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Pascal Madeleine 6 and Cesar Fernández-de-las-Peñas 7,8

1Department of Paralympic Sport, University School of Physical Education in Wrocław, Wrocław, Poland, 2Department of

Physiotherapy, Academy of Physical Education in Katowice, Katowice, Poland, 3Galen Orthopedic Center, Bieruń, Poland,
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Track cyclists are required to perform short- and long-term efforts during sprint and

endurance race events, respectively. The 200m flying sprint races require maximal

power output and anaerobic capacity, while the 4,000m pursuit cyclists demand a high

level of aerobic capacity. Our goal was to investigate spatial changes in morphological

and mechanical properties displayed using 3D topographical maps of the quadriceps

muscle and tendons after 200m flying start and 4,000m individual pursuit race in

elite track cyclists. We hypothesized a non-uniform distribution of the changes in

the quadriceps muscle stiffness (QMstiff), and acute alterations in quadriceps tendon

(QTthick) and patellar tendon (PTthick) thickness. Fifteen men elite sprint and 15 elite men

endurance track cyclists participated. Sprint track cyclists participated in a 200m flying

start, while endurance track cyclists in 4,000m individual pursuit. Outcomes including

QTthick (5–10–15mm proximal to the upper edge of the patella), PTthick (5–10–15–

20mm inferior to the apex of the patella)—using ultrasonography evaluation, QMstiff,

and quadriceps tendon stiffness (QTstiff) were measured according to anatomically

defined locations (point 1–8) and patellar tendon stiffness (PTstiff)—using myotonometry,

measured in a midway point between the patella distal and the tuberosity of tibial.

All parameters were assessed before and after (up to 5min) the 200m or 4,000m

events. Sprint track cyclists had significantly larger QTthick and PTthick than endurance

track cyclists. Post-hoc analysis showed significant spatial differences in QMstiff between

rectus femoris, vastus lateralis, and vastus medialis in sprint track cyclists. At before race,

sprint track cyclists presented significantly higher mean QTthick and PTthick, and higher

QMstiff and the QTstiff, as compared with the endurance track cyclists. The observed

changes in PTThick and QTThick were mostly related to adaptation-based vascularity

and hypertrophy processes. The current study suggests that assessments using both

ultrasonography and myotonometry provides crucial information about tendons and
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muscles properties and their acute adaptation to exercise. Higher stiffness in sprint

compared with endurance track cyclists at baseline seems to highlight alterations in

mechanical properties of the tendon and muscle that could lead to overuse injuries.

Keywords: tendon, thickness, stiffness, maps, track cycling

INTRODUCTION

Track cycling can be divided into two main categories: sprint
(≤1,000m) and endurance (>1,000m) events. The most popular
individual races, in those categories, are 200m flying start
and 4,000m pursuit, that last on average 10 s and >4min,
respectively (Craig and Norton, 2001). Sprint and endurance
track cyclists have different anthropometric characteristics,
muscle’s mechanical properties, and fiber type composition. For
instance, sprinters exhibit greater thigh girths but shorter thigh
lengths (Van Der Zwaard et al., 2019) and their quadriceps
muscle contains predominantly fast-twitch fibers (Loturco et al.,
2015). Cyclists are more exposed to tendon injuries (i.e., patellar
quadriceps tendinopathies) than muscle sprains (Wanich et al.,
2007). Further, sprint track cyclists have also a higher risk of
tendinopathy than endurance cyclists (Craig and Norton, 2001;
Klich et al., 2020). Penailillo et al. (2015) showed that 25% of
cyclists suffer from patellar tendon (PT) pain. Quadriceps tendon
(QT) pain also appears frequently in cyclists, particularly in
sprinters, as a result of overuse syndrome on the lateral side of
the knee (Wanich et al., 2007).

Quadriceps and patellar tendinopathy should be diagnosed by
noninvasive, real-time methods based on measures of thickness
and mechanical properties of PT and QT tendons (Loturco
et al., 2015; Klich et al., 2018, 2020). Mechanical loadings
within thigh muscles can affect QT and PT thickness as well
as stiffness (Loturco et al., 2015; Klich et al., 2018). Thus, the
assessment of thigh muscles and tendons using ultrasonography
and myotonometry could be used to assess the effects of muscle
loading during cycling competitions. Diagnostic ultrasound
imaging and myotonometry have been proposed as reliable
research and clinical instruments to evaluate morphological and
mechanical properties of skeletal muscles (Bizzini and Mannion,
2003; Klich et al., 2019). Diagnostic ultrasound imaging has been
previously used to assess the reliability and magnitude of QT
and PT characteristics in volleyball players (Kulig et al., 2013;
Visnes et al., 2015). Kulig et al. (2013) demonstrated an increase
in proximal PT thickness (PTThick) in symptomatic volleyball
players when compared with those without symptoms. Visnes
et al. (2015) have reported a relationship between QT and PT
thickness and symptoms of jumper’s knee (a common syndrome
related to morphological alterations in tendon thickness and
increased vascularity).

Myotonometry has been also used to assess the stiffness of
quadriceps muscle (QMstiff) and PT (PTstiff) in individual and
team sport athletes (Young et al., 2018; Chen et al., 2019; Klich
et al., 2020) and also after acute injury (Liang et al., 2017). Young
et al. (2018) have shown higher PTstiff in break-dancers compared
with a control group, as a sign of adaptation after training. Klich
et al. (2020) found an increase in QMstiff after 200m flying start

and sprints in a case study. Among soccer players compared with
healthy sedentary participants, both increased rectus femoris and
lower PT and QT stiffness have been recently reported (Taş et al.,
2019). Chino et al. (2018) showed lower stiffness of rectus femoris
muscle in athletes, compared with non-athletes. The application
of those ultrasonic and myotonometric measurements may help
detect acute changes following flying sprint or sprint race.

Field investigations are needed in professional sport to assess
changes in muscle and tendon load in real-time during training
and competitions (Elliott and Alderson, 2007). Moreover,
ultrasound imaging and myotonometry are needed to indicate
the development of soft tissue thickness and stiffness. To the best
of our knowledge, no study has assessed tendon thickness and
stiffness of QT and PT before and after cycling events in the
elite sprint and endurance track cyclists. These outcomes may
provide a better understanding of QT and PT changes that could
help to understand better tendinopathy mechanisms. Thus, the
current study was designed to quantify changes in QTthick and
PTthick as well as changes in QMstiff, QTstiff, and PTstiff at several
locations of the dominant lower limb before and after sprint and
endurance race competition on 200m flying start and 4,000m
individual pursuit, respectively. Furthermore, to ensure that such
assessments are reliable, we also reported the test-retest reliability
of tendons thickness and stiffness among elite track cyclists.
Therefore, we aimed to investigate changes in morphological
and mechanical properties in a real-time competition of elite
track cyclists. The secondary aim was to assess cross-sectional
comparisons between sprint and endurance cyclists at baseline.
We have hypothesized a non-uniform distribution of the changes
in theQMstiff, and acute alterations inQTthick and PTthick, in both
sprint and endurance track cyclists.

MATERIALS AND METHODS

Participants
We tested a group of 15 sprint track cyclists (all men, mean ±

SD age 26 ± 4 years, body height 183 ± 5.4 cm; body mass 88
± 4.5 kg; BMI: 25.3 ± 0.7 kg/m2; thigh length 54.4 ± 2.8 cm)
and 15 endurance track cyclists (all men, mean age 23 ± 1.8
years, body height 191 ± 3.6 cm; body mass 76 ± 3.5 kg; BMI:
21.1 ± 0.7 kg/m2; thigh length 61.1 ± 1.7 cm). The thigh length
was defined as distance from the anterior superior iliac spine to
medial joint line (Goyal et al., 2020). All subjects were tested
to identify the dominant leg during pedaling (Watanabe et al.,
2016). All (n = 30) subjects responded that they used their
right leg during the down-stroke phase of the pedaling cycle.
All measurements were conducted on the dominant side (right
side). The track cyclists were competitors of the Polish national
team specialized in either sprint or endurance events with a mean
training experience of 11.5 ± 1.4 years. Twenty-two participants
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(73%) were professional track cyclists, including four winners of
world cups. Participants were competing at the international-
level track races (World Cup, European Championship, and
World Championship). The exclusion criteria for both groups
included: (1) current or previous thigh and knee injury or
symptoms; and (2) prior history of surgery in the lower extremity.

Study Design
This study cross-sectional used a repeated-measures design
performed during sports competition. The assessments were
made in situ, on a velodrome. Sprint track cyclists participated
in 200m flying start, while endurance track cyclists in 4,000m
individual pursuit. The test-retest relative and absolute reliability
was also investigated for thickness and stiffness measurements
collected twice before the races. The thickness (PTthick and
QTthick) and stiffness of the (QM, QT, and PT) were measured at
several locations before and after (up to 5min) 200 and 4,000m
races, respectively. The total time of preparing all measurements
took∼1–1.5min per each participant (including myotonometry,
e.g., 30 s and US, e.g., 30 s −1min). The study was conducted
following STROBE guidelines (Von Elm et al., 2008).

Ultrasound Assessment
Ultrasonography was performed using an ultrasound scanner
(HS-2200, Honda, Toyohashi, Japan) with a 7.5 (6.0–11.0)
MHz and 40mm linear array transducer (HLS-584M, Honda,
Toyohashi, Japan) in gray scale B-mode. The settings of the
ultrasound systemwere standardized for all participants and kept
identical for all measures. The scan depth was set to 1.8mm, in
agreement with Skou and Aalkjaer (2013). The axial resolution
of ultrasound images was found to be 0.068mm per pixel.
Measurements of PTthick and QTthick were performed according
to recommendations of the European Society of Musculoskeletal
Radiology (Beggs et al., 2016).

Participants were lying in a supine position with their
right knee (dominant side) flexed at ∼30◦ (Giombini et al.,
2013). A pillow was placed under the popliteal space during
the assessments. This knee position avoids possible anisotropy
related to the concave profile as a result of posterior thigh
muscles and PT extension (Skou and Aalkjaer, 2013). For QT, the
transducer was placed in the long axis of this tendon, proximal
to the upper edge of the patella. Thickness was assessed on
three points along the QT located at 5–10–15mm lateral to
the reference point (hyperechoic region of the patella). The
QT borders were defined inferiorly as the first hyperechoic
region between superficial and deep layers. The three measures
(5–10–15mm) were averaged for a single measure of tendon
thickness. For PT, the linear transducer was placed longitudinally
distal to the patella. The thickness of the PT was assessed on
four locations, set at 5–10–15–20mm inferior to the apex of
the patella. Tendon borders were defined inferiorly as the first
hyperechoic region between the subcutaneous tissue and the deep
fascia layer. The four measures (5–10–15–20mm) were averaged
for a single measure of tendon thickness (Figure 1).

The data collection for reliability assessment took place 2 days
before the main procedure. Sprint and endurance track cyclists
were asked to avoid physical effort and had none training session

FIGURE 1 | Ultrasound assessment and measurement of quadriceps and

patellar tendon. (A) Transducer placement for quadriceps tendon. The

transducer was placed in the long axis of this tendon, proximal to the upper

edge of the patella. (B) Measurement procedures for quadriceps tendon

thickness. Thickness was assessed on three points along the QT located at

5–10–15mm lateral to the reference point (hyperechoic region of the patella).

The QT borders were defined inferiorly as the first hyperechoic region between

superficial and deep layers. (C) Transducer placement for patellar tendon. The

linear transducer was placed longitudinally distal to the patella. (D)

Measurement procedures for patellar tendon thickness. Thickness was

assessed on four locations, set at 5–10–15–20mm inferior to the apex of the

patella. Tendon borders were defined inferiorly as the first hyperechoic region

between the subcutaneous tissue and the deep fascia layer.

before the reliability data collection. A single examiner (SK) took
two US images for each tendon (QT and PT). To avoid a learning
effect, all subjects were coded by assigning an individual ID
number. The data measurements for QT and PT thickness were
performed 1 week later. The order in which the images were
assessed was randomized, however, the examiner was blinded
to each measurements and the group (sprint and endurance)
to which the subject was assigned. The measured QT and PT
thickness were averaged and used for further statistical analysis.

During the experimental protocol two images were taken
for each tendon, and were averaged for data analysis. The
topographical maps of the PT and QT were generated
using Matlab (version R2017b, The Mathworks, Natick MA,
United States of America) by means of an inverse distance
weighted interpolation of the averaged values of each location
(5–10–15mm and 5–10–15–20mm) to obtain a 3D graphical
representation (Binderup et al., 2010; Fernández-Carnero et al.,
2010) of the changes in tendon thickness. Of note, the 3D
graphical representation are only used for visualization purposes.

Myotonometric Assessment
A hand-held myotonometer device (MyotonPro, Myoton Ltd.,
Estonia) was used to measure QMstiff (including QTstiff) and
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PTstiff at several locations. Muscle stiffness is defined as the
property that characterizes resistance to the contraction of the
external stretching force that deforms the initial shape of the
tissue. Stiffness (N/m) was computed as S = amax.mprobe/1l,
where a is the acceleration of the damped oscillation; mprobe is
the mass of the measurement mechanism and 1l is the probe
displacement (Klich et al., 2019). The examiner located the probe
perpendicular to the tested area. Then, the probe generated three
impulses exerted on the testing area.

Participants were lying in a supine position with feet on the
massage table. The QMstiff measurements were made on the
dominant lower extremity over eight reference points, including
rectus femoris (RF) (no. 1–2); tensor fasciae latae (TFL) (no. 3);
vastus lateralis (VL) (no. 4-6), vastus medialis (VM) (no. 7) and
quadriceps tendon (QT) (no. 8) in line with previous studies
(Domínguez-Martín et al., 2013; Kawczynski et al., 2014). The
reference points for RF were musculotendinous points located
distal from the initial attachment (no. 1) and terminal attachment
(no. 2); TFL was placed in line between anterior superior iliac
spine and greater trochanter; VL includes three points on the
muscle belly in three equal parts; VM was marked in the middle
of the muscle belly. The QTstiff (no. 8) was assessed in the 1/3
proximal between the upper edge of patella and point 2 (RF)
(Figure 2), while PTstiff was measured at a midway point between
the patella distal and the tuberosity of tibial when the knee was
flexed at 90◦ (Chen et al., 2019).

The data collection for reliability assessment took place 2 days
before the main procedure. Sprint and endurance track cyclists
were asked to avoid physical effort and had none training session
before the reliability data collection. A single examiner (IK) took
themeasurement of muscle stiffness. The stiffness values of a each
point of the quadriceps muscle were measured twice. The data
was used to assess absolute and relative reliability for each group
of cyclists.

Stiffness measurements were also used to obtain 3D graphical
representation of the spatial distribution of the stiffness
(Domínguez-Martín et al., 2013; Kawczynski et al., 2014). Similar
to the thickness maps, the 3D graphical representation of stiffness
were only used for visualization purposes.

Statistical Analysis
The G∗Power software (version 3.1.9.2; Kiel University, Kiel,
Germany) (Faul et al., 2007) was used to estimate the required
sample size setting a minimum expected effect size (Cohen’s f ) of
0.6, an α level of 0.05, and a power (1–β) of 0.8. The procedure
returned a minimum number of 12 participants per group.

The SPSS 18 statistical software (SPSS Inc., Chicago, Illinois,
USA) was used for data analysis. Mean values ± standard
deviation (SD) are reported. Group differences (track and
endurance track cyclists) in anthropometric characteristics were
assessed using the independent t-test. The relative reliability was
calculated using intra-class correlation coefficients (ICCs) using
a two-way random effect, absolute agreement (ICC2,1) for both
groups. Reliability was classified as poor (ICC < 0.50), moderate
(0.50 < ICC < 0.69), good (0.70 < ICC < 0.89) or excellent
(ICC ≥ 0.90) (Landis and Koch, 1977). The absolute reliability

FIGURE 2 | Schematic representation of the eight points for the quadriceps

muscle and tendon stiffness measure.

was evaluated by computing the standard error of measurement
(SEM) and the minimal detectable change (MDC) (Weir, 2005).

Two-way analysis of variance with repeated measures (RM-
ANOVA) with time (pre-post) and location (5–10–15mm for
QTthick, 5–10–15–20mm for PTthick, 1–2–3–4–5–6–7–8 for
QMstiff and PTstiff) as within-group factors were conducted for
each group. Post-hoc tests with Bonferroni corrections were
applied when needed. Moreover, a one-way ANOVA was used
to assess between-group differences in tendons thickness and
stiffness at baseline, as well as, in relative changes in tendons
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thickness and stiffness [i.e., difference (1) between post- and
pre-values]. Post-hoc tests with Bonferroni corrections were also
applied. A p ≤ 0.05 was considered as statistically significant.
Effect size was estimated using partial eta square (η2), classified
as small (0.20 < η2

< 0.49), medium (0.50 < η2
< 0.79), or large

(η2
> ≥ 0.80) (Richardson, 2011).

RESULTS

Anthropometric Characteristics
Subjects were not statistically different with respect to age (p
= 0.07). Sprint track cyclists had significantly higher body
mass [t(15) = 3.8; p = 0.002] and BMI [t(15) = 28.2; p =

0.003]. On the contrary, endurance track cyclists had significantly
higher body height [t(15) = −3.7; p = 0.001] and thigh length
[t(15) =−20.7; p= 0.001].

Reliability
The relative reliability was excellent for QTthick (ICC2,1 0.91,
95%CI: 0.50–0.94) and good for PTthick (ICC2,1 0.87, 95%CI:
0.35–0.95) in sprint track cyclists. Likewise, the relative reliability
was excellent for QTthick (ICC2,1 0.90, 95%CI: 0.55–0.92) and
good for PTthick (ICC2,1 0.84, 95%CI: 0.40–0.91) in endurance
track cyclists. The absolute reliability showed that SEMs and
MDCs were lower among the sprinters than among endurance
track cyclists. For QTthick and PTthick, the SEMs were 0.04
and 0.02mm in sprint track cyclists, while 0.08 and 0.06mm
in endurance track cyclists. The MDCs were 1.1 and 0.7mm
in sprinters, while 1.5 and 1.0mm in endurance track cyclists.
Moreover, the relative reliability was excellent for stiffness in
sprint (ICC2,1 0.92, 95%CI: 0.50–0.97) and endurance track
cyclists (ICC2,1 0.94, 95%CI: 0.55–0.95). The SEMs and MDCs
were 18.20 and 48.16 N/m in sprinters and 17.8 and 45.4 N/m in
endurance track cyclists.

Ultrasound
Table 1 provides the mean (SD) and statistical analysis of QTthick

and PTthick in sprint and endurance track cyclists. The two-way
RM-ANOVAs revealed a statistically significant Time × Location
interaction effect on averaged QTthick [F(2,36) = 31.9, p = 0.009,
η2 = 0.69] and PTthick [F(2,38) = 99.2, p = 0.001, η2 = 0.70] in
sprint track cyclists, as well as, QTthick [F(2,36) = 6.7, p = 0.02,
η2 = 0.44] and PTthick [F(2,38) = 101.2, p = 0.02, η2 = 0.55] in
endurance track cyclists. The analysis of within-group differences
showed an increase in QTthick [F(1,28) = 4.7, p= 0.001, η2 = 0.71]
and PTthick [F(1,32) = 7.3, p ≤ 0.001, η2 = 0.86] in sprint track
cyclists after 200m flying start. Similarly, an increase in QTthick

[F(1,32) = 3.5, p = 0.01, η2 = 0.62] and PTthick [F(1,32) = 7.5, p ≤
0.001, η2 = 0.86) was reported in endurance track cyclists after
4,000m individual pursuit race. Moreover, the analysis revealed
significant within-group differences compared to location placed
at 5mm (for 10 and 15mm) in QTthick in sprint (both p= 0.001)
and endurance track cyclists (p = 0.001 and 0.01, respectively;
Table 1, Figures 3, 4).

At baseline, the one-way ANOVA showed significant higher
averaged QTthick [F(1,15) = 98.1, p= 0.001, η2 = 0.82] and PTthick

[F(1,14) = 73.5, p ≤ 0.001, η2 = 0.78] in sprinters compared with

endurance track cyclists. Moreover, the post-pre race difference
showed larger increase in QTthick [F(1,15) = 78.3, p = 0.01, η2 =

0.61] and PTthick [F(1,15) = 118.9, p ≤ 0.001, η2 = 0.75] in sprint
compared with endurance track cyclists (Table 1).

Myotonometry
The two-way RM-ANOVAs revealed a statistically significant
Time × Location interaction effect on averaged QTstiff [F(5,59) =
133.5, p = 0.001, η2 = 0.72], PTstiff [F(5,59) = 81.5, p = 0.002,
η2 = 0.72] and QMstiff [F(6,36) = 62.9, p = 0.005, η2 = 0.70] in
sprint track cyclists, as well as, QTstiff [F(1,56) = 37.0, p= 0.01, η2

= 0.40], PTstiff [F(13,60) = 86.7, p= 0.001, η2 = 0.62] and QMstiff

[F(6,223) = 10.4, p = 0.01, η2 = 0.58] in endurance track cyclists.
The analysis of within-group differences showed an increase in
QTstiff [F(1,30) = 15.9, p≤ 0.001, η2 = 0.82], PTstiff [F(1,32) = 22.3,
p ≤ 0.001, η2 = 0.86], mean RF stiffness [F(1,30) = 7.8, p = 0.04,
η2 = 0.62], mean VL stiffness [F(1,31) = 7.8, p≤ 0.001, η2 = 0.83],
QMstiff [F(1,32) = 7.5, p= 0.001, η2 = 0.80] in sprint track cyclists
after 200m flying start. Similarly, an increase in QTstiff [F(1,32) =
8.9, p = 0.001, η2 = 0.78], PTstiff [F(1,32) = 10.1, p = 0.001, η2 =

0.79] and mean RF stiffness [F(1,31) = 8.4, p = 0.04, η2 = 0.64]
was observed in endurance track cyclists after 4,000m individual
pursuit race (Tables 1, 2).

At baseline, the one-way ANOVA showed significantly higher
PTstiff [F(1,14) = 6.9, p = 0.02, η2 = 0.55] in sprinters compared
with endurance track cyclists. Moreover, the post-pre race
difference showed higher QTstiff [F(1,15) = 79.2, p = 0.001, η2

= 0.72] and PTstiff [F(1,14) = 204.0, p ≤ 0.001, η2 = 0.85], as
well as, mean VL stiffness [F(1,89) = 113.2, p = 0.05, η2 = 0.64]
in sprinters compared with endurance track cyclists (Tables 1, 2;
Figure 5).

DISCUSSION

The current study showed an increase in QT and PT thickness
and stiffness in both sprint and endurance cyclists after 200 and
4,000m race. Sprint track cyclists were characterized by higher
values of tendons thickness before the race than endurance track
cyclists. The reported increase in both QTthick, PTthick, and
QMstiff in sprint track cyclists after 200mflying start may indicate
quadriceps muscle edema and hypervascularity. The results of
our study are in line with the hypothesis, which predicts spatial
changes of QMstiff and acute alterations in tendons thickness
after sprint and endurance races. The changes in QTthick and
PTthick were assessed using diagnostic ultrasound imaging as
well as the changes in QMstiff and tendons stiffness was assessed
using myotonometry at several locations depicting non uniform
changes in both thickness and stiffness. Both ultrasound and
myotonometry showed good to excellent relative reliability.
These findings are interpreted in relation to the anthropometrics
characteristics of sprint track cyclists (Van Der Zwaard et al.,
2019) and competition characteristics (Craig and Norton, 2001)
as well as with respect to the risk of getting injury.
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TABLE 1 | Pre- and post-start QTThick and PTThick (mm) and PTStiff (N/m) in both groups using three-way analysis of variance.

Variables Sprint track cyclists Endurance track cyclists

Pre Post 1 (post-pre) P-value* Pre Post 1 (post-pre) p-value* p-value**

QtThick (mm) 5 7.01 ± 0.09 7.19 ± 0.07 0.18 0.001 6.29 ± 0.04 6.40 ± 0.04 0.11 0.01

10 7.11 ± 0.06 7.28 ± 0.04∧ 0.17 0.001 6.40 ± 0.06 6.51 ± 0.06∧ 0.11 0.01

15 7.33 ± 0.06 7.56 ± 0.06∧ 0.23 0.001 6.53 ± 0.05 6.70 ± 0.06∧ 0.17 0.001

Mean QTthick (mm) 7.15 ± 0.16# 7.34 ± 0.19 0.19 0.001 6.41 ± 0.12# 6.54 ± 0.15 0.13 0.01 0.01

PTthick (mm) 5 4.89 ± 0.05 5.18 ± 0.05 0.29 ≤0.001 4.43 ± 0.11 4.66 ± 0.11 0.23 0.001

10 4.86 ± 0.08 5.17 ± 0.06 0.31 ≤0.001 4.42 ± 0.11 4.64 ± 0.12 0.22 0.001

15 4.82 ± 0.09 5.18 ± 0.08 0.36 ≤0.001 4.40 ± 0.15 4.67 ± 0.14 0.27 ≤0.001

20 4.79 ± 0.09 5.13 ± 0.09 0.34 ≤0.001 4.30 ± 0.11 4.59 ± 0.12 0.29 ≤0.001

Mean PTthick (mm) 4.83 ± 0.08# 5.16 ± 0.09 0.33 ≤0.001 4.39 ± 0.07# 4.64 ± 0.09 0.25 ≤0.001 0.001

PTStiff (N/m) 527 ± 44# 731 ± 40 204 ≤0.001 473 ± 35# 562 ± 32 89 0.001 ≤0.001

QtThick , quadriceps tendon thickness; PtThick , patellar tendon thickness; PTStiff , patellar tendon stiffness.

Significant differences ∧within-group compared to location placed at 5mm (p ≤ 0.05); *within group differences between pre and post; #between-group differences at baseline (p ≤ 0.05);

**between-group differences post-pre race.

FIGURE 3 | Quadriceps tendon thickness (mm) maps before and after 200m flying start (Track Cyclists Sprint) and 4,000m individual pursuit race (Track Cyclists

Endurance).

Physiological Perspective to Acute and
Chronic Mechanisms Following Fatigue
In vivo studies have evaluated tendon’s degenerative model
described as acute laceration models induced damage include
stress, fiber disorganization, inter-fiber tears, edema, and
disrupted microfiber remodeling (Proske and Morgan, 2001;
Nakama et al., 2005; Fung et al., 2010; Mccreesh et al., 2017).
Furthermore, those changes in the structure of a tendon result
in morphological and mechanical properties, including kinked
fiber patterns causing torsion of fibers across and increased

stiffness (Fung et al., 2010). We observed an increase of QTthick

and PTthick in sprint and endurance track cyclists after races.
Moreover, the difference between post-pre stiffness was larger
in sprint compared with endurance track cyclists. Ditroilo et al.
(2011) reported that stiffness increases linearly with increased
tension, which is in relation with our previous study (Klich
et al., 2020). We have shown an increase in QM tension and a
decrease in elasticity, mostly as a result of glycogen depletion
and increased production of lactate acid and hydrogen ions.
Freedman et al. (2014) and Fung et al. (2010) have demonstrated
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FIGURE 4 | Patellar tendon thickness (mm) maps before and after 200m flying start (Track Cyclists Sprint) and 4,000m individual pursuit race (Track Cyclists

Endurance).

TABLE 2 | Pre- and post-start QMStiff (N/m) at the seven measurement points using three-way analysis of variance.

Reference

points

Sprint track cyclists Endurance track cyclists

Pre Post 1 (post-pre) P-Value* Pre Post 1 (post-pre) p-value* p-value**

1 293 ± 34 339 ± 22 46 0.20 313 ± 31 342 ± 46 29 0.56 0.35

2 301 ± 21 379 ± 26 78 0.001 320 ± 32 380 ± 33 60 0.02 0.48

3 362 ± 62 396 ± 56 34 0.50 350 ± 48 368 ± 72 18 0.82 0.83

4 381 ± 73 464 ± 44 83# 0.001 378 ± 45 386 ± 52 11 0.83 0.02

5 349 ± 70 463 ± 43 114 ≤0.001 379 ± 36 374 ± 46 −5 0.58 0.001

6 349 ± 45# 457 ± 58 108 ≤0.001 299 ± 38# 378 ± 54 79 0.01 0.74

7 257 ± 32 347 ± 28 90 ≤0.001 248 ± 32 299 ± 44 51 0.04 0.62

8 282 ± 50 416 ± 45 134 ≤0.001 294 ± 32 357 ± 41 63 0.001 0.001

RFmean 292 ± 54 356 ± 45 64 0.04 314 ± 35 364 ± 46 50 0.04 0.76

VLmean 365 ± 64 463 ± 50 98# ≤0.001 348 ± 48 382 ± 52 34 0.62 0.05

QMmean 322 ± 44 408 ± 51 86 0.001 323 ± 45 367 ± 28 38 0.46 0.71

RFmean, mean stiffness of rectus femoris; VLmean, mean stiffness of vastus lateralis; QMmean, mean stiffness of quadriceps muscle.

Significant differences *within group differences between pre and post; #between-group differences at baseline (p ≤ 0.05); **between-group differences post-pre race.

the effect of tendon damage on its stiffness. The degenerative
model assumes a decrease of stiffness in the second phase of post-
exercise causing an increase in plastic deformation and fibers
redistribute loads from damaged. Proske and Morgan (2001)
have reported that increased stiffness is accompanied by micro
swelling within themuscle fibers, however, we have not found any
evidence. The higher post-pre differences in tendon thickness in
sprint track cyclists might be related to alterations in tendon fluid
since short-term efforts relapse glycosaminoglycan responsible

for binding water (Mccreesh et al., 2017) causing direct influence
on tendon stiffness and a result of higher tendon vascularity (Tsui
et al., 2017).

The chronic model of overuse should be considered as a
degenerative model including changes in connective tissues,
e.g., collagen synthesis or fibroblast migration (Fredberg and
Stengaard-Pedersen, 2008). Higher differences in sprinter’s
stiffness might be related to training specificity, e.g., short-term
maximal efforts. Our previous study reported an increase in thigh
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FIGURE 5 | Muscle stiffness (N/m) maps from the quadriceps muscle and tendon before and after 200m flying start (Track Cyclists Sprint) and 4,000m individual

pursuit race (Track Cyclists Endurance).

muscle (especially VL) pain sensitivity after maximal anaerobic
power training (Klich et al., 2018) and 200m flying start (Klich
et al., 2020). The training loads in endurance cyclists are mainly
focused on aerobic capacity, and overloads does not seem to
influence stiffness and thickness (Karamanidis and Arampatzis,
2006).

Effect of 200m Flying Start and 4,000m
Pursuit Race on QTThick and PTThick
This study investigated the QTthick and the PTthick at three and
four locations, respectively. Moreover, it is also the first study
evaluating spatial changes in thickness and stiffness immediately
after an elite event in track cyclists. Previous studies have also
assessed the QTthick and PTthick at different locations from
their attachments (Ozçakar et al., 2003; Pfirrmann et al., 2008;
Giombini et al., 2013; Todd et al., 2015; Kizilkaya and Ecesoy,
2019). Several studies have examined both tendons thickness
in elite sports (Pfirrmann et al., 2008; Giombini et al., 2013)
measured at insertion, mid-length, and distal attachments. For
instance, Giombini et al. (2013) reported tendon thickness 10mm
proximal (for QT) and 5mm distal from the patella apex (for
PT). Fisker et al. (2017) have evaluated PTthick after CrossFit
workout using similar ultrasound examination procedures to the
one describe in Giombini et al. (2013). Ozçakar et al. (2003)
evaluated the QTthick in soccer players near to the insertion to
the patella. Other studies reported the patient’s QTthick at 10mm
(Kizilkaya and Ecesoy) and 30mm (Todd et al., 2015) proximal

to the patella apex and the PT at 10mm distal to the insertion.
In our study, we investigated the QTthick in locations placed 5–
10–15mm proximal and 5–10–15–20mm distal to the apex of
the patella. We observed significant differences in QTthick and
PTthick between both groups at baseline, related with greater body
mass of sprint track cyclists and influence of habitual loading
during effort (Zhang et al., 2015; Mersmann et al., 2017). Our
findings showed significant differences in spatial distribution of
QTthick in within-group compared to location placed at 5mm
in sprint and endurance track cyclists The results demonstrated
significant highest QTthick at locations placed 15mm (difference
in thickness ranged between 2 and 4%) in both groups, however
in PTthick were not found any statistical differences. Previous
studies have assessed only a single measure 10mm proximately
from the apex of the patella (Ozçakar et al., 2003; Todd et al.,
2015; Kizilkaya and Ecesoy, 2019); however, Fredberg et al. (2008)
have reported that PTthick was significantly larger in proximal
areas as compared to distal locations.

After the sprint or endurance track, significant increases
in both PTthick and QTthick were found. The percentage
increase in QTthick was 3% (sprint) and 2% (endurance), while
PTthick increased by 6 and 5%, respectively. The highest post-
race increase in QTthick was found at location placed 15mm
(1 post-pre: 0.23mm in the sprint and 0.17mm in endurance
track cyclists), while PTthick at 15mm (1 post-pre: 0.36mm)
in sprinters and 20mm (1 post-pre: 0.29mm) in endurance
cyclists. Castro et al. (2019) have reported that the middle
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region of PTThick (∼20mm) was the easiest to define and had
the highest intra-rater reliability. Such increases in the tendon
thickness are most likely caused by including hypoechogenicity
and vascularity (Visnes et al., 2015; Tsui et al., 2017). Visnes et al.
(2015) reported that the hypoechoic areas are correlated with a
risk for developing tendon tendinopathy. Previous studies have
shown a training-induced adaptation of muscles and tendons by
longtime training on morphological and mechanical in different
athletes (Cook et al., 2004; Couppe et al., 2008; Giombini et al.,
2013; Charcharis et al., 2019). However, our study presents
an acute result of specific effort on tendon morphological and
viscoelastic properties changes. Visnes et al. (2015) showed an
increase of about 7–11% in the QTthick, without any changes in
the PTthick. Furthermore, the authors observed a 50% thicker
QT compared with PT among cyclists. Zhang et al. (2014)
reported that morphological alterations in overloaded tendons
(∼23% difference in the PTthick). In our study, both tendons
increased their thickness; however, a higher percentage increase
was observed within the PT (∼6–7%). In general, cycling
training is based on short-term high-intensity exercises, strength
training (sprint cyclists) (Klich et al., 2018), and aerobic training
(endurance cyclists) (Craig and Norton, 2001; Faria et al., 2005).
Thus, changes inmorphological properties are mostly considered
due to tendon adaptation (Visnes et al., 2015). Visnes et al. (2015)
reported an increase of about 7–11% in the QTthick, without any
changes in the PTthick. Magnusson and Kjaer (2003) observed
that tendon hypertrophy in endurance athletes leads to a lower
risk of stress across the tendon. The tendinopathy alterations
may indicate intrinsic changes in the tendon due to vascularity,
causing micro-inflammation (Craig and Norton, 2001; Seynnes
et al., 2009). This finding has been reproduced by Fisker et al.
(2017) who have also observed an impact of high-intensity loads
on tendon thickening.

Effect of 200m Flying Start and 4,000m
Pursuit Race on QTStiff, PTStiff, and QMStiff
Several studies assessed changes in viscoelastic properties due
to training and fatigue (Seynnes et al., 2009; Mannarino et al.,
2019; Chalchat et al., 2020), tendinopathy (Zhang et al., 2014),
or muscular overload in elite athletes (Andonian et al., 2016;
Young et al., 2018; Cristi-Sánchez et al., 2019). In our study, we
observed significant differences in stiffness within groups and
between-groups when comparing relative changes (difference
post-pre race) in sprint and endurance track cyclists, in line with
Epro et al. (2019). Previous studies have found an increase in
the QTstiff and the PTstiff following isokinetic fatigue protocol
(Chalchat et al., 2020), resistance training (Seynnes et al., 2009;
Visnes et al., 2015; Mersmann et al., 2017; Mannarino et al., 2019)
and prolonged exercise (Andonian et al., 2016). However, cross-
sectional studies reported higher stiffness in different athletes
compared with a healthily control group (Zhang et al., 2015;
Young et al., 2018; Cristi-Sánchez et al., 2019). Taş et al. (2019)
assessed stiffness of PT, QT, RF, and VM in soccer players
compared with a control group. Soccer players had lower PTstiff

and QTstiff as well as higher stiffness of RF compared with
sedentary controls. Those authors have reported also higher

PTstiff then QTstiff and similar stiffness of RF and VM in soccer
players. Cristi-Sánchez et al. (2019) found higher PTstiff in soccer
players than inactive participants suggesting that the PTstiff is
related to the level of higher force transmission during muscle
contraction, however Charcharis et al. (2019) reported higher
thickness of VL and PTstiff in athletes (different sports), as a
result of training-induced adaptation. Mersmann et al. (2017)
and Zhang et al. (2015) have observed higher PTstiff in volleyball
players, as compared with healthily volunteers, providing an
evidence that PT is adapting tomechanical loading. Furthermore,
their research showed following findings to the higher stiffness in
athletes: (1) develops the performance of the muscle-tendon unit
interaction [also supported by Arampatzis et al. (2020)] and (2)
protects the muscle and tendons against overstrain. Visnes et al.
(2015) andMersmann et al. (2017) found that short-term training
also result in higher PTstiff. Furthermore, those changes in the
viscoelastic properties should be considered in relation to muscle
strength (Epro et al., 2019) and increases in tendon’s thickness
(Klich et al., 2019). Seynnes et al. (2009) have suggested that
training-induced changes may be related to tendon hypertrophy
and alterations in collagen synthesis. While, Epro et al. (2019) has
proposed that changes in tendon thickness may be the results of
protective mechanisms.

The current study also assessed the spatial changes in the
viscoelastic properties of QMstiff after 200m flying start or
4,000m individual pursuit race. In our study, we observed an
heterogeneous spatial distribution at baseline for QMstiff in both
groups, i.e., higher stiffness in TFL (point no. 3) and VL (point
no. 4–6). After races, the spatial distribution remained similar
with a shift toward higher stiffness. A higher increase in the
QMstiff in sprint track cyclists may indicate an adaptation to
the specific-training loads (Cristi-Sánchez et al., 2019), especially
due to mechanical energy transmission during cycling phases
(Young et al., 2018). Moreover, Kordi et al. (2020) reported a
positive relationships between quadriceps muscle volume and
peak power output in sprint track cyclists. The alterations in
QMstiff after 200m flying start, observed in our study could
be considered by higher power-cadence and torque-cadence in
sprinters, than in endurance track cyclists (Kordi et al., 2020).
Furthermore, the differences in spatial distribution in QMstiff

between sprint and endurance track cyclists might be related with
higher activity of QM during pedaling, especially activity of VL
during the propulsion phase (Dorel et al., 2005), thus shows the
highest activity during sprint exercises (Akima et al., 2005). Kordi
et al. (2020) have not found any relationship between activity of
VL and peak power output, and significant differences between
muscle volume of VL in sprint and endurance track cyclists. In
our study, differences in stiffness of VL between both groups
could be explained by muscle fiber type composition of VL in
sprint and endurance track cyclists. Higher QMstiff may be related
with greater proportion of type II muscle fibers in VL (Akima
et al., 2005; Kordi et al., 2020). Additionally, higher stiffness in
sprinters is also a result of muscle metabolic response, due to
increases in lactate acid concentration and H+ ions (Visnes et al.,
2015). It should be noted that sprint and endurance track cyclists
have set their position on the bicycle differently. Therefore, this
factormay influence those differences in theQMstiff. In a previous
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case report, we found increased stiffness in the QM during 200m
flying start and then sprint events, as a result of increased fatigue
and higher maximal power output (Klich et al., 2020).

Perspectives
Ultrasonography and myotonometry are frequently used
to evaluate tendon and muscle tissues, in muscle strains,
tendinopathies, tears, and overloading injuries. Field testing of
potential tissue-overloading is very important when evaluating
injury risk-factors and rehabilitation management. Furthermore,
investigation of the quadriceps muscle among athletes
may provide important critical clinical findings regarding
morphological properties and, consequently injury mechanisms.
Finally, measuring thickness at different locations and stiffness
over QM enable to delineate spatial changes in the generate 3D
graphical representations that can be used to monitor potential
risk of injuries and optimize rehabilitation process.

Limitations
Finally, we should recognize some potential limitations of the
current study. First, we have investigated only the quadriceps
femoris muscle. Future studies should also include hamstring
and adductor muscles. Second, we could have investigated the
cross-sectional area of the QT and the PT. However, this
research protocol was prepared according to Ekizos et al. (2013)
that consider measurements of cross-sectional area in PT not
reliable. Third, we reported an acute effect in tendons; however,
repeated measures after 12 and/or 24 h should be conducted
in future studies to assess the recovery process following
competitions. Future studies investigating QTThick, PTThick, and
QM stiffness in sports why high knee-injury risks like handball
are also warranted.

CONCLUSIONS

This study reported for the first time changes in morphological
and mechanical properties, represented by tendon thickness and
stiffness. Moreover, our study showed spatial heterogeneity of
tendons thickness and stiffness presented by 3D topographical

maps after track cycling competition. Sprint track cyclists
exhibited significantly higher post-pre differences in thickness
and stiffness of QT and PT, as compared with endurance track
cyclists. Moreover, the spatial differences in muscle stiffness
and tendon thickness reported for both groups might be
associated also with loading adaptation, and thus adaptation-
based vascularity and hypertrophy processes. Higher stiffness in
sprint compared with endurance track cyclists at baseline seems
to highlight alterations in mechanical properties of the tendon
and muscle that could lead to overuse injuries. The current
study suggests that assessments using both ultrasonography and
myotonometry provides crucial information about tendons and
muscles properties and their acute adaptation to exercise.
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