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Abstract: Extracts from the Nepenthes plant have anti-microorganism and anti-inflammation effects.
However, the anticancer effect of the Nepenthes plant is rarely reported, especially for breast cancer
cells. Here, we evaluate the antitumor effects of the ethyl acetate extract of Nepenthes thorellii x (ventricosa
x maxima) (EANT) against breast cancer cells. Cell viability and flow cytometric analyses were used
to analyze apoptosis, oxidative stress, and DNA damage. EANT exhibits a higher antiproliferation
ability to two breast cancer cell lines (MCF7 and SKBR3) as compared to normal breast cells (M10).
A mechanistic study demonstrates that EANT induces apoptosis in breast cancer cells with evidence
of subG1 accumulation and annexin V increment. EANT also induces glutathione (GSH) depletion,
resulting in dramatic accumulations of reactive oxygen species (ROS) and mitochondrial superoxide
(MitoSOX), as well as the depletion of mitochondrial membrane potential (MMP). These oxidative
stresses attack DNA, respectively leading to DNA double strand breaks and oxidative DNA damage
in γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG) assays. Overall these findings clearly revealed
that EANT induced changes were suppressed by the ROS inhibitor. In conclusion, our results have
shown that the ROS-modulating natural product (EANT) has antiproliferation activity against breast
cancer cells through apoptosis, oxidative stress, and DNA damage.
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1. Introduction

Breast cancer is the most common cancer in women, comprises 30% of all new female cancer
cases, and accounts for 15% of all female cancer-related deaths [1]. Breast cancer is complex and
an effective cure remains elusive. Resistance to clinical drugs and radiation reduces the therapeutic
effect against breast cancer and is partly attributed to the loss of apoptosis function [2]. Accordingly,
apoptosis-inducing drugs may improve the therapeutic effect against breast cancer cells.

Accumulating evidence suggests that natural products contain many bioactive components for
cancer prevention and therapy, and sometimes provide advantages over isolated compounds. This is
partly because natural products consist of many bioactive components that can suppress the function of
multiple targets [3]. Natural products provide valuable resources for drug discovery for breast cancer
treatment through apoptosis [2,4–7]. For example, Phyla nodiflora L. extracts were found to inhibit cell
proliferation by inducing apoptosis in human breast cancer cells [2]. The study of additional natural
products for drug discovery against breast cancer cells is thus warranted.

Nepenthes (also known as tropical pitcher plants) are tropical carnivorous plants. Nepenthes
comprise a number of natural and cultivated hybrids and present diverse species development.
Many species of Nepenthes are commonly used in herbal medicine in several Southeast Asian
countries [8]. Some types of extracts from Nepenthes are known to have anti-bacterial and anti-fungal
properties. For example, methanolic extract of N. bicalcarata inhibited growth of gram-positive bacteria
(Staphylococcus aureus, Bacillus subtilis and B. spizizenii) with the minimum inhibitory concentration
(MIC) at 256 µg/mL [9]. Hexane extract of N. ventricosa x maxima inhibited the growth of several
species of fungi such as Alternaria alternata, Aspergillus niger, Bipolaris oryzae, Fusarium oxysporum,
Phytophthora capsici, Rhizoctonia solani, Rhizopus stolonifer var. stolonifera, and Sclerotinia sclerotiorum
with MIC values ranging from 7.2 to 43.7 µg/mL [10]. Nepenthes extracts have been reported to suppress
inflammation [11]. Anti-inflammation drugs frequently show anticancer effects [12–14]. Recently, the
methanol extract and its sequential partitions of N. alata Blanco as well as its bioactive compound
plumbagin demonstrated the anti-breast-cancer effect [15]. Therefore, we hypothesize that extracts
from other Nepenthes hybrid may have an anticancer effect against breast cancer cells.

This study evaluates the antiproliferation effect from an ethyl acetate extract of Nepenthes thorellii x
(ventricosa x maxima) (EANT) on breast cancer cells. The underlying mechanisms of antiproliferation
(e.g., cell viability, apoptosis, oxidative stress, and DNA damage) were determined on breast cancer
cells following EANT treatment.

2. Results

2.1. The Identified Components from Fingerprint Profiles of EANT

According to HPLC fingerprinting assay (Supplementary Figure S1), the major
bioactive components of EANT are isoplumbagin, cis-isoshinanolone, quercetin 3-O-(6”-n-butyl
β-D-glucuronide), and fatty acids. In the present study, we focused on the antiproliferation effect of
breast cancer cells using EANT and therefore the detailed involvement of these bioactive components
on anti-breast cancer effect was not addressed.

2.2. EANT Preferentially Inhibits Viability of Breast Cancer Cells

In Figure 1A, EANT dose-dependently more significantly reduces the viability (%) of two breast
cancer cells (MCF7 and SKBR3) than normal breast cells (M10). In Figure 1B, the viability reducing
effects of EANT are suppressed by the inhibitor pretreatments for ROS (NAC). Accordingly, the
role of oxidative stress and apoptosis in EANT-treated breast cancer cells warrants further detailed
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investigation. For comparison to clinical drugs, the cell viability of breast cancer cells treated with
cisplatin was performed (Figure 1C). The drug sensitivity of EANT in breast cancer cells is higher than
that of cisplatin at 24 h treatment. The drug sensitivity of cisplatin in breast cancer cells at 48 and 72 h
is higher than that of 24 h treatment.
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Figure 1. Cell viability following ethyl acetate extract of Nepenthes thorellii x (ventricosa x maxima)
(EANT) treatment. (A) Cell viability of breast cancer cells (MCF7 and SKBR3) and breast normal cells
(M10) treated with 0 (control with DMSO only), 5, 15, and 25 µg/mL of EANT for 24 h. (B) Cell viability
of breast cancer cells after NAC pretreatment (2 mM for 1 h) and EANT post-treatment (25 µg/mL for
24 h), i.e., NAC/EANT. (C) Cell viability of breast cancer cells treated with different concentrations of
cisplatin for 24, 48, and 72 h. For each cell line, treatments labeled without the same lower-case letters
indicate significant difference. p < 0.05~0.0001. Data, mean ± SD (n = 3).

2.3. EANT Changes Cell Cycle Distribution in Breast Cancer Cells

Figure 2A shows the flow cytometry patterns of cell cycle distribution in breast cancer cells (MCF7
and SKBR3) without (up) or with (down) NAC pretreatment. In Figure 2B, the subG1 and G2/M
population gradually accumulates and the G1 population gradually decreases in breast cancer cells
after EANT treatments. After NAC pretreatments, the subG1 accumulation and cell cycle disturbance
recover to the normal distribution as control.
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Figure 2. Cell cycle change after EANT treatment. (A,B) Cell cycle distribution patterns and statistics.
Without or with NAC pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 0 (control
with DMSO only), 5, 15, and 25 µg/mL of EANT for 24 h, i.e., EANT vs. NAC/EANT. For each cycle
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phase, treatments labeled without the same lower-case letters indicate significant difference.
p < 0.05~0.0001. Data, mean ± SD (n = 3). Positive controls for subG1 accumulation and G2/M
arrest were provided in the Supplementary Figure S2A,B.

2.4. EANT Induces Apoptosis in Breast Cancer Cells

The possibility that subG1 accumulation may lead to apoptosis was further examined by flow
cytometry. Figure 3A shows the flow cytometry patterns of annexin V/7AAD in breast cancer cells
(MCF7 and SKBR3). In Figure 3B (top part), the early apoptosis (%) (annexin V (+)/7AAD (-)) of MCF7
cells is dramatically increased to about 80% in 15 µg/mL of EANT and its late apoptosis (%) (annexin
V (+)/7AAD (+)) is increased to 20% compared to the control. In Figure 3B (bottom part), the early
and late apoptosis (%) of SKBR3 cells is only mildly increased in 15 µg/mL of EANT compared to the
control. In a higher concentration (25 µg/mL), EANT is more likely to induce late apoptosis than early
apoptosis in both breast cancer cells.

Figure 3C,E illustrate the roles of ROS and apoptosis effects on flow cytometry patterns of annexin
V/7AAD in breast cancer cells (MCF7 and SKBR3). At 12 h of EANT treatment, the early apoptosis
population exceeds the late apoptosis population in breast cancer cells. At 24 h of EANT treatment,
the early apoptosis population shifts to late apoptosis in breast cancer cells. In Figure 3D,F, the early
apoptosis population, that is, annexin V(+)/7AAD (−) (%), increases dramatically for 12 h and then
declines at 24 h in breast cancer cells. The late apoptosis population, that is, annexin V(+)/7AAD (+)
(%), increases dramatically for 12 and 24 h in breast cancer cells.

Int. J. Mol. Sci. 2019, 20, x; doi: FOR PEER REVIEW 4 of 13 

 

For each cycle phase, treatments labeled without the same lower-case letters indicate significant 119 
difference. p < 0.05~0.0001. Data, mean ± SD (n = 3). Positive controls for subG1 accumulation and 120 
G2/M arrest were provided in the Supplementary Figure 2S–AB. 121 

2.4. EANT Induces Apoptosis in Breast Cancer Cells 122 
The possibility that subG1 accumulation may lead to apoptosis was further examined by flow 123 

cytometry. Figure 3A shows the flow cytometry patterns of annexin V/7AAD in breast cancer cells 124 
(MCF7 and SKBR3). In Figure 3B (top part), the early apoptosis (%) (annexin V (+)/7AAD (-)) of 125 
MCF7 cells is dramatically increased to about 80% in 15 μg/mL of EANT and its late apoptosis (%) 126 
(annexin V (+)/7AAD (+)) is increased to 20% compared to the control. In Figure 3B (bottom part), the 127 
early and late apoptosis (%) of SKBR3 cells is only mildly increased in 15 μg/mL of EANT compared 128 
to the control. In a higher concentration (25 μg/mL), EANT is more likely to induce late apoptosis 129 
than early apoptosis in both breast cancer cells. 130 

Figures 3C and 3E illustrate the roles of ROS and apoptosis effects on flow cytometry patterns 131 
of annexin V/7AAD in breast cancer cells (MCF7 and SKBR3). At 12 h of EANT treatment, the early 132 
apoptosis population exceeds the late apoptosis population in breast cancer cells. At 24 h of EANT 133 
treatment, the early apoptosis population shifts to late apoptosis in breast cancer cells. In Figures 3D 134 
and 3F, the early apoptosis population, that is, annexin V(+)/7AAD (-) (%), increases dramatically for 135 
12 h and then declines at 24 h in breast cancer cells. The late apoptosis population, that is, annexin 136 
V(+)/7AAD (+) (%), increases dramatically for 12 and 24 h in breast cancer cells.  137 

For EANT post-treatment for 12 h, NAC or Z-VAD pretreatment inhibits both early and late 138 
apoptosis populations. For EANT post-treatment for 24 h, NAC or Z-VAD pretreatment inhibits late 139 
apoptosis populations and the late apoptosis population shifts to early apoptosis. 140 

 141 

Figure 3. Apoptosis change of annexin V/7AAD after EANT treatment. (A and B) Concentration 142 
effect of EANT on Annexin V/7AAD patterns and statistics. Breast cancer cells (MCF7 and SKBR3) 143 
were treated with control with DMSO only and EANT (15 and 25 μg/mL) for 24 h. Annexin V 144 
(+)/7AAD (-) and annexin V (+)/7AAD (+) were respectively regarded as early and later apoptosis. (C, 145 
D, E, and F) Time course effect of EANT on Annexin V/7AAD patterns and statistics. Without or 146 
with (C and D) NAC pretreatment or (E and F) Z-VAD pretreatment, breast cancer cells (MCF7 and 147 
SKBR3) were treated with 25 μg/mL of EANT for 0 (control with DMSO only), 12, and 24 h. For each 148 

Figure 3. Apoptosis change of annexin V/7AAD after EANT treatment. (A,B) Concentration effect of
EANT on Annexin V/7AAD patterns and statistics. Breast cancer cells (MCF7 and SKBR3) were treated
with control with DMSO only and EANT (15 and 25 µg/mL) for 24 h. Annexin V (+)/7AAD (−) and
annexin V (+)/7AAD (+) were respectively regarded as early and later apoptosis. (C–F) Time course
effect of EANT on Annexin V/7AAD patterns and statistics. Without or with (C,D) NAC pretreatment
or (E,F) Z-VAD pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of
EANT for 0 (control with DMSO only), 12, and 24 h. For each cell line, treatments labeled without
the same lower-case letters indicate significant difference. p < 0.01~0.0001. Data, mean ± SD (n = 3).
Positive controls for apoptosis are provided in Supplementary Figure S2C,D.
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For EANT post-treatment for 12 h, NAC or Z-VAD pretreatment inhibits both early and late
apoptosis populations. For EANT post-treatment for 24 h, NAC or Z-VAD pretreatment inhibits late
apoptosis populations and the late apoptosis population shifts to early apoptosis.

2.5. EANT Induces ROS Production and GSH Depletion in Breast Cancer Cells

Since NAC reverts the EANT induced changes of cell viability, cell cycle distribution, and apoptosis,
the status of oxidative stress such as the ROS level in EANT-treated breast cancer cells warrants detailed
investigation. Figure 4A,C respectively show flow cytometry patterns of ROS in breast cancer cells
(MCF7 and SKBR3) without or with NAC pretreatment. In Figure 4B, the ROS (+) (%) is dramatically
increased in both 15 and 25 µg/mL of EANT. In Figure 3D, the ROS (+) (%) increases dramatically
within 5 min and is suppressed by NAC pretreatment in breast cancer cells (MCF7 and SKBR3).

Because glutathione (GSH) has a ROS-scavenging function [16], the status of GSH level in
EANT-treated breast cancer cells warrants detailed investigation. Figure 4E shows flow cytometry
patterns of GSH in breast cancer cells (MCF7 and SKBR3). In Figure 4F, the GSH (+) (%) is dramatically
decreased in 25 µg/mL of EANT in breast cancer cells.
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Figure 4. Reactive oxygen species (ROS) and glutathione (GSH) changes after EANT treatment.
(A,B) Concentration effect of EANT on ROS patterns and statistics. Breast cancer cells (MCF7 and
SKBR3) were treated with control with DMSO only and EANT (15 and 25 µg/mL) for 5 min. (C,D) Time
course effect of EANT on ROS patterns and statistics. Without or with NAC pretreatment, breast cancer
cells (MCF7 and SKBR3) were treated with control with DMSO only and 25 µg/mL of EANT for 5
min. (E,F) The concentration effect of EANT on GSH patterns and statistics. Breast cancer cells were
treated with control with DMSO only and EANT for 24 h. For each cell line, treatments labeled without
the same lower-case letters indicate significant difference. p < 0.05~0.0001. Data, mean ± SD (n = 3).
(+) indicates the ROS or GSH (+) population. Positive controls for ROS and GSH were provided in
Supplementary Figure S2E–H.

2.6. EANT Induces MitoSOX Production and MMP Reduction in Breast Cancer Cells

Since NAC reverts the EANT induced changes to cell viability, cell cycle distribution, and apoptosis,
the status of oxidative stress such as MitoSOX and MMP levels in EANT-treated breast cancer cells
warrants detailed investigation. Figure 5A shows flow cytometry patterns of MitoSOX in breast cancer cells
(MCF7 and SKBR3). In Figure 5B, the MitoSOX (+) (%) is dramatically increased in both 15 and 25 µg/mL
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of EANT. Figure 5C,E respectively show flow cytometry patterns of MitoSOX in breast cancer cells (MCF7
and SKBR3) without or with NAC or MitoTEMPO. In Figure 5D,F, the MitoSOX (+) (%) of breast cancer
cells are suppressed by the inhibitor pretreatments for ROS (NAC) or MitoSOX (MitoTEMPO).

Figure 5G shows flow cytometry patterns of MMP in breast cancer cells (MCF7 and SKBR3).
In Figure 5H, the MMP (−) (%) is dramatically increased in both 15 and 25 µg/mL of EANT. Figure 5I
shows the time course for flow cytometry patterns of MMP in breast cancer cells (MCF7 and SKBR3)
without or with NAC. In Figure 5J, the MMP (−) (%) of breast cancer cells is increased at 12 and 24 h
and is suppressed by the NAC pretreatment.
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breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0 (control with DMSO
only), 12, and 24 h. For each cell line, treatments labeled without the same lower-case letters indicate
significant difference. p < 0.05~0.0001. Data, mean ± SD (n = 3). (+) or (−) respectively indicates
the MitoSOX (+) or MMP (−) population. Positive controls for MitoSOX and MMP were provided in
Supplementary Figure S2I–L.

2.7. EANT Induces DNA Damage in Breast Cancer Cells

ROS is a DNA damage factor [17] and the DNA damage status in EANT-treated breast cancer
cells warrants detailed investigation. Figure 6A shows flow cytometry patterns of γH2AX in breast
cancer cells (MCF7 and SKBR3). In Figure 6B, the γH2AX (+) (%) is dramatically increased in both 15
and 25 µg/mL of EANT. Figure 6C shows time course for flow cytometry patterns of γH2AX in breast
cancer cells (MCF7 and SKBR3) without or with NAC pretreatment. In Figure 6D, the γH2AX (+) (%)
of breast cancer cells are suppressed by NAC pretreatment.

Figure 6E shows flow cytometry patterns of 8-oxodG in breast cancer cells (MCF7 and SKBR3).
In Figure 6F, the 8-oxodG (+) (%) is gradually increased in both 15 and 25 µg/mL of EANT. Figure 6G
shows time course for flow cytometry patterns of 8-oxodG in breast cancer cells (MCF7 and SKBR3)
without or with NAC pretreatment. In Figure 6H, the 8-oxodG (+) (%) of breast cancer cells is increased
at 12 and 24 h and is suppressed by NAC pretreatment.
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Figure 6. γH2AX and 8-oxodG changes after EANT treatment. (A,B) The concentration effect of EANT
on γH2AX patterns and statistics. Breast cancer cells (MCF7 and SKBR3) were treated with 0 (control
with DMSO only), 15, and 25 µg/mL of EANT for 24 h. The dashed box indicates the γH2AX (+)
population. (C,D) Time course effect of EANT on γH2AX patterns and statistics. Without or with
NAC pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0
(control with DMSO only), 12 and 24 h. (E,F) The concentration effect of EANT on 8-oxodG patterns and
statistics. Breast cancer cells (MCF7 and SKBR3) were treated with control with DMSO only and EANT
for 24 h. (G,H) Time course effect of EANT on 8-oxodG patterns and statistics. Without or with NAC
pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0 (control
with DMSO only), 12, and 24 h. For each cell line, treatments labeled without the same lower-case letters
indicate significant difference. p < 0.01~0.001. Data, mean ± SD (n = 3). (+) indicates the 8-oxodG (+)
population. Positive controls for γH2AX and 8-oxodG were provided in Supplementary Figure S2M–P.

3. Discussion

3.1. EANT Preferentially Inhibits Proliferation of Breast Cancer Cells

The antiproliferation effect of cancer cells using Nepenthes has been rarely reported. The current
study demonstrates that EANT inhibited the cell proliferation of breast cancer cells more than that of
normal breast cells at higher concentrations (15 and 25 µg/mL) (Figure 1A). IC50 values of EANT are
respectively 10 and 15 µg/mL for MCF7 and SKBR3 cells at 24 h MTS assay. For comparison to extracts
from other Nepenthes such as N. alata Blanco, IC50 values at 24 h MTT assay using MCF7 cells showed
99.78 µg/mL for its methanol extract and showed 36.60, 90.02, 61.13, and > 100 µg/mL for its CH2CL2,
EtOAc, n-BuOH, and H2O fractions, respectively [15]. These results suggest that our developed ethyl
acetate extract of N. thorellii x (ventricosa x maxima), that is, EANT, has higher sensitivity to breast cancer
MCF7 cells than that of N. alata Blanco. It is possible that extracts from different Nepenthes may have
different components or proportions leading to different drug sensitivity to breast cancer cells.

Antimalarial naphthoquinones such as plumbagin, 2-methylnaphthazarin, octadecyl caffeate,
isoshinanolone, and droserone were isolated from N. thorelii [18]. Several Nepenthes plants reported
that plumbagin is one of the main bioactive components [19,20]. Plumbagin showed IC50 values of
1.155 and 0.658 µg/mL to breast cancer MCF7 cells and noncancerous MCF-10A cells was 2.548 and
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1.882 µg/mL at 24 and 48 h treatments, respectively [15]. In the current study, we found that the major
bioactive components of EANT identified by HPLC fingerprinting method were isoplumbagin [21],
cis-isoshinanolone [22], and quercetin 3-O-(6”-n-butyl β-D-glucuronide) [23] (Supplementary Figure
S1). Isoplumbagin also isolated from the common leadwort (Plumbago europaea) and showed an
anti-Candida effect [21], however, its anticancer effect was rarely reported. cis-isoshinanolone also
isolated from the plant (Diospyros shimbaensis) and showed antioxidant property without testing
anticancer effect [22]. Quercetin 3-O-(6”-n-butyl β-D-glucuronide) also isolated from a slow-growing
small leafless desert shrub (Calligonum polygonoides) and showed cytotoxic effect against liver cancer
HepG2 and breast cancer MCF7 cells [23], that is, 60.46 and 61.4 µg/mL at 72 h sulphorhodamine-B
assay. It warrants the detailed investigation for the cytotoxic effects of these components in EANT to
breast cancer cells in future.

For comparison to clinical drugs, the IC50 value of cisplatin is 15 µg/mL for SKBR3 cells but it is
undetectable for MCF7 cells (Figure 1C). IC50 value of cisplatin at 48 and 72 h MTS assay is 3.71 and
2.69 µg/mL for SKBR3 cells and 10.45 and 6 µg/mL for MCF7 cells (Figure 1C). Similarly, IC50 values
of cisplatin at 72 h treatment by MTT assay are 3.36 and 4.44 µg/mL [24] for SKBR3 and MCF7 cells.
Although the IC50 values of EANT at 24 h treatment are higher than that of cisplatin at 72 h treatment,
their treatment times are different. For 24 h treatment, EANT has higher drug sensitivity to MCF7 cells
and shows similar sensitivity to SKBR3 cells compared to cisplatin.

3.2. EANT Induces Oxidative Stress on Breast Cancer Cells

Oxidative stress is an imbalance status between ROS production and antioxidant response [25].
When ROS is overproduced, the cellular antioxidant system is unable to remove extra ROS to steady
its state, thus reducing the antioxidant level. The current study found that intracellular ROS and
mitochondrial superoxide MitoSOX were upregulated and MMP was downregulated following EANT
treatment. These results suggest that EANT induces oxidative stress in breast cancer cells (MCF7 and
SKBR3). These oxidative stress changes were validated by NAC or MitoTEMPO pretreatments.

GSH is an ROS scavenging antioxidant in cells [16] to maintain oxidative homeostasis. When
the ROS level exceeds the ROS cleanness ability of GSH, the intracellular ROS level may increase
and the GSH level may decrease. Natural products have been reported to inhibit cellular antioxidant
system of cancer cells and lead to cell death for cancer treatments [26]. For example, ethanolic extract
of red algae Gracilaria tenuistipitata can increase ROS production and decrease the GSH level of oral
cancer cells [27]. Consistently, we found that GSH level declined dramatically at higher concentration
of EANT (25 µg/mL). It is noted that the GSH level was not completely depleted in breast cancer
cells (MCF7 and SKBR3) following EANT treatment. In addition to GSH, this warrants a detailed
investigation for the involvement of other non-GSH members in antioxidant systems.

Plumbagin is a common naphthoquinone in Nepenthes, however, isoplumbagin but not plumbagin
is identified in EANT. Plumbagin was reported to bind to GSH [28], behave as electrophile against
GSH [29], and induce GSH depletion of leukemia Kasumi-1 [30] and U937 [31] cells. However, the GSH
effect of isoplumbagin remains unclear. Accordingly, the role of the naphthoquinones isoplumbagin
in cytotoxic effects against breast cancer cells needs detailed investigation in future. Moreover, the
possible involvement of the other main compounds (cis-isoshinanolone and quercetin 3-O-(6”-n-butyl
β-D-glucuronide)) in EANT-induced cytotoxicity of breast cancer cells cannot be excluded.

3.3. EANT Induces Oxidative Stress-Mediated Apoptosis and DNA Damage on Breast Cancer Cells

Oxidative stress is an activator for triggering apoptosis [32]. SubG1 accumulation is one of the
apoptosis indicators [33]. In the current study, EANT partly induces subG1 accumulation and increases
the intensity of annexin V. These apoptosis events were suppressed by NAC pretreatment, suggesting
that EANT induces apoptosis of breast cancer cells depending on oxidative stress.

Moreover, oxidative stress is an activator for triggering DNA damage [34]. In the current study,
the γH2AX marker [35] for DNA double strand breaks was induced in breast cancer cells after EANT
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treatment. The role of oxidative stress in DNA double strand breaks was further confirmed by evidence
that NAC pretreatment suppresses the γH2AX intensity in breast cancer cells (MCF7 and SKBR3)
following EANT treatment. This finding raises the possibility that oxidative stress may attach DNA to
generate other types of DNA damage. In the example of 8-oxodG [36], we further demonstrated that
oxidative DNA damage is also induced in breast cancer cells after EANT treatment. Again, this type of
oxidative DNA damage in breast cancer cells is suppressed by NAC pretreatment. Therefore, EANT
induces apoptosis and DNA damage to breast cancer cells through oxidative stress.

3.4. Conclusion

Extracts from Nepenthes plants have been reported to have anti-microorganism effects, but the
anticancer effect of Nepenthes has rarely been investigated. This study examines the anticancer effect of
Nepenthes on breast cancer cells in the example of ethyl acetate fraction of N. thorellii x (ventricosa x
maxima) (EANT). EANT shows a greater antiproliferation effect against breast cancer cells than for
normal breast cells. Different flow cytometric assays show that EANT induces oxidative stress and
apoptosis in breast cancer cells and these changes were suppressed by their inhibitors. In conclusion,
EANT exerts an antiproliferation effect on breast cancer cells and the detailed mechanisms as mentioned
are explored in a ROS-dependent manner.

4. Materials and Methods

4.1. Nepenthes Extraction and Inhibitors

The aerial parts of Nepenthes thorellii x (ventricosa x maxima) were collected from Dr. Celica Koo
Botanic Conservation Center (KBCC), Pingtung County, Taiwan, in October 2014. This Nepenthes
hybrid plant was identified by KBCC researcher Ray-Hsuan Kuo, marked with the voucher number
K47512 EA, and stored in the Graduate Institute of Natural Products, Kaohsiung Medical University.

The aerial part of plant material (500 g) was sliced and immersed in MeOH (1 L) for three days.
The organic solvent was removed by a rotavapor (Heidolph, Schwabach, Germany) to afford a methanol
extract (25 g). This extract was partitioned between water and ethyl acetate (EA). The EA-soluble
fraction of N. thorellii x (ventricosa x maxima) (9.5 g) is referred to here as EANT. EANT was stored in
−20 ◦C and dissolved in dimethyl sulfoxide (DMSO) prior to experimentation. All treatments have the
same concentration of DMSO, that is, 0.05%.

To examine the role of oxidative stress, cells were pretreated with 2 mM ROS inhibitor
N-acetylcysteine (NAC) (Sigma-Aldrich; St Louis, MO, USA) [37] for 1 h. The role of mitochondrial
oxidative stress was also examined by pretreating cells with 10 µM of the mitochondrial superoxide
inhibitor MitoTEMPO (Cayman Chemical, Ann Arbor, Michigan, USA) [38] for 1 h. The role of
apoptosis was examined by pretreating cells with 20 µM of an apoptosis inhibitor Z-VAD-FMK (Z-VAD)
(Selleckchem. com; Houston, TX, USA) [39] for 2 h.

4.2. HPLC Fingerprint Profile of EANT

In order to understand the abundance and distribution of the components of EANT, the fingerprint
profile of EANT was studied. A Shimadzu LC-20AD prominence liquid chromatograph HPLC
equipped with SPD-M10A VP diode array detector was used for investigation. Injection of EANT
(volume = 100 µL, concentration = 1 mg/mL, in MeOH) was performed by a Shimadzu SIL-10AD VP
auto injector. The separation of EANT was executed by a Phenomenex Luna 5 µ C18(2) 100 Å column
(250 × 4.6 mm, flow rate = 1.0 mL/min) eluted with two solvents [solvent A = 0.1% trifluoroacetic acid
in aqueous solution; solvent B = acetonitrile]. The gradient program was set up as (a) 0 min (20% B),
(b) 60 min (100% B), (c) 70 min (100% B), (d) 80 min (20% B). The fingerprint profile and separation
method of EANT are shown in Supplementary Figure S1 and Table S1, respectively.

The plant material of N. thorellii x (ventricosa x maxima) was collected from KBCC. However, it is hard
to obtain large amounts of this plant for active component separation and identification. Therefore, we
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bought another Nepenthes plant (N. mirabilis) from a local drug store in China. Because taxonomically
related plants usually produce similar secondary metabolites (chemotaxonomic approaches), we
used the major compounds isolated from N. mirabilis as standard to interpret the components in the
fingerprint profile of our research material. We also used repeated column chromatography to isolate
those major compounds from N. mirabilis. Those major compounds were identified by their NMR and
mass spectroscopic data.

4.3. Cell Culture and Viability

Human breast cancer cells (MCF7 and SKBR3) were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
(Gibco, Grand Island, NY, USA). Human breast normal cells (M10) were obtained from Bioresource
Collection and Research Center (BCRC) (Hsinchu, Taiwan) and cultured in Minimum Essential Medium
Alpha Medium (αMEM) (Gibco). All cells were supplemented with 10% fetal bovine serum (Gibco) and
antibiotics, and maintained in a humidified 5% CO2 incubator at 37 ◦C. Cell viability was determined
by Promega MTS Assay (Madison, WI, USA) as previously described [27].

4.4. Cell Cycle Assay

Cell cycle distribution was determined using 1 µg/mL of 7-aminoactinmycin D (7AAD) (Biotium,
Inc., Hayward, CA, USA) for 30 min [40]. Following fixation and washing, cells were suspended in
PBS for flow cytometry (Accuri C6, Becton-Dickinson, Mansfield, MA, USA).

4.5. Annexin V/7AAD Assay for Apoptosis

Cells were incubated with annexin V/7AAD reagents (Strong Biotech Corporation, Taipei, Taiwan)
for 30 min [7]. Following suspension in PBS, apoptotic cells were counted by flow cytometry (Accuri C6).

4.6. ROS Assay

Cells were incubated with 2 µM of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA)
(Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C [41]. Following suspension in PBS,
intracellular ROS levels were measured by flow cytometry (Accuri C6).

4.7. GSH Assay

Cells were incubated with 0.1 µM of CellTracker™Green CMFDA (5-chloromethylfluorescein)
(Thermo Fisher Scientific, Carlsbad, CA, USA) for 30 min at 37 ◦C [42]. Following suspension in PBS,
intracellular ROS levels were measured by flow cytometry (Accuri C6).

4.8. Mitochondrial Superoxide Assay

Cells were incubated with 5 µM of MitoSOX™ Red (Molecular Probes, Invitrogen, Eugene, OR,
USA) for 30 min at 37 ◦C [43]. Following suspension in PBS, MitoSOX levels were measured by flow
cytometry (Accuri C6).

4.9. Mitochondrial Membrane Potential Assay

Cells were incubated with 50 nM of DiOC2(3) from the MitoProbeTM kit (Invitrogen, San Diego,
CA, USA) for 20 min [44]. Following suspension in PBS, MMP levels were measured by flow cytometry
(Accuri C6).

4.10. γH2AX Assay

Following fixation, cells were incubated with the primary antibody (1:50 dilution) against p-Histone
H2A.X (γH2AX) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at 4 ◦C [45]. Subsequently,
cells were incubated with Alexa Fluor®488-conjugated secondary antibody (Cell Signaling Technology)
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(1:10,000 dilution) for 30 min at room temperature. Finally, cells were stained with 1 µg/mL of 7AAD
for 30 min. Following suspension in PBS, γH2AX levels were measured by flow cytometry (Accuri C6).

4.11. 8-Oxo-2′deoxyguanosine Assay

Following fixation, cells were incubated with the FITC-conjugated antibody (1:100 dilution)
against 8-OxodG (Santa Cruz Biotechnology) for 1 h. Following suspension in PBS, 8-OxodG levels
were measured by flow cytometry (Accuri C6).

4.12. Statistical Analysis

Data were analyzed by JMP12 software (SAS Institute, Cary, NC, USA). The significance between
multiple comparisons was analyzed by one-way analysis of variance (ANOVA) using the Tukey HSD
post-hoc test. Different treatments with the same small letters indicate non-significance, while different
treatments without the same small letters indicate significance.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/3238/s1.
Supplementary Table S1. The HPLC method for fingerprint profile of N. thorellii x (ventricosa x maxima).
Supplementary Figure S1. Components of EANT. (A) Fingerprint profile of EANT. It is monitored at 365 nm.
(B) Retention time of (NT-B). Volume is 10 µL. It is monitored at 254 nm. (D) Retention time of quercetin
3-O-(6”-n-butyl β-D-glucuronide) (NT-E). Volume is 10 µL. It is monitored at 254 nm. UV patterns were inserted
in right side for the Supplementary Figure S1B–D. Supplementary Figure S2. Patterns and statistics for positive
controls for flow cytometry experiments using breast cancer SKBR3 and MCF7 cells. (A, B) Cell cycle, (C, D)
apoptosis, (E, F) ROS, (G, H) GSH, (I, J) MitoSOX, (K, L) MMP, (M, N) γH2AX, and (O, P) 8-oxodG.
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