Journal of Medical Imaging and Radiation Oncology 66 (2022) 781-797

MEDICAL IMAGING—REVIEW ARTICLE

Machine learning imaging applications in the differentiation of
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Introduction

Abstract

Introduction: Chemotherapy and radiotherapy can produce treatment-related
effects, which may mimic tumour progression. Advances in Artificial Intelli-
gence (AI) offer the potential to provide a more consistent approach of diag-
nosis with improved accuracy. The aim of this study was to determine the
efficacy of machine learning models to differentiate treatment-related effects
(TRE), consisting of pseudoprogression (PsP) and radiation necrosis (RN), and
true tumour progression (TTP).

Methods: The systematic review was conducted in accordance with PRISMA-
DTA guidelines. Searches were performed on PubMed, Scopus, Embase, Med-
line (Ovid) and ProQuest databases. Quality was assessed according to the
PROBAST and CLAIM criteria. There were 25 original full-text journal articles
eligible for inclusion.

Results: For gliomas: PsP versus TTP (16 studies, highest AUC = 0.98), RN ver-
sus TTP (4 studies, highest AUC = 0.9988) and TRE versus TTP (3 studies,
highest AUC = 0.94). For metastasis: RN vs. TTP (2 studies, highest
AUC = 0.81). A meta-analysis was performed on 9 studies in the gliomas PsP
versus TTP group using STATA. The meta-analysis reported a high sensitivity
of 95.2% (95%CI: 86.6-98.4%) and specificity of 82.4% (95%CI: 67.0-
91.6%).

Conclusion: TRE can be distinguished from TTP with good performance using
machine learning-based imaging models. There remain issues with the quality
of articles and the integration of models into clinical practice. Future studies
should focus on the external validation of models and utilize standardized cri-
teria such as CLAIM to allow for consistency in reporting.

recognized as an issue in the management of glioblas-
tomas,? where standard of care includes maximal resec-

Treatment of brain tumours with radiotherapy and/or
chemotherapy often leads to the development of
treatment-related effects (TRE), including pseudopro-
gression (PsP) and radiation necrosis (RN), which can be
difficult to distinguish from true tumour progression
(TTP).! This is a major diagnostic challenge with impor-
tant clinical implications. For example, a successful treat-
ment may be incorrectly ceased if PsP is not identified;
conversely, there may be a delay in instituting the cor-
rect treatment if TTP is not diagnosed. PsP is particularly

tion of the tumour and radiotherapy plus chemotherapy.®
A substantial proportion of patients receiving treatment
for glioblastoma develop PsP, with the literature reporting
an incidence of between 10 and 30%.? Difficulties in dis-
tinguishing PsP from true tumour progression (TTP) are
not exclusive to glioblastoma either, with an incidence of
21% also reported for low-grade gliomas.* PsP is radio-
logically defined as an increase in contrast uptake after
the completion of radiotherapy without true tumour
growth, which reduces or improves without an alteration
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of treatment.® Clinical definitions of PsP vary signifi-
cantly, with some studies utilizing a 6-month follow-up
period for diagnosis and others using 2-month follow-
up.® RN is recognized as a separate entity that generally
occurs at a later stage after treatment than PsP and is
particularly considered a diagnostic challenge in brain
metastases treated with stereotactic radiosurgery (SRS).
The increased clinical manifestation of late TRE such as
RN can be attributed to the improved median survival of
patients due to treatment with SRS and improvements in
systemic treatments (such as immunotherapy).”® The
literature reports the incidence of RN in patients treated
with SRS for brain metastases as 24-26%.%° RN most
commonly occurs 6-24 months after completion of treat-
ment,! but can occur as early as 3 months to as late as
19 years after treatment.*?

Follow-up to determine whether the imaging changes
regress is frequently impractical in the clinical setting;
thus, there is a clinical need for making the distinction
between TRE and TTP when routine imaging raises con-
cern. Current imaging diagnostics to differentiate PsP
from TTP in gliomas include the RANO (Response Assess-
ment in Neuro-Oncology) criteria'® and the more recent
modified RANO criteria.'* However, an accuracy of only
82% has been reported using the RANO criteria to differ-
entiate PsP from TTP,!? and assessment is subject to
inter-observer variability.!> Conventional MRI has limita-
tions in the differentiation of TTP from RN in brain metas-
tases treated with SRS.”® The current gold standard for
differentiating TRE from TTP remains histopathology, but
there is the potential for patient morbidity due to its
invasive nature.? As a result, clinical decisions are often
guided by imaging without histological confirmation.

These challenges have prompted research into compu-
tational methods, such as Artificial Intelligence (AI)
methodologies, as an alternative non-invasive point of
care method of distinguishing between TRE and TTP,
expecting to overcome the limitations of conventional
imaging interpretation. Firstly, the learning and general-
ization capabilities of AI models for objective assessment
offer a means to address the issue of inter-observer vari-
ability. Secondly, AI models can identify subtle imaging
features not noticeable and appreciable with the human
eye, improving the ability to provide a ‘virtual biopsy’
indicative of tumour histological characteristics.!® In iso-
lation, or in combination with human radiologist assess-
ment, there is an expectation that the use of AI models
would result in an increase in accuracy.

A simplified example of a typical ML pipeline is as fol-
lows: the image is (i) acquired through a standard clini-
cal and/or dedicated research protocol; (ii) segmented,
which can be conducted manually or semi-
automated/fully automated by algorithms performed on
the whole brain; (iii) features are extracted, whether
pre-defined as in the case of radiomics, or without a pre-
definition in the case of deep learning (DL); (iv) features
are selected as to remove redundant features and reduce

computational power; (v) the ML algorithm is applied to
a training data set, in which each data sample is linked
to a desired clinical outcome (such as PSP); (vi) the
trained ML model is applied to a previously unseen test
data set for verification; (vii) a receiver operator (ROC)
or precision recall curve is generated and the perfor-
mance is measured, typically through the area under the
curve (AUC) and the associated sensitivity and specificity
scores.

Given the potential advantages of ML models, the aim
of this study was to perform a diagnostic test accuracy
(DTA) systematic review examining the existing ML mod-
els for differentiating between TTP and TRE in brain
tumours, examining gliomas and metastases separately.
A diagnostic test accuracy (DTA) meta-analysis is also
performed.

Methods

The methods followed were in line with the PRISMA-DTA
(Preferred Reporting Items for a Systematic Review and
Meta-analysis of Diagnostic Test Accuracy Studies)
guidelines.

Search strategy

The search was performed on 22 September 2020 in the
following databases: PubMed, Scopus, Embase, Medline
(Ovid) and ProQuest. The search was subsequently
updated on 10 January 2021. The search strategy for
PubMed is demonstrated below, with appropriate adapta-
tions made as required in each database.

(‘Machine learning” OR ‘'Neural network’ OR ‘Deep
learning’ OR 'Artificial intelligence’ OR 'AI’ OR radiomic*)
AND (glioma OR glioblastoma OR 'brain tumor’ OR ‘brain
tumor’ OR ‘brain neoplasm’ OR ‘brain cancer’) AND
(pseudoprogression OR progression OR recurrence OR
‘radiation necrosis’).

Inclusion and exclusion criteria

Studies were included if they met the following criteria:
(i) Differentiated either glioma or metastasis TRE (RN
and/or PsP) using computational imaging features, pre-
defined (such as radiomics) or DL-derived; (ii) involved
treatment with radiotherapy and/or chemotherapy; (iii)
included adequate information that met the ML process-
ing pipeline requirements, such as imaging acquisition
parameters, segmentation method, features used, ML
models and classification of results through follow-up or
histopathology; (iv) reported an AUC from a ROC curve
or precision recall curve. The associated confidence
interval or standard error was reported where available.
If the ML processing pipeline characteristics were chan-
ged between experimentation, only the highest value
was used. Only the test results (or validation) from ML
models were used. Studies were excluded if they were
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non-peer reviewed journal articles, reviews, studies
focussing on paediatric patients, opinion articles and
non-English language articles.

Data extraction and analysis

Data was extracted by the authors A.P.B and R.M, includ-
ing the ML pipeline components and the main findings
from the studies. The ML pipeline components extracted
included the total number of patients in each group
(whether TRE or TTP), imaging sequences used, segmen-
tation method, features (as per PyRadiomics manual)!”
and selection of ML models. The main findings included
WHO grade, result (presented as an AUC, sensitivity
and/or specificity) and diagnosis method. A meta-
analysis was performed in the STATAIC 12.0 software for
groups that had sufficient data—the metandi package
required a minimum of 4 studies with a reported sensi-
tivity/specificity measure for the meta-analysis. Pooled
sensitivities and specificities were determined by back-
calculating and using hierarchical logistic regression.'® A
hierarchical receiver operator curve (HSROC) was also
generated for ML tasks that had more than four studies
with appropriate data. A meta-regression was performed
in Meta-DiSc'® on the meta-analysed studies using a
generalization of the Littenberg and Moses Linear model,
which was weighted by the inverse of the variance.?° Co-
variates included non-conventional imaging and deep
learning use. A diagnostic odds ratio (dOR) and p-value
(where p < 0.05 indicated an effect) were reported. STA-
TAIC was also used to generate a Deeks’ funnel plot used
for assessing publication bias in diagnostic test accuracy
studies; this included a p-value.?!

Quality assessment

The quality assessment of the studies was conducted
based on the PROBAST (Prediction model Risk Of Bias
ASsessment Tool), which is used to assess diagnostic
test risk of bias and applicability.?2 The Checklist for Arti-
ficial Intelligence in Medical Imaging (CLAIM)?® was also
administered, as this is a ML-specific checklist that may
report further ML methodological/reporting deficiencies.
It is a recently published 42-item checklist and is part of
the EQUATOR (Enhancing the QUAIlity and Transparency
Of health Research) Network guidelines specifically
designed to improve the quality of studies for clinical
uptake. Assessors collectively evaluated one article first
to resolve differences in interpretation. For each study,
items were then scored and deficiencies in sections were
noted for discussion.

Results

As demonstrated in the PRISMA flow diagram (see
Fig. A2 in Appendix A), 1,081 papers were identified in
the initial search, with 650 remaining after the removal

of duplicates. After title and abstract screening, 65 arti-
cles were selected for full-text analysis. There were 21
articles deemed eligible for inclusion—a total of 28 arti-
cles were excluded as they were conference abstracts, 2
did not employ ML, 12 did not compare TRE and TTP
using ML models, and 2 did not separate primary
tumours and metastases. Four additional articles?* 2’
were found from an update of the literature search on
10/01/2021, resulting in a total of 25 articles.

Findings were reported as: ML pipeline components,
clinical findings and main results (Table A1 in
Appendix A). The results were then divided into the fol-
lowing four categories:

1 Gliomas (all grades), PsP vs TTP: The highest per-
forming pipeline for gliomas (all grades) PsP vs. TTP
was AUC = 0.98, accuracy of 88.02%, sensitivity of
99.24% with a specificity of 66.04% using DL-derived
features and a convolutional neural network (CNN)
model on DTI.28 The range of AUC = 0.81-0.98, accu-
racy = 70-95.6%, sensitivity = 80-100%, specificity =
40-97.93% in 16 studies. A meta-analysis was per-
formed on 9 studies?” 3> which had sufficient out-
comes (reported sensitivity and specificity). A
sensitivity of 95.2% (95%CI: 86.6-98.4%) and speci-
ficity of 82.4% (95%CI: 67.0-91.6%) were found.
The HSROC is displayed in Fig. 1. The meta-
regression showed that studies incorporating
advanced MRI sequences (conventional sequences
defined as T1, T2, FLAIR, DWI and ADC) provided
superior performance (dOR =6.55 [95%CI = 1.29-
33.27] P=0.0291) and that DL models were not
superior to classical ML models (dOR = 6.36 [95%
CI = 0.41-98.44] P =0.1545) although limited by a
large effect size.

2 Gliomas, RN vs TTP: The highest performance was
AUC = 0.9988, sensitivity = 99.07% and  speci-
ficity = 97.93% using handcrafted and DL-derived fea-
tures on conventional MRI sequences.>® The reported
range of AUC was between 0.891 and 0.998, accuracy
between 79.2% and 83.79%, sensitivity between 75%
and 99.07% and specificity 79% to 97.93% in 4 studies.

3 Gliomas, TRE (includes both PsP and RN) vs TTP: The
highest performance was AUC=0.94 (95%CI =
0.7788-1.0000), accuracy of 93.33%, sensitivity of
100% and specificity of 90% using radiomic features
and an SVM (support vector machine) model on con-
ventional MRI sequences.! The reported AUC ranged
from 0.80 to 0.94, accuracy between 82% and
93.33%, sensitivity between 98.31% and 100% and
specificity between 60% and 96.97% in 3 studies.

4 Metastasis, RN vs TTP: The highest scoring
pipeline achieved AUC = 0.81, sensitivity = 65.38%
and specificity = 86.67% using shape and texture fea-
tures with an SVM model on conventional MRI
sequences.’ For the second study, an AUC of 0.73 was
reported with an accuracy of 73.2%.
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Fig. 1. Hierarchical summary receiver operator curve for PsP versus TTP
in gliomas (All Grades).’>®

Quality assessment and risk of bias

The quality assessment using the CLAIM criteria demon-
strated an overall mean score across all studies of 19.4

out of 42 (range 10-30, standard deviation = 5.19). The
Appendix A (Fig. A1 and Table A2) demonstrates the
results from CLAIM quality assessment and the PROBAST
assessment. Risk of bias assessment using PROBAST
demonstrated an overall high risk of bias in all studies.
Conversely, applicability was high (76%) within included
studies. The Deeks’ funnel plot (Fig. 2) showed a low
publication bias (P = 0.72) for the 9 studies?’ 3> appro-
priate for the meta-analysis (those comparing PsP versus
TTP in gliomas of all grades).

Discussion

In summary, there were three tasks on gliomas (PsP vs.
TTP, RN vs. TTP and TRE vs. TTP) and one task on metas-
tases (RN vs. TTP). Twenty-five articles assessed the four
ML tasks, with AUCs ranging from 0.73% to 0.98.2% The
majority (16 studies) investigated the differentiation
between PsP and TTP in gliomas, with only 2-4 studies
considering the other three ML tasks. A meta-analysis
was able to be performed on the first task: PsP vs. TTP in
gliomas. Pooled sensitivity of 95.2% (95%CI: 86.6-
98.4%) and pooled specificity of 82.4% (95%CI: 67.0-
91.6%) were found upon combining the 9 studies.?”3°
The wide confidence intervals for the meta-analysis,
especially for the specificity, are notable; these are
attributed, at least in part, to heterogeneity within pipe-
lines. In addition, the HSROC demonstrates a large pre-
diction region. In the same 9 studies,?” 3> advanced
sequences showed higher diagnostic potential than con-
ventional sequences. DL models were not superior to
classical ML models, although there were large effect
sizes. This systematic review found that studies utilizing
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Fig. 2. Deeks’ funnel plot for PsP versus TTP in gliomas (All Grades).?” >°
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histopathological diagnosis of gliomas as the ground
truth had accuracies of 90.82%>* and 87.3%.2° These
accuracies are higher than the accuracy of the RANO cri-
teria, which has been reported in the literature as
82%.%7

For ML applications in gliomas comparing PsP and TTP,
the highest AUC was found using DTI and a CNN model
(AUC = 0.98).2° This was much higher than using conven-
tional MRI sequences (AUC = 0.85),3° which increased to
AUC = 0.96 when integrating diffusion/perfusion imaging
in one study.3* Utilization of FET-PET revealed comparable
performance (AUC = 0.93).2°> Comparing RN and TTP in
gliomas, the highest performing pipeline used conven-
tional MRI sequences (T1 and T2-FLAIR) (AUC = 0.94),
using SVM.?* The use of MET-PET and FDG-PET imaging
did not increase performance (AUC = 0.891).3® Metasta-
sis ML applications comparing RN and TTP demonstrated
the lowest maximum AUC = 0.81 using just T1-Gd and
FLAIR and SVM.” These results demonstrate varying per-
formances of imaging sequences, imaging modalities and
ML models based on the specific ML tasks.

Whilst the results of the studies thus far are promising,
the quality assessment process demonstrated a number
of deficiencies within the primary studies that may influ-
ence the generalizability and clinical applicability of these
results. For example, a number of studies had small
sample sizes (n < 100) and only 4 studies incorporated
external validation. External validation remains a key
issue, as ML models need to be validated on multi-
institutional cohorts for translatability. There was also a
lack of failure analysis and inadequate reporting of per-
formance statistics for these models. Many studies also
lacked clear inclusion and exclusion criteria, whilst others
did not accurately define the time periods for PsP and
RN. Furthermore, numerous studies relied on expert
opinion, self-made definitions and the RANO criteria as
the ground truth reference for the differentiation of TTP
and TRE, rather than histopathology, despite the inaccu-
racies of these methods.

Our review has a number of limitations that affect the
strength of the analysis. There was a small nhumber of
studies in three of the four categories investigated. Fur-
thermore, there was substantial heterogeneity between
studies, with studies varying in the imaging modalities
used, ML methods and tumour grades. There was also a
lack of consistency in the definitions of PsP and RN. This
highlights the lack of consensus surrounding the report-
ing of the methodology and results in AI studies in medi-
cal imaging. The application of CLAIM for further studies
will prove valuable for the consistency in reporting
required for the comparative analysis of ML papers. Addi-
tionally, articles that combined metastasis and gliomas
were excluded, which limited the number of studies
available for meta-analysis; however, this was necessary
to reflect clinical practice more accurately.

Future research looks promising for the integration of
Al methodologies into clinical practice. Efforts are

already being made by the development of guidelines
such as the CONSORT-AI (Consolidated Standards of
Reporting Trials—Artificial Intelligence) extension which
aims to streamline the reporting of clinical trials involving
AL>3° A similar guideline includes the SPIRIT-AI (Stan-
dard Protocol Items: Recommendations for Interven-
tional Trials-Artificial Intelligence) extension for clinical
trial protocols.*® Guidelines such as the TRIPOD-AI
(Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis-Artificial
Intelligence)*' and QUADAS-AI (Quality Assessment of
Diagnostic Accuracy Studies-Artificial Intelligence)*?
extension are yet to be released.

In conclusion, this systematic review and meta-
analysis demonstrated high sensitivity and specificity for
ML imaging applications in the differentiation of TTP from
TRE in brain tumours, especially in gliomas. Despite
promising findings, there remain issues with heteroge-
neous methodology, the quality of available studies, as
well as the clinical integration of models. Future higher
quality, prospective studies are required to further inves-
tigate the role of ML in the differentiation of TTP from
TRE and how this can be incorporated into routine clinical
practice.
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Differentiation between TRE and TTP using ML

Risk of Bias
Participants z [ Participants
Predictors
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Analysis Outcome
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Fig. A1. PROBAST quality scoring of included studies.
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Fig. A2. Flow diagram of included studies.
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