r0

riai

P
i{1

j~1

2ej

aj

: ð2Þ

Next, we turn to the process of filling empty compartments by a

continuous influx from the stem cell pool. Because we do not

consider interactions between different cell clones in our

differential equations, this corresponds also to the dynamics of a

mutation arising in the stem cell pool. Thus, we choose the initial

condition

Ni 0ð Þ~
N0 i~0

0 otherwise:

�
ð3Þ

The differential equation (1b) for the compartment i~1 is an

inhomogeneous linear differential equation of first order and can

be solved by methods such as the variation of parameters.

Assuming initial condition (3), one obtains the solution for

compartment i~1

N1 tð Þ~N0
r0

r1

1

a1
1{e{a1r1t½ �: ð4Þ

Because the differential equation for compartment i~2 depends

on N1 tð Þ and N2 tð Þ only, one can insert (4) into (1c) for i~2 and

solve the resulting inhomogeneous equation through variation of

parameters again,

N2 tð Þ~

N0
r0

r2

2e1

a1a2
1{e{a2r2t½ �zN0

2e1

a1

r0

a1r1{a2r2
e{a1r1t{e{a2r2t½ �:

ð5Þ

Continuing with this procedure one can find the general pattern,

which leads to a solution for general i,

Ni tð Þ~N0
r0

riai

P
j~1

i{1 2ej

aj

� �
1{e{ai ri t½ �z

N0r0 P
l~1

i{1

2el rlð Þ
Xi

j~1

{1ð Þi

rjajR
1ð Þ

ji

e{aj rj t
{e{ai ri t

� �
,

ð6Þ

where we have introduced R
1ð Þ

ji ~Pi
l~1,l=j aj rj{al rl

� 	
to shorten

our notation. Equation (6) allows any choice of ei, li and ri. Within

the basic model assumptions depicted in Fig. 1, this represents the

most general case. All thinkable stem cell driven effects can now be

described and followed in detail, as for example any change in the

equilibrium compartment sizes or any change of cell division

properties during cell differentiation. Compartments are contin-

uously filled with cells until they reach the equilibrium described

above. This can easily be deduced from (6), because all terms

involving decaying exponential functions in time will ultimately be

irrelevant for the cell counts.

If we choose (i) an exponentially increasing proliferation rate

ri~cir0, (ii) constant differentiation probability ei~e and (iii)

constant cell death li~l for each non stem cell compartment i,
solution (6) simplifies to

Ni tð Þ~N0
1

ci

2eð Þi{1

ai
1{e

{a
ci

N0
t

" #
z

N0

ffiffiffiffiffiffiffiffiffiffiffiffi
ci i{1ð Þ

q
2eð Þi{1

ai

Xi

j~1

{1ð Þi

c jC
1ð Þ

ji

e
{a

cj

N0
t
{e

{a
ci

N0
t

" # ð7Þ

with C
1ð Þ

ji ~Pi
l~1,l=j cj{cl

� 	
as a short cut.

In Fig. 2, equation (7) is compared to averages obtained from

an individual based stochastic simulation. Note that aw0 is

required to maintain an equilibrium. In this case we have

Ni t??ð Þ~N0 2eð Þi{1= cað Þi, the cell count in a compartment i
under equilibrium conditions. This is in agreement with former

results [23]. While we focus on the biologically relevant case of

aw0, we can also consider more general values of a. For av0, the

compartment produces more cells than it loses even in the absence

of cell influx from upstream. Thus, the number of cells would grow

exponentially according to equation (7) in each non stem cell

compartment. For a~0 the gain of cells due to self renewal and

the loss of cells due to differentiation and cell death in a

compartment is equal. Thus the number of cells are not changed

by processes in the compartment, despite a continuous output of

cells into the next downstream compartment. The case a~0
can be solved directly from Eqs. (1a)–(1c), which gives

Ni tð Þ~N0 Pi{1
j~0 rj

� � ti

i!
.

Solution (6) describes the deterministic process of filling empty

compartments within hierarchical organized tissue structures, as

can occur during wound healing, recovery from hematopoietic

stem cell transplantation [18] or of in vitro experiments with fetal

liver cells [24]. However, it can also be viewed as the dynamics of a

mutant clone arising from a single cell in the stem cell pool,

Mutant Cells Dynamics
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N0~1. Thus, it is also possible to describe the average time

development of diseases caused by mutations at the stem cell level

such as the chronic myeloid neoplasms. Again, because we assume

there is no interaction between normal cells and mutated cells, the

dynamics of mutated cells proceeds independently, albeit with

different differentiation parameters.

Non stem cell driven dynamics
Next, we turn to mutations occurring downstream of the stem

cell compartment. The occurrence of a mutation in a non stem cell

compartment is more likely than a mutation in the stem cell pool

due to the higher numbers and proliferation rates of non stem

cells. The dynamics of such a mutant is not driven by the stem cell

pool and thus is not described by the solution form above,

equation (6). However, the compartment structure is unchanged

and thus the dynamics of such mutants is also described by

equations (1a)–(1c), but with altered initial conditions. Assuming

there is a mutation in compartment j, the initial condition is

Nij 0ð Þ~
1 i~j

0 otherwise:

�

Here Nij tð Þ represents the number of mutant cells in compartment

i at time t, whereas the mutation occurred in compartment j at

time t~0. According to this initial condition, the system of

coupled differential equations (1a)–(1c) turns into a homogenous

system and the dynamics of mutant cells is independent from the

first j equations, see Text S1 for details. Using the same tools as

above, we obtain the general solution

Nij tð Þ~
0 ivj

P
i{1

l~j
2rlelð Þ

Pi

h~j

{1ð Þi{j

R
jð Þ

hi

e{ahrht i§j

8><
>: ð8Þ

with R
jð Þ

hi ~Pi
l~j,l=h ahrh{al rlð Þ. Note that this equation de-

scribes the dynamics of chronic myeloid leukemia clones in [10]

analytically and reduces to the solution in [17] in a special case. If,

as in [1], we assume (i) an exponentially increasing proliferation

rate, (ii) a constant differentiation probability, (iii) constant cell

death across all compartments, then the solution simplifies to

Nij tð Þ~

0 ivjffiffiffiffiffiffiffiffiffiffiffiffiffi
ci i{1ð Þ

cj j{1ð Þ

s
{2e

a

� �i{jXi

h~j

1

C
jð Þ

hi

e
{a

ch

N0
t

i§j:

8>><
>>: ð9Þ

Fig. 3 a) shows the dynamics of mutants in the first

compartments, when the mutation arises in compartment j~1.

Note that for the most biologically plausible case aw0, for large t
the exponential functions in (8) vanish. Thus the mutants will be

washed out from the non stem cell compartments. Thus, the

absence of mutants is a stable state of such hierarchical

compartment structures. However, this equilibrium may not be

of any biological or medical relevance, since the time to get rid of

the last mutant cells of the clone may be longer than the normal

expected lifetime of the healthy organism, cf. Fig. 4. Fig. 3 b) shows

how the maximum of equation (9) and the time to reach it depends

on e, l, and c. As the proliferation rate c of the mutant population

decreases, the size of the mutant population in downstream

compartments increases, although it will take ‘longer’ for the

population to reach high levels. A mutation that increases the net

loss of cells a (either by increasing cell differentiation e or cell death

l) in a compartment lowers the number of mutants at maximum

size of the clone in downstream compartments, which is also

reached earlier. Note also that mutations occurring later in the cell

differentiation process will lead to smaller maxima that vanish

faster [25].

Based on equation (8), other mutant dynamics are also possible.

If ahv0 in a single compartment h, mutant counts diverge

exponentially in all downstream compartments. If ah~0 in a

single compartment h and aw0 otherwise, in the long run mutants

will reach an equilibrium in all downstream compartments, which

is given by

Nij t??ð Þ~
0 ivh

2i{j{1 rh

ri

ah

ei

P
i

l~j

el

al

i§h:

8<
: ð10Þ

This equilibrium is robust against variations of Ni and thus is a

stable fixed point. However a small change in ah would lead either

to extinction or the divergence of the mutant cell count. For a

more detailed discussion, see Text S1. Initially, the difference

between the dynamics of a clone arising from the stem cell

compartment and an early non stem cell compartment is small, see

Fig. 4.

Mutant extinction times
In the long run the average mutant cell count is given by the

dynamics of the slowest decaying exponential function of equation

(8). It is often natural to assume that this corresponds to the

dynamics in the compartment of the mutant origin j. Thus, if we

assume that ajrjvairi for all iwj (as in the hematopoiesis model in

[1]), in the long run mutants will die out at a rate

Nij tð Þ~ P
i{1

l~j
2rlel

� �
{1ð Þi{j

R
jð Þ

ji

e
{aj rj t: ð11Þ

This is shown in Fig. 5 a). For this special choice of parameters

equation (11) becomes

Figure 2. Deterministic dynamics of hematopoiesis modeled as
a hierarchical multi compartment process. The colored symbols
are averages of an individual based stochastic simulation with 104

realizations and corresponding standard deviations. Missing error bars
are smaller than the point size. The colored lines are our analytical
solution (7) for the first six non stem-cell compartments i. Parameters
are based on the model of hematopoiesis in [26] (N0~400, e~0:85,
l~0, and c~1:26, stem cells divides approximately once per year). The
stem cell division rate fixes the time scale. Compartments are
continuously filled with cells until they reach the equilibrium.
doi:10.1371/journal.pcbi.1002290.g002
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Nij tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ci i{1ð Þ

cj j{1ð Þ

s
{2e

a

� �i{j
1

C
jð Þ

ji

e
{a

cj

N0
t
: ð12Þ

Thus, the mutant cell count in the long run is given by a decaying

exponential function. This enables us to calculate the average

extinction time text
ij of mutants in the i-th compartment, if the

mutation occurred in compartment j,

text
ij ~

1

ajrj

ln

P
i{1

l~j
{2rlelð Þ

R
jð Þ

ji

2
664

3
775: ð13Þ

If we assume a constant differentiation probability, constant cell

death and an exponential increasing proliferation rate again this

simplifies to

text
ij ~{

N0

acj
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cj j{1ð Þ

ci i{1ð Þ

s
{2e

a

� �j{i

C
jð Þ

ji

" #
: ð14Þ

In Fig. 5 b) we compare the extinction time due to equation (14)

to simulation results. This approximation does not allow to

calculate the extinction time of the mutant of the compartment of

origin, but a more detailed consideration of this case can be

found in [23].

A special case of interest is a mutation with ej~1=2 and lj~0.

This results in a mutant cell that shows stem cell like properties in

compartment j and non stem cell like properties in higher

compartments. In this case the set of differential equations (1a)–

(1c) becomes

Figure 3. Deterministic dynamics of non stem cell driven mutants in a hierarchical multi compartment process. a) A single mutant
occurred in the compartment j~1. Shown are the number of mutants in the downstream compartments i~f2, . . . ,6g. Lines are due to equation (9),
the colored dots are due to an individual based stochastic simulation. The corresponding parameters have been chosen from a model of
hematopoiesis [26] (N0~400, e~0:85, l~0 and c~1:26). Averages are over 104 realizations. In the long run, mutants will always be washed out,
because of the missing input from the stem cell pool. However, this process can take a very long time, in our example it would be of the order of 10
years until the average number of mutant cells becomes smaller than one in compartment 6. But it will take significantly longer until all cells in
downstream compartments are washed out. b) Parameter dependence of the maximum. For decreasing e, l and c the maximum number of average
cells increases, but the time to reach this maximum increases. The more differentiated the cell of the origin of the mutation, the lower the maximum
number of cells and the quicker this maximum is reached.
doi:10.1371/journal.pcbi.1002290.g003

Figure 4. Average cell number for first 31 compartments. a) Average number of mutants in the first 31 compartments of a hematopoiesis
model (N0~400, e~0:85, l~0 and c~1:26) driven by a single stem cell mutation, cf. equation (7). The number of mutants increases exponentially
per compartment and approaches an equilibrium. b) The same dynamics driven by a single mutant in the third non stem cell compartment j~3, due
to equation (9). The average mutant cell count reaches a maximum, but vanishes in the long run, because of the missing influx from the stem cell
compartment. However, it will be difficult to distinguish between the two cases in the initial phase of the disease (here &3 years).
doi:10.1371/journal.pcbi.1002290.g004

Mutant Cells Dynamics
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_NNi tð Þ~
0 iƒj

{airiNizri{1Ni{1 i~jz1

{airiNiz2ei{1ri{1Ni{1 iwjz1:

8><
>: ð15Þ

Equation (15) transforms into equation (1a)–(1c) if one shifts the

index i to i?i{j. Thus we have to shift the index of the general

solution (6) and find

Nij tð Þ~ rj

riai

P
l~jz1

i{1 2el

al

� �
1{e{ai ri t½ �z

rj P
l~jz1

i{1

2el rlð Þ
Xi

h~jz1

{1ð Þi

rhahR
jð Þ

hi

e{ahrht{e{ai ri t½ �:
ð16Þ

Thus, the average dynamics of such a mutation is exactly as

described above for a stem cell mutation. The averages of the

simulation are described by equation (6) and (8), but a single run is

still stochastic. The relative standard deviation of lower compart-

ments si=Ni is of order 1, but decreases with increasing

compartment number. Stochastic effects on the stem and the

early progenitor cell level are important and can be crucial in a

medical context [14,26], but to understand some fundamental

properties, the deterministic view seems to be sufficient.

Example: Dynamics of PIG-A mutants
Here, we will utilize the model to illustrate the dynamics of a

mutation that is seen in virtually every healthy human being.

Sensitive flow cytometric analysis of circulating blood cells will

identify a small clone that lacks expression of CD55 and CD59

(amongst others) [27]. CD55 and CD59 belong to a class of

proteins that inhibit complement activation and their absence

renders red blood cells sensitive to intravascular destruction. These

proteins are normally displayed on the surface of cells since they

are anchored to the plasma membrane via a glycosylphosphatidyl

inositol (GPI) moiety. Synthesis of GPI requires a series of steps.

The PIG-A gene encodes a protein that is an essential component

of the complex responsible for the first step of GPI biosynthesis.

Mutations in this gene can lead to a partial or complete deficiency

of GPI synthesis resulting in low level or complete absence of such

proteins from the cell surface, as for example the complement

inhibitors CD55 and CD59 [28,29]. Red blood cells lacking CD55

and CD59 are destroyed by complement, leading to hemolytic

anemia. As a result, mutations in PIG-A can explain the

phenotype of paroxysmal nocturnal hemoglobinuria (PNH), an

acquired hematopoietic stem cell disorder characterized by

anemia, hemoglobinuria and other manifestations [30]. A recent

mathematical model suggests that a PIG-A mutation in a HSC is

sufficient to explain the incidence and natural history of PNH [31].

However circulating blood cells with the PNH phenotype (due to a

mutation in PIG-A) can be found in virtually every healthy adult

human [27]. Such clones generally disappear with time. With this

background, we will now apply the analytical solution (8), to assess

extinction times of PIG-A mutants and compare these results to in

vivo data derived from healthy adult humans.

The model parameters were fixed to represent hematopoeisis

following [1]. In this approach, cell death is neglected, li~0 for all

i, and an exponentially increasing proliferation rate ri~cir0 as

well as a constant differentiation probability ei~e is assumed for

all non stem cell compartments. Further, limited self-renewal is

considered across many stages of differentiation, a prediction that

is finding increasing support. For example, this was noted recently

for cells at the proerythroblast stage, a cell type far removed from

the stem cell or primitive progenitor cell pools [32]. Finally, the

model parameters for human hematopoiesis become N0~400,

r0~1=N0, c~1:26 and e~0:85. The number of cells per

compartment increases exponentially and one needs k&31
compartments [1] to ensure that in a healthy adult human, on

average, the daily bone marrow output is of the order of 3:5:1011

blood cells [33]. The same model can also be fitted to other

mammals [34]. PIG-A mutants are considered to be neutral [35],

supported by in vivo measurments [36,37]. Thus we chose, as for

normal cells, lP~0 and cP~1:26 as mutant parameters. For fully

neutral mutants, the clone would either be present for too much

time or it would not reach the level observed in vivo. We explored

various values of e and found that a slightly lower differentiation

probability eP~0:77 gave the best results. Note that this slight

difference compared to healthy cells is still consistent with the

experimental evidence.

In Araten et al. [27] the blood of 19 healthy adult humans was

sampled and tested for clones with PIG-A mutations. Mutants

Figure 5. Extinction times. a) The black lines show the average mutant cell count based on equation (11) in the compartments i~20 and i~30,
where the mutant occurred in the first non stem cell compartment j~1. The dashed blue lines are given by equation (11), extinction occurs when the
average cell count drops below 1. Again the parameters are chosen from a model of hematopoiesis as in Fig. 3 and 4. b) Average extinction time due
to simulation (black dots) and due to equation (14) (dashed blue line). This approximation does not work for the mutant in the compartment of
origin, where an alternative approach is necessary [23].
doi:10.1371/journal.pcbi.1002290.g005
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were found in every person ranging from 8 to 51 mutants per

million (with an average of 21) normal blood cells. Blood samples

from the same patients were taken at later times to determine

survival of these clones. The lower limit of detection in [27] was

approximately 7.5 mutant cells per million. The detected

maximum of 51 mutants per million healthy cells decreased after

164 days and was undetectable after 192 days. Individuals with the

average cell count of 21 PIG-A mutants per million still had the

clone present after 65 days, but it was not detectable after 174

days. We need to determine the compartment j, where a mutation

in PIG-A occurred, such that the clone that arises would grow to

reach the detection threshold and remain detectable for a time

compatible with observations. Using equation (8), we record the

dynamics of mutant cells in compartment 31 for different

compartments of origin. In Fig. 6, the mutant cell count per

healthy cells in compartment 31 is shown, where the mutation

took place in a) compartment 10, b) compartment 11 and c)

compartment 12. With these curves, one can predict extinction

times for different origins of the mutation. Comparing the total

size of the mutant population and the corresponding extinction

times to values obtained in humans [27] allows to predict the

compartments where the mutant clone originated.

In Fig. 6, we show the corresponding times from the

mathematical model calculated from equation (8). The same

figure also illustrates that the time of origin of the mutation can be

much earlier than the detection time. For example, if the mutation

occurred in compartment 10, we predict an extinction time of 230

days for the maximum of 51 mutants per million, when the

initially sample was taken at time t3, see figure 6 a). The extinction

time for the average cell count is 100 days. However, it should be

clear that such mutant cells will survive for significantly longer

than what is detectable by technology due to issues of sensitivity.

With this in mind, there is good agreement between what the

model predicts and the results described in [27], since it is unlikely

that the clones in all the individuals were either found as soon as

they were detectable or when they were at their peak

concentration. Thus what is relevant are (i) the distribution of

times that these mutant cells remain in circulation and (ii) the size

of the clones one observes. In this respect our model provides a

very good approximation of the dynamics of such clones and is

able to infer the cell of origin. If the mutation occurred in earlier

compartments, the clone would be expected to expand to a higher

cell count and will stay in the circulation for a longer time, but

such clones are less likely to occur due to the lower number of

progenitor cells and slower proliferation rate. Mutation events in

higher compartments as j~12 are more likely to happen but these

mutants would not be detectable by most current clinical flow

cytometry techniques due to the small size of such clones in

Figure 6. Dynamics of PIG-A mutants. Panels a) to c) show the number of PIG-A mutants per million healthy cells in compartment k~31, based
on equation (8). The mutation of origin occurred at time t~0 in compartment j~f10,11,12g. The parameters of the mutant cells are cP~1:26,
eP~0:77 and lP~0 in all compartments. The horizontal lines correspond to the detected maximum, the detected average and the detection limit of
PIG-A mutants observed in in vivo studies [27]. The upper table in panel d) shows the time (in days) of these events after the original mutation
occurred at time t~0 based on equation (8). The bottom table shows the corresponding extinction times (Dtl~t6{tl ). We predict an extinction time
of 230 days for the measured maximum and 100 days for the average mutant cell count.
doi:10.1371/journal.pcbi.1002290.g006
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compartment 31 although they may be detected perhaps with

polymerase chain reaction technology. Thus, compartments

f10,11,12g are the most likely compartments of the mutant origin

for the cases described in [27]. Mutations arising in these

compartments correspond to mutations in early progenitor cells.

This agrees with the experimental results, since the PNH

phenotype is present in several different cell lineages and thus

has to occur early in the hematopoietic tree. Note that besides the

compartment of origin, the only free parameter is the differenti-

ation probability of mutated cells eP. Here we assumed that these

circulating mutant cells all originate from one founder cell. Two or

more independent, simultaneous or contemporaneous clones in

early compartments would be unlikely [23,38]. If a second

independent mutation occurs during the presence of an earlier

mutant population, the total mutant cell number is the sum of both

single populations, see Text S1 and Figure S1 for more details.

Moreover the hierarchical structure of hematopoiesis provides

an explanation why almost all humans carrying PIG-A mutations

do not have symptoms of PNH. Only mutations in the most

‘primitive’ compartments have an impact and only mutations in a

HSC will lead to disease. In general, one can predict the dynamics

for mutants with very different properties using equation (8). The

compartment of the mutant origin can be inferred if one follows

the mutant count by taking blood samples at regular intervals.

Discussion

In this work, we presented closed analytical solutions for the

deterministic dynamics of stem cell and non stem cell driven

mutants in a multi compartment model of tissues such as

hematopoiesis, the skin and the colon. This enables us to describe

the dynamics of mutant cells in a general approach. We can

predict the time development of a mutant depending on its origin

and its specific proliferation properties. The process of cell

differentiation is conceptually fairly well understood, but it is of

course a challenge to estimate the various parameters in our model

for real systems. Fortunately, very often, simplifying assumptions,

e.g. exponentially increasing cell proliferation rates, can lead to

insights [26]. However, our analytical solution allows us to

incorporate more involved parameter dependencies, which could

immediately be analyzed.

Let us turn to hematopoiesis to address some of the implications

of our model because recent technological developments allow the

detection of well known mutations in many otherwise healthy

people. Perhaps the best examples are derived from blood

disorders, since repeated blood sampling is a minimal invasive

procedure and molecular probes for many blood disorders are

available. The case of PIG-A mutant cells present in healthy

humans has been analyzed extensively in an earlier section. There

are several other specific examples [25].

(i) A mutation in the janus like kinase 2 where phenyalanine

substitutes valine (JAK2V617F) is a common mutation in

patients with chronic myeloid neoplasms. However, one can

find this mutation in a substantial fraction of healthy adults

(perhaps 0.2–0.4 percent) and with an even higher frequency

(0.94 percent) in hospitalized patients who do not have an

overt hematologic disorder [39,40]. JAK2V617F is expected

to give a survival and reproductive advantage to cells, and

probably also enhances self renewal of progenitor cells.

Knowing the dynamics of such clones, can lead to an

understanding of the cell of origin in these patients as well as

its impact on the fitness of mutant cells.

(ii) Finally, the classic oncogene BCR-ABL [41] that is

associated with chronic myeloid leukemia can be found in

healthy adults [42]. In some of these individuals the mutant

clone resolves while in others it persists but to our

knowledge, none of the individuals in the cohort described

have progressed to develop CML. There are various

potential explanations for this observation including (i)

non-stem cell origin of the mutant clone, (ii) stochastic

extinction [14], (iii) immune response to the clone, (iv)

additional mutations may be needed to lead to CML.

Independent of the multitude of possibilities, it is safe to

conclude that the cell of origin of a mutant is of importance

and the impact of a mutation is cell context dependent. Our

model can provide plausible explanations for the frequency

and cell of origin of these mutations and perhaps why they

do not lead to disease.

(iii) We can also think of other mutations altering cell division

properties. For instance, one can consider a mutation

occurring in compartment j with ej~1=2, lj~0 and normal

properties in all the other upstream compartments. This

would be the special case described by equation (16), and

can be understood as a mutation that enables a cell to

reacquire stem cell-like renewal capacities again. Such a

behavior can explain the origin of various subtypes of acute

leukemia as has been reported recently [43–45].

Our model provides a mathematical abstraction of hierarchi-

cally structured tissues and neglects many factors that can have an

important impact on the dynamics, as for example spatial

population structure or temporal changes of cell division

properties, e.g. due to aging or injury. Nonetheless, the most

important aspects of such tissue structures are captured by our

model. It takes the form of ordinary differential equations that

allows analytical solutions in many cases. An alternative would be

a numerical solution, but such a solution has to be implemented

for specific sets of parameters. We are convinced that our model

can readily be applied to various hierarchical tissues and expect

that general features of mutant dynamics will be conserved across

different tissues.

Supporting Information

Figure S1 Example of three independent mutation
events with equal properties. Shown is the overlapping

dynamics of three independent mutation events.
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Text S1 Details of mutant cell dynamics. Discussion of

mutant cell dynamics and overlapping mutation events.
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