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Machine learning methods have been successfully applied to neuroimaging signals, one of which is to decode specific task states
from functional magnetic resonance imaging (fMRI) data. In this paper, we propose a model that simultaneously utilizes
characteristics of both spatial and temporal sequential information of fMRI data with deep neural networks to classify the fMRI
task states. We designed a convolution network module and a recurrent network module to extract the spatial and temporal
features of fMRI data, respectively. In particular, we also add the attention mechanism to the recurrent network module, which
more effectively highlights the brain activation state at the moment of reaction. We evaluated the model using task-evoked fMRI
data from the Human Connectome Project (HCP) dataset, the classification accuracy got 94.31%, and the experimental results
have shown that the model can effectively distinguish the brain states under different task stimuli.

1. Introduction

The fMRI data showed which parts of the brain participate in
specific psychological processes by detecting the corre-
sponding activation states generated by blood oxygen-de-
pendent dynamic changes that occur in response to neural
activities [1]. Decoding and distinguishing different task
states from fMRI data is a major research direction at
present. Classification of fMRI data is an efficient way to
decode the current cognitive state of the brain from subjects,
which is of great significance for analyzing the working
mechanism of the human mind. This paper aims to classify
fMRI signals by establishing a model and classify the dif-
ferent activation states generated by the brain of the subjects
under different task stimuli, to study and reveal daily human
behaviors and psychological activities more pertinently. In
the past few years, machine learning has developed to be-
come a working horse in brain imaging and computational
neuroscience, because it helps to mine a large amount of
neural data and detect tiny signals from the overwhelming
noise floors [2]. The fMRI data classification methods can be

roughly divided into two categories: methods based on
traditional machine learning and methods based on deep
learning.

In traditional machine learning methods, using a general
linear model to separate stimulus-induced signals from
noise and extracting the features from a specific task are
commonly adopted [3]. Under the linear assumption, the
linear method significantly reduces the data size to a single
voxel or correlation matrix, but this blurs the dynamic and
nonlinear characteristics of the blood oxygen-dependent
response. The fMRI signals consist of a variety of wave
sources, which complicates the analysis of signals related to
changes that are truly related to brain activation. Nonho-
mologous signals are classified by using Independent
Component Analysis (ICA) and finding common features in
the data [4]. The method of processing and analyzing fea-
tures based on individual voxels as independent units ig-
nores the correlation between voxels. To add this correlation
to improve the understanding of neural signal analysis,
multivariate analyses can take advantage of the information
contained in activity patterns across space from multiple
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voxels. Such analyses have the potential to greatly expand the
amount of information extracted from fMRI datasets [5].
Traditional machine learning is not entirely reliable and still
has some deficiencies, it is mostly a shallow model, its
limitation lies in its limited ability to express complex
functions with limited samples and computational units, and
its generalization ability is limited when dealing with clas-
sification problems of high-dimensional data such as
functional magnetic resonance imaging. Moreover, it is
usually necessary to manually construct features when
processing data, which is not only costly but also difficult to
describe the rich intrinsic information of data. It may even
lead to the discarding of some voxels with weak correlation
and fail to make full use of the useful information implied
between voxels.

In recent years, deep learning has made many innovative
achievements in the field of computer vision; the layers of
DNN with nonlinear activation functions can learn more
complex output functions than traditional machine learning
methods [6]. The deep neural network algorithm is also
applied to the field of neural images. DNN can extract
advanced features from the original input data, and the facts
prove that these features have better representation ability
than manual features [7]. Deep Belief Network (DBN) uses
the low-dimensional representation of fMRI data to decode
the brain. This method flattens the three-dimensional image
into a one-dimensional vector as the feature of learning
DBN, which makes the three-dimensional fMRI data lose the
spatial structure information [8]. The 2D convolution is
widely used in image classification; Hu proposed M2D CNN,
a novel multichannel 2D CNN model, to classify 3D fMRI
data. The model uses sliced 2D fMRI data as input and
integrates multichannel information learned from 2D CNN
networks [9]. However, according to the characteristics of
functional data, this is four-dimensional data, containing
most of the temporal and spatial information of brain ac-
tivity [10]. At present, most feature methods do not directly
analyze four-dimensional fMRI data, so these methods more
or less lose the temporal and spatial information in fMRI
data. A deep 3D convolution neural network can effectively
and reliably perform the classification and identification
tasks of functional networks. At the same time, it can achieve
a good training effect even if the data contain high error
marks [11]. The deep learning method is good at extracting
information from high-dimensional data space and can
learn highly complex and abstract features from data.
Therefore, it is a more robust method than traditional
machine learning, and the convolution network has a strong
feature extraction ability in spatial information processing.
3D convolution model is used to model fMRI data, which
can distinguish brain activation states under different task
stimuli [12]. According to the characteristic that fMRI data
contain time-series information, the LSTM network can be
used to distinguish different task states on fMRI data, which
can obtain better brain decoding performance than tradi-
tional methods [13]. For the deep learning model, the
convolutional neural network has a sufficient ability to
extract local features. However, fMRI data are inherently
four-dimensional imaging data with time series. Most of the
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current methods only focus on spatial features and ignore
the temporal sequential changes of voxels. It shows that both
temporal and spatial information are critical in fMRI data, so
it is of great research significance to design a model that can
analyze both sequential and spatial information on fMRI
data.

Therefore, we propose a deep network based on the
spatiotemporal information feature of four-dimensional
fMRI data. We use the convolution network to extract spatial
features and the recurrent network to extract temporal se-
quential features. Finally, the feature extracted above is sent
to a classifier for classification. To sum up, our contributions
are as follows:

(1) We add time distribution processing to each con-
volution layer and aggregation layer so that the
convolution network retains the time information of
the original data. And we set a full convolution in the
last layer of the convolution network, which effec-
tively reduces the training parameters and slows
down the occurrence of overfitting.

(2) The bidirectional LSTM layer is added to process
data timing information, and we use the attention
mechanism to improve the model’s capture of im-
portant information in time sequences.

2. Materials and Methods

2.1. Data Introduction. The dataset we used is Wu-Minn
Human Connectome Project (HCP) [14, 15], which is a large
public dataset of fMRI data. It includes several classes of
fMRI data such as structural MRI data, resting fMRI data,
and task-evoked fMRI data, among which task-evoked fMRI
dataset contains seven different task-evoked data: Emotion,
Gambling, Language, Motor, Relational, Social, and
Working Memory. During the task, the subject’s brain will
be continuously scanned by the magnetic resonance data
acquisition instrument, and at the same time, the subject will
receive video prompts at different task stages to ask them to
perform corresponding actions. The Emotion task requires
the subject to choose which of the two facial expressions with
the label “fear” or graphic shapes with the label “neur”
presented at the bottom of the screen matches the facial
expression or graphic shape at the top of the screen.
Gambling task requires the subjects to participate in the card
guessing game and determines the brain reaction when the
subjects lose with the label “lose” or win with the label “win”
by guessing the numbers on the mysterious card. The
Language task requires the subjects to listen to a short story
adapted from Aesop’s fable with the label “Story” or a simple
math problem with the label “Math” and then choose the
theme that matches the story or choose the answer corre-
sponding to the topic. For the Motor task, the subjects will
receive visual prompts to ask them to perform corre-
sponding actions, including hitting their left hand with the
label “Left Hand” or right hand with the label “Right Hand,”
squeezing their left foot with the label “Left Foot” or right
foot with label the “right root,” or moving their tongue with
the label “Tongue.” The Relational task judges whether
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objects are related to the label “relation” or matched with the
label “match” by showing short video clips to subjects. For
Social tasks, the subjects will watch a short video and then
judge whether the objects in the video have mental inter-
action with the label “mental” or no interaction with the
label “rnd.” For the Working Memory task, the subjects were
presented with an experiment consisting of pictures of places
with the label “places,” tools with the label “tools,” faces with
the label “faces,” and body parts with the label “body” and
then recorded the changes of the brain under four types of
stimuli. According to the characteristics of fMRI data col-
lection, the subjects will participate in each task, each task is
composed of several different subtasks, each subtask will be
executed several times, and each task will last for several
seconds. We only selected one subtask as the sample of each
task, as shown in Table 1.

2.2. Data Processing. The spatial dimension of HCP data is
91 x 109 x 91x frames. We cut out some useless information
such as black borders in the space to get fMRI data with a
dimension of 78 x 93 x 76x frames. In addition, to satisfy the
condition of the hemodynamic response function, we not
only considered the duration of the whole task block but also
covered the time of 8 s after the task block for each sample.
Then, according to the duration of the whole task and the
total number of frames, the sampling repetition time of the
task state fMRI data of HCP can be calculated to be 0.72, and
the selected subtask block segmentation method is shown in
formula

_ (TD +8)

0.72 W

TF

Here, TF represents the total number of task sample
frames and TD represents the task duration. After obtaining
the total number of frames of subtask, it is only necessary to
calculate the position of frames corresponding to the start
time and then extract subtask samples with corresponding
frames from the whole sample according to the frames
corresponding to the start time and the frames corre-
sponding to the end of the task. The number of frames and
samples corresponding to a single subject in seven tasks is
shown in Table 2.

Because the durations of different subtasks are not the
same and the frames corresponding to the extracted task
samples are not the same, it is necessary to unify the frames
of different task samples before taking the samples as the
input of the model. In the experiment, 21 consecutive frames
in subtasks are selected as separate samples. When the data
amount of depth model is small, the model is prone to
overfitting, which will show a good effect on the training set
and poor effect on the test set. At this time, it is necessary to
increase the amount of data in the training set to improve the
performance of the model. However, the dataset of HCP has
been spatially aligned by the standard MNI152 template, so
it can only be enhanced in the time dimension. First, ran-
domly collect 21 consecutive brain images in a single task
block as new samples, and then repeat them many times. The
number of repetitions needs to be determined according to

the number of task blocks in Table 3. Because different tasks
are executed at different times, to ensure that the number of
samples of each task in the training set is the same, the data
imbalance will cause the model to be biased towards the
prediction of a certain task. Therefore, we need to carry out
balanced sampling here, so that the number of task blocks of
each subject after enhancement reaches 12 samples.

According to the characteristics of blood flow in fMRI,
when there is a blood oxygen reaction in images, there will
be obvious differences between frames. The absolute value of
the brightness difference between the two frames can be
obtained by subtracting two frames to judge whether there is
a blood oxygen reaction in the brain area. In the experiment,
21 frames of samples were extracted and then subjected to
the interframe difference method to obtain 20 frames of
samples. Data normalization is a basic work of data mining.
In the experiment, we normalized the 3D brain image in the
data time dimension, and the processing method is shown in
formula (2), in which X; represents the brain image of the iy,
frame and X* represents the normalized brain image, which
is obtained by dividing each frame of brain image by the
frame with the largest brain image value in the current
sample:

X = ! .
" omax (X, X, -5 Xyp) (2)

The above is the data prepossessing. In addition, we need
to divide the whole dataset into the training set, validation
set, and test set according to the number of subjects for
training and verification. The division ratio is 80% as the

training set, 10% as the validation set, and 10% as the test set.
The whole data processing flow is shown in Figure 1.

2.3. Model Overview. We input the fMRI data into the model
as input X [t, x, y, 2, c]. Firstly, the convolution network
extracted spatial features and effectively reduced the size of
the fMRI data dimension. The operation of the convolution
structure can be expressed as follows:

X o = cnn(X). (3)

The output X.,, from the convolution network is
reshaped to Xy, [#, h] and then input into the RNN network,
and the timing characteristics are extracted through the
RNN network. The processing of the RNN network can be
expressed as follows:

Xrnn = rmn (chn)' (4)

Finally, the output of the RNN network is input into the
classification network as input X,,, [h] to obtain the final
prediction result, which can be expressed in the following
form as a whole:

Xpred = Classifier (X, ). (5)

The prediction results correspond to our classification
target. Figure 2 shows the overview of our model. Next, we
will describe the network separately in this overview in
detail.
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TaBLE 1: Details of seven tasks.
Task Task duration (min) Task frames Selected condition Condition duration (s)
Emotion 2:16 176 Fear 18
Gambling 3:12 253 Loss 28
Language 3:57 316 Story 24
Motor 3:34 284 Left hand 12
Relational 2:56 232 Relation 16
Social 3:27 274 Mental 23
WM 5:01 405 2bk_places 27.5
TaBLE 2: Frame number and block number of seven subtasks.
Task Fear Loss Story Left hand Relation Mental 2bk_places
Frames 36 50 44 28 33 43 49
Block 2 2 4 2 3 2 1
TaBLE 3: Parameter setting of convolution layer.

Layer Kernel size Channels Steps
Convl 7X7%X7 32 2
Conv2 3x3x3 64 2
Conv3 3x3x%x3 64 2
Conv4 8x10x8 64 1

g N

Conditional extraction
— 80%
Augmentation
A )
Al 10%
Conditional extraction
10% Task_x Block_x Sample
-
A8 )
Ficure 1: Data processing.
Model
Time-series data ( \

Prediction vector

fMRI

Classifier

FiGure 2: Overview of our model.

2.4. CNN Architecture. Firstly, here is the CNN network
[16]. Two-dimensional convolution extracts the features of
two-dimensional natural images, while three-dimen-
sional convolution is used to extract the features of three-
dimensional brain imaging data. However, fMRI data
contain time series, so we added a trick in the forward
propagation of data, that is, making the same convolution

kernel to convolution operation at each scanning point to
maintain time-series information. The structure is shown
in Figure 3.

The CNN network consists of four convolution blocks,
each of which includes a convolution layer, a BatchNorm
layer, and a ReLU activation layer. And the parameters are
set as shown in Table 2.
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Figure 3: The CNN architecture.

The data are input into the convolution layer through
feature extraction of the convolution layer:

I -1 41, 4l
xj:in *kj+b, (6)

ieM

where [ represents the [, convolution block, M represents the
set of feature maps, x; represents the iy, input feature map, k;
represents the jy, convolution kernel, x; represents the jy,
output feature map, and b is the bias. The output of each
convolution layer is batch normalized by BatchNorm layer
[17]; BatchNorm forcibly pulls the distribution of the input
value of any neuron in each layer of the neural network back
to the standard normal distribution with a mean value of 0
and a variance of 1 through a specific normalization method:

!
X —U
J
xy —y -2t g (7)
’ V0'2+8

After the batch normalization operation, a nonlinear
transformation is performed by the ReLU activation func-
tion [18]:

xf:onv = Relu (xbn)' (8)

We adopted a stride of two in the first three convolu-
tional layers to compress the size of data instead of the
pooling layer, which can reduce the dimension to some
extent and reduce the amount of computation. And the last
convolutional block is a fully convolutional layer. The di-
mension of the feature map generated by each layer of the
convolution block will be reduced. The first three layers are
commonly used in convolution networks. First, we used a
large receptive field to extract features; then, we used two
conventional receptive fields to extract features. In the last
convolution block, we used the full convolution which could
be treated as a fully connected layer so that the kernel of this
layer can cover the information of the last feature map, and
the final output shape is [20, 1, 1, 1, 64].

2.5. RNN Architecture. Secondly, we reshape the feature map
from the last convolution block to the shape of [20, 64];
then, we used the RNN network to extract the temporal
sequential feature. The structure of the RNN is shown in
Figure 4.

The structure of RNN network includes two hidden
LSTM layers [19]: the LSTM layers are used to extract in-
formation on the temporal dependency for each time point
and the information representation extracted in each LSTM
layer is calculated as

fr=o(Wy [l x] + b)),
iy = o (Wi [H_p, 2] + ),

C, = tanh (WL [H]_,x!] + ), 9
C=flud +isC,

h = (W' [h_,x}] + b)) *tanh (C}),

where f; 1, ¢, h, and x denote the output of forget gate, input
gate, cell state, hidden state, and the input feature vector of
the I, LSTM layer at the t,, time point, respectively, and o
denotes the sigmoid function. The RNN network consists of
two LSTM layers, and each LSTM layer is followed by a
dropout layer [20]. Dropout layer will randomly set some
neurons invisible with a probability of 0.2, and the input
and output neurons will remain unchanged. This two
LSTM layers are with opposite directions, so that it is called
bidirectional LSTM, and each layer is with 64 units. It
involves duplicating the first recurrent layer in the network
so that there are now two layers side by side, then providing
the input sequence as-is as input to the first layer, and
providing a reversed copy of the input sequence to the
second. Finally, we merge these two LSTM layers with
opposite directions by concatenating them. The input
features to the LSTM layer are the feature vector derived
from the CNN network.
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F1GURE 4: The RNN architecture.

2.6. Attention Mechanism. The essence of the attention
mechanism is to locate interesting information and suppress
useless information [21]. It is to calculate the weight of each
time series first and then take the weighted sum of all time-
series vectors as feature vectors. The specific processing
process of attention has the following formula:

(10)

and w; is
()
! 21]:;1 eXp (hk)

In the above formula, T, is the total time steps, and h; is
the output of the jy, time of the previous hidden layer and in
our model here is the output of the LSTM layer. It can be
found that the model for calculating c; is a linear summation
model, and wj; is actually the weighted average of the outputs
of hidden layers at each time in the previous hidden layer.
After adding the attention mechanism to the RNN module,
the attention mechanism structure is shown in Figure 5.

(11)

2.7. Classifier Architecture. Finally, we used the classification
network to obtain the final classification results; the struc-
ture of the classification network is shown in Figure 6.

The structure of the classifier includes two fully con-
nected layers; the dense layers are used to learn a mapping
between the learned feature representation. The first dense
layer with 64 hidden units and the last fully connected layer
with softmax activation function are adopted for the clas-
sified 7 task states as

s = softmax (W - h +b,), (12)
where s is the prediction vector with the number of task
probability predictions and 4 is the hidden state output of
the first dense layer. These are the details of the model.
Parameters W and b will be continuously optimized during
the training process of the experiment. Then, we use the
output of the model and the real label to input into our loss
function, which is a commonly used cross-entropy loss
function to calculate the loss value; then, we use the

backpropagation method to update the parameters of the
model according to this loss value:

elogits,-j
pi= softmax (lOgltSi) = Shnumclasses—1 logits;;”
Yimo e~
J
(13)

numclasses—1

2

Jj=0

loss; = — Yij * In Pij

where y represents the true label value, logits represents the
output of the model, and a probability vector p is obtained by
the activation function of softmax with the input of logits;
then, the loss value is calculated by the cross-entropy
function.

2.8. Comparison Models. Given the above model we
designed, we also use the following models as benchmarks
for comparison of classification performance when given the
same input data and output categories.

2.8.1. MLP. The structure of the MLP model is described in
Section 2.7. The input is four-dimensional fMRI data
(20 x 78 x 93 x 76), so firstly, the input should be processed,
and the time dimension of fMRI data should be averaged to
transform the four-dimensional fMRI data into one frame of
average three-dimensional brain image data (78 x 93 x 76).
Then, all voxel points of the three-dimensional brain im-
aging sample are flattened into one-dimensional vectors
with 551,304 features, which are input into a one-dimen-
sional vector containing a fully connected layer and one-
dimensional vectors.

2.8.2. BiLSTM. The structure of the BILSTM model is de-
scribed in Section 2.5. In this model, only the time infor-
mation of fMRI data is considered, and the three-
dimensional brain image information is directly flattened
into one-dimensional vector features. Firstly, four-dimen-
sional fMRI data (20 x 78 x93 x76) are transformed into
feature vectors (20 x 551304) containing time series and then
input into the bidirectional long-term and short-term
memory network for extracting the time-series features from
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FIGURE 5: Attention mechanism.
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F1GURE 6: The classifier architecture.

the data. The hidden units in each layer of the bidirectional
LSTM layer are 64, the value of the dropout layer is 0.2, and
then an attention mechanism is connected to the process and
assigns weights to each time point. Then, it is input into the
fully connected layer with 64 nodes for further processing.
Finally, the probability value of each category is calculated by
the softmax function of the output layer for classification.

2.8.3. M2D CNN. In the multichannel 2D CNN model [9],
averaging is also carried out on the time dimension of fMRI
data, the four-dimensional fMRI data (20 x 78 X 93 x 76) are
transformed into three-dimensional brain image data
(78 x93 x 76), and then the third dimension of the three-
dimensional brain image is input into the two-dimensional
convolution network model as a channel, which includes a
combination of two-dimensional convolution layers and
pooling layers, a fully connected layer, and an output layer.

2.8.4. 3D CNN. The structure of the BiLSTM model is
described in Section 2.4. The input format of the model is
[batch size, 78, 93, 76, 1]. Firstly, the four-dimensional fMRI
data (20x78%x93x76) are converted into three-dimen-
sional single-channel brain image data (78 x 93 x 76 x 1), and
then single-channel gray-scale three-dimensional brain

image samples are input into the three-dimensional con-
volution network model. The network contains four layers of
convolution, and the first three layers are the combination of
the convolution layer and the pooling layer. It is used to
extract the spatial features of 3D images, which are output by
the fourth layer and full convolution, flattened, and input
into the full connection layer for further study, and finally,
the probability values of each category are calculated by the
softmax function of the output layer for classification.

3. Experiments

3.1. Data Processing. In the experiment, the whole dataset is
divided into 10 parts according to the number of subjects. In
each experimental training model, 80% was randomly se-
lected as the training set, the remaining 10% as the validation
set, and 10% as the test set.

3.2. Training. In the experiment, the training models are
implemented with the TensorFlow [22] deep learning
framework, and Adam is used as the model optimization
method. The initial learning rate is set to 0.001, the data
matrix of the input model is [20, 78, 93, 76, 1] (time, x, y, 2,
c), and eight samples are input into the model at a time.
Because the convolution layer does not process the timing
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Figure 8: Confusion matrix on validation set.
TaBLE 4: Comparison results of classification effects of various models.
Model Accuracy Precision Recall F1 score
MLP 82.41% + 1.06% 82.62% +1.07% 80.37% £ 1.17% 80.89% + 1.18%
BiLSTM 44.95% + 2.46% 38.11% +2.28% 37.90% £2.65% 37.12% +2.05%
M2D CNN 87.85% +1.07% 87.90% +1.11% 86.53% + 1.21% 87.12% +1.13%
3D CNN 89.62% +1.17% 89.65% +0.97% 90.02% + 0.89% 89.76% + 0.94%
Ours 94.31% £1.39% 93.92% +1.27% 95.24% +1.43% 94.48% +1.28%
TABLE 5: Number of model parameters.
Model Total parameters Training parameters Unit number input into dense layer
MLP 35,283,975 35,283,975 551,304
BiLSTM 282,317,959 282,317,959 128
M2D CNN 1,565,623 1,565,271 12,096
3D CNN 1,988,935 1,988,487 64
Ours 2,882,503 2,882,055 128

information, the layer wrapper time distributed in Keras is
needed to encapsulate the convolution layer, so that the
convolution layer maintains the timing information and
only extracts the features of the last four dimensions of the
data. When the change of loss tends to be flat during the
training process or the accuracy of the model on the vali-
dation set is not rising, we think that the model has con-
verged; then, we stop training and save the parameters with

better results in the model training. The training process is
shown in Figure 7.

3.3. Validation. After the model trains the whole training
set, it will use the verification set to test the performance of
the trained model. And the model that performed best will
be saved. The results are shown in Figure 8, which shows the
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performance of the trained model on the seven tasks of the
verification set.

3.4. Compare the Experimental Test Results. Under the same
experimental conditions, we use the following current
methods introduced in Section 2.8 to compare the classi-
fication performance with our model, and according to the
data processing method in Section 3.1, under the condition
that other experimental conditions are consistent except for
different datasets, we conducted a 10-fold cross-validation
test on each model and took the average of the results of 10
models on the test set as the final model test performance
result. And the result is shown in Table 4.

Under the same experimental parameter configuration
of each model, the total number of model parameters, the
number of parameters that the model participates in
training, and the number of nodes connected to the full
connection layer in the model are shown in Table 5.

Table 4 shows the performance of each model in clas-
sification accuracy, precision rate, recall rate, and F1 value.
Table 5 illustrates the size of each model and the dimension
of the feature vector extracted from the data. The first is the
BiLSTM model, which is characterized by processing only
the temporal features of fMRI data, while the spatial features
are directly flattened into the input model. Due to the
characteristics of the recurrent network, the model pa-
rameters increase sharply, which easily leads to an overfitting
phenomenon under certain data samples. Therefore, the
BiLSTM model’s performance representation is the worst
with only 44.95% classification accuracy. Secondly, the MLP
model with the second largest number of parameters does
not consider the temporal characteristics of fMRI and the
spatial characteristics of data. It adopts the method of violent
dimension reduction, taking the average value of the tem-
poral dimension and flattening it directly in space, which
directly loses some characteristics of fMRI data, and the
number of nodes input into the full connection layer is also
the largest, which leads to a sharp increase in the number of
model parameters and is also easy to produce overfitting, so
the final classification accuracy is only 82.41%. Next, there
are two convolutional neural network models, 3D CNN
model and M2D CNN model, with a classification accuracy
of 89.62% and 87.85%, respectively. What they have in
common is that they only extract spatial features from the
input data, which is indeed improved compared with the
MLP model but does not consider the time-series charac-
teristics of fMRI. One of the highlights of the 3D CNN model
is the addition of the full convolution layer in the last layer of
the convolutional network, which makes the parameters of
nodes input into all connections change after the image
passes through the convolutional network. The model
designed in this paper comprehensively considers the ad-
vantages and disadvantages of the above models. It not only
designs the convolution network for the spatial character-
istics of fMRI data but also designs the recurrent network for
the time-series characteristics of fMRI data. Finally, the
extracted feature vector has only 128 feature values, which
are then input into the MLP classification module, and the

final classification effect can reach 94.31%. Among the above
models, our model performs better than other models in
terms of classification accuracy, precision, recall, and F1
value. The results show that the model designed in this paper
fully considers the temporal and spatial characteristics of
fMRI data and can show the best results under the classi-
fication of seven tasks.

4. Conclusions

In recent years, modeling and analyzing fMRI data by deep
learning has become a hot research direction in the field of
brain imaging data analysis. However, because of the high
dimension and small sample size of fMRI data, it brings great
challenges to modeling and analyzing fMRI data by deep
learning.

In this paper, by analyzing the existing problems of
several deep learning methods in modeling and analyzing
fMRI data and fully considering the temporal and spatial
characteristics of fMRI data, we proposed a convolutional
recurrent neural network model which can deal with both
spatial and temporal features. In this model, the designed
convolution network module is used to process the three-
dimensional spatial information behind fMRI data, the high-
dimensional spatial information is transformed into low-
dimensional vectors through feature extraction, and then the
information of the designed cyclic neural network in time-
series dimension is used to extract feature. In this paper, the
model we proposed is used for classification experiments on
the open dataset of task fMRI and compared with other deep
learning methods. Experimental results show that the CRNN
model designed in this paper makes full use of the spatio-
temporal features of fMRI data and can achieve an average
accuracy of 94.31%, which is superior to other comparative
deep learning methods.

In general, the method we proposed in this paper can
directly extract task-related information from the four-di-
mensional fMRI time-series data and can classify seven
typical task stimuli.

Data Availability

The task-evoked fMRI dataset analyzed during this study is
available in the Human Connectome Project repository
(http://www.humanconnectome.org/).
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