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Abstract
Differentiation of oligodendrocyte progenitors towards myelinating cells is influenced by a plethora of exogenous instructive
signals. Insulin-like growth factor 1 (IGF-1) is one of the major factors regulating cell survival, proliferation, and maturation.
Recently, there is an ever growing recognition concerning the role of autocrine/paracrine IGF-1 signaling in brain development
and metabolism. Since oligodendrocyte functioning is altered after the neonatal hypoxic-ischemic (HI) insult, a question arises if
the injury exerts any influence on the IGF-1 secreted by neural cells and how possibly the change in IGF-1 concentration affects
oligodendrocyte growth. To quantify the secretory activity of neonatal glial cells, the step-wise approach by sequentially using
the in vivo, ex vivo, and in vitro models of perinatal asphyxia was applied. A comparison of the results of in vivo and ex vivo
studies allowed evaluating the role of autocrine/paracrine IGF-1 signaling. Accordingly, astroglia were indicated to be the main
local source of IGF-1 in the developing brain, and the factor secretion was shown to be significantly upregulated during the first
24 h after the hypoxic-ischemic insult. And conversely, the IGF-1 amounts released by oligodendrocytes and microglia signif-
icantly decreased. A morphometric examination of oligodendrocyte differentiation by means of the Sholl analysis showed that
the treatment with low IGF-1 doses markedly improved the branching of oligodendroglial cell processes and, in this way,
promoted their differentiation. The changes in the IGF-1 amounts in the nervous tissue after HI might contribute to the resulting
white matter disorders, observed in newborn childrenwho experienced perinatal asphyxia. Pharmacological modulation of IGF-1
secretion by neural cells could be reasonable solution in studies aimed at searching for therapies alleviating the consequences of
perinatal asphyxia.
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Introduction

To acquire the ability to myelinate the central nervous system
(CNS), oligodendrocyte progenitor cells (OPCs, so called
NG2-glia) have to undergo a multistage differentiation pro-
cess, which is guided by a plethora of extracellular instructive
signals. Some of them are known to guide OPCs migration,
like for instance the activity of metalloproteinases which help
to reorganize the extracellular matrix and facilitate cell

trafficking, the gradient of PDGF-AA concentration in the
local microenvironment, as well as the presence of either
chemoattractants or chemorepellents associated with normal
or pathophysiological conditions. Other signaling molecules
are known to be engaged in cell survival, proliferation, and
initiation of myelin gene expression [1]. Finally, the multi-
branched mature oligodendrocytes are able to extent their
unique, specialized cell processes and to wrap them around
axonal segments forming multilamellar, tightly compacted
myelin sheaths [2–4].

One of the major factors shown to regulate oligodendrocyte
functions is the insulin-like growth factor-1 (IGF-1), distrib-
uted throughout the body by circulating blood, but also secret-
ed in situ in the nervous tissue [5]. This small, a 7.64-kDa
peptide shares many similarities with insulin, including high
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sequence analogy and common signal transduction pathways.
Accordingly, the IGF-1 acts through the canonical
e x t r a c e l l u l a r - r e g u l a t e d k i n a s e ( E RK ) a n d
phosphatidylinositol-3 kinase (PI3K)-Akt pathways, as well
as through the JAK/STAT signaling cascade [6–10]. This
growth factor is thought to be essential for normal brain de-
velopment [11], by promoting neurogenesis, elongation of
neuronal projections, dendritic arborization, and synaptogen-
esis [12–16]. In the nervous tissue, IGF-1 has been shown to
serve also as a neuroprotectant, promoting neuronal survival,
and proliferation [17–21]. Thus, it is hypothesized that in cer-
tain pathophysiological conditions occurring in the CNS (like
for instance stroke, infections, autoimmunological diseases,
hypoxic-ischemic episodes), the availability of this factor
and the sensitivity of cells to its influence in various brain
regions might be one of discriminative factors between the
onset of neurodegenerative disorders and capability to over-
come the local tissue crisis [22–26]. Accordingly, alterations
in the IGF-1 level are supposed to be associated with the
development of white matter diseases, resulting from myelin
deficiency or malformation and subsequent white matter dis-
organization. And indeed, a growing list of evidence indicates
that the IGF-1 plays an important role in controlling oligoden-
droglial functions, including promotion of developmental
myelinogenesis [27]. Although the alterations in the IGF-1
concentration are thought to be associated with the fatal con-
sequences of white matter disorders developing as a result of
hypoxic-ischemic insult experienced by newborn children
[28], the exact mechanism of pathogenesis remains still large-
ly unknown.

Likewise, IGF-1 is supposed to be involved also in subse-
quent stages of oligogliogenesis and myelinogenesis.
Likewise, it has been shown to stimulate the glial commitment
of neural stem cells [29–31], to enhance rate of OPC prolifer-
ation [32–37], to promote their survival [38], and to direct
their migration by activation of integrin-mediated intracellular
signaling [39]. During the middle stages of oligodendrocyte
development, IGF-1 regulates protein synthesis through the
PI3K/mTOR/Akt and MEK/ERK pathways contributing to
the progress in differentiation process [40–43]. Finally, this
growth factor is engaged in initiation and coordination of
myelinogenesis, as well as has been shown to promote
remyelination [27, 44–48]. Taking into consideration its well
established role in the neurogenesis and brain development
[49, 50], maintaining the physiological level of IGF-1 seems
to be crucial for local tissue homeostasis and, thus, for proper
CNS development and functioning.

To address this issue, a study investigating the impact of
temporal hypoxia-ischemia on IGF-1 secretion by particular
subpopulations of CNS glia was designed, based on the
in vitro (glial primary cell monocultures), ex vivo (hippocam-
pal organotypic slice culture), and in vivo (rat model of peri-
natal asphyxia) experiments (Fig. 1). This approach allowed

us to determine the IGF-1 quantities after perinatal asphyxic
insult in vivo and to take a closer look at its secretion by the
specialized glial cells in vitro. We hypothesized that potential
alterations in the level of centrally distributed IGF-1, triggered
by neonatal hypoxia-ischemia might exert an acute effect on
oligodendroglial cells and aimed at evaluating a role of
paracrine/autocrine IGF-1 signaling in neonatal brains. Thus,
the obtained results allowed us to speculate about contribution
of the glial cells to the pathogenesis of perinatal asphyxia and
indicate potential therapeutic strategies.

Materials and Methods

Rat Model of Neonatal Hypoxia-Ischemia

To evoke the hypoxic-ischemic (HI) insult in animal model of
perinatal asphyxia,Wistar rat pups (n = 48) of both sexes (12–
15 g body weight) were anaesthetized with isoflurane (4% for
induction of anesthesia and 2% for anesthesia maintenance)
on 7 postnatal day (P7). The procedure, approved by IV Local
Ethics Committee on Animal Care and Use, was based on the
dissection of the left common carotid artery, which was either
exposed (sham-operated animals, n = 20) or cut between the
double ligatures of silk sutures (n = 28). After treating the
resulting wound with lignocaine, animals were allowed to
recover for 60 min in their home cages. Hypoxic conditions
were achieved by exposing the animals to 7.5% oxygen in
nitrogen for 60 min in a hypoxic chamber heated to 35 °C.
Consequently, the hemisphere ipsilateral to the carotid liga-
tion experienced the ischemic-hypoxic injury.

Ex Vivo Culture of Organotypic Hippocampal Slices

The hippocampi for preparation of 400-μm thick organotypic
slices with the preserved tissue organization were isolated
from the brains of 7-day-old Wistar rats (n = 18), according
to the protocol described previously [51]. The procedure was
approved by the IV Local Ethics Committee on Animal Care
and Use (Ministry of Science and Higher Education). The
slices, obtained by cutting the chilled hippocampi by use of
a McIlwain apparatus, were placed on Millicell-CM
(Millipore) membranes and cultured initially in DMEM me-
dium (Gibco) containing the following supplements: 25%
horse serum (Gibco), 25%HBSS (Gibco), 2 mmol/l L glucose
(Sigma), 5-mg/ml HEPES (Gibco), B27 supplement (Gibco),
and an antibacterial–antimycotic solution (Sigma). On the day
following establishing the ex vivo culture, the serum concen-
tration in the culture medium was gradually decreased and
therefore from the 5 day in vitro (DIV) onwards, the slices
were kept for the following 7 days in serum-free media and in
normoxic gas conditions (5% O2, 5% CO2).
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Primary In Vitro Cultures of Rat Glial Cells

Initial primary culture comprising glial cells were isolated
from 2-day-old Wistar rats bred in the Animal Care Facility
(the Mossakowski Medical Research Centre). The protocol of
the nervous tissue acquisition, approved by the Local Ethics
Committee on Animal Care and Use, was described in detail
elsewhere [52]. Briefly, the neonatal animals (n = 36) were
put into deep hypothermia, cerebral hemispheres were isolated
and mechanically dispersed in Dulbecco’s Modified Eagle’s
Medium (DMEM) (Gibco supplemented with 10% fetal bo-
vine serum (FBS, Gibco) and 1% antibiotic–antimycotic so-
lution (Sigma, by means of a Pasteur pipette and a 1.2-mm
Luer-Lock needle. Cells were then filtered through a 40.0-μm
pore cell strainer (pluriSelect and seeded into 75-cm2 culture
flasks (NUNC). After being cultured for the following 11–
13 days, the subsequent fractions of glial cells were separated
by gentle detaching by use of a horizontal orbital shaker
(Biosan). The first detached fraction obtained due to 1-h long
shaking at 160 rpm corresponded to the microglial cells which
were immediately plated at density of 4 × 104/cm2 at 6-well
plates coated with poly-L-lysine (Sigma). Shaking the remain-
ing mixed glial culture for additional 15–20 h allowed the
isolation of the OPCs, which were plated at density of 1.5 ×
104/cm2. Next, the astroglial fraction was detached by mild
trypsinization (5 min. at 37 °C) and after being washed with
PBS, the astrocytes were seeded at the same density as

microglial cells. The resulting glial monocultures (i.e., prima-
ry cultures of microglia, oligodendrocyte progenitors, and as-
trocytes, respectively) were grown in a serum-free medium in
atmosphere containing 5% O2 and 5% CO2, corresponding to
the physiological normoxia. Homogeneity of the glial mono-
cultures were checked every time with application of the
lineage-specific markers and estimated for not less than
98.5% for each of the particular subpopulation of glial cells.

Temporal Oxygen-Glucose Deprivation as an In Vitro
Model of Perinatal Asphyxia

To mimic hypoxic–ischemic insult associated with perinatal
asphyxia, organotypic hippocampal slices, as well as all glial
monocultures were subjected to a temporal limitation of oxy-
gen and glucose supply (OGD: oxygen and glucose depriva-
tion). The procedure was performed on primary cultures 24 h
after plating microglia and astrocytes, 4 h after plating OPCs
and on 7 DIV in ex vivo cultures of the nervous tissue slices.
To retain the buffer osmotic concentration unchanged, the
glucose was replaced with 10-mM mannitol. In order to elim-
inate oxygen, the Ringer solution used to perform OGD pro-
cedure was saturated with 95% N2 and 5% CO2. Duration of
OGD in oxygen-free chamber was established for 50 min.
Immediately after the OGD, the cultures were returned to their
standard conditions.

Fig. 1 A schematic diagram of a
step-wise approach aimed at de-
termining the role of the IGF-1
released in situ by glial cells
inhabiting the CNS
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Quantitative Determination of IGF-1 Content in
Primary Cell Cultures, Hippocampal Slices and Brain
Hemispheres

IGF-1 quantities were measured in the samples collected from
all of the in vivo, ex vivo, and in vitro models of perinatal
asphyxia (Fig. 1). Accordingly, rat brains subjected to neona-
tal hypoxic-ischemic injury were extracted either on 1, 3, 7, or
14 day postinjury (PI) and divided into ipsilateral (to the in-
sult) and contralateral hemispheres. Thus the applied animal
model allowed us to track the impact of both the reduced
blood flow and hypoxia on the nerve tissue in ipsilateral hemi-
sphere (ipsi) and the impact of hypoxia in contralateral brain
hemisphere (contra). Amounts of IGF-1 were measured in
tissue lysates of cerebral hemispheres and hippocampus sep-
arately, from both the injured and the sham-operated animals.
For the purpose of ex vivo studies, organotypic hippocampal
slices were collected 1, 3, 5, and 7 days after OGD. Likewise,
supernatants conditioned by in vitro monocultures of glial
cells were collected at time points corresponding to 1 day
and 3 days after OGD. For the quantification of the intracel-
lular IGF-1, oligodendrocytes were lysed either 1 h, 1 day, or
3 days after OGD. Homogenates of the collected tissue and
cell samples were prepared with the application of CelLytic
solution (Sigma), supplemented with Protease Inhibitor
Cocktail (1:100, Sigma). Measurements of the total protein
concentrations in the lysates obtained from brain and slices
were performed by means of DC protein assay (Bio-Rad),
based on the standard Lowry method. For precisely measuring
the lower protein concentrations (in culture supernatants and
in lysates of cell cultures), Bradford Reagent (Sigma) was
used. To precisely quantify the IGF-1 amounts, the ultrasen-
sitive sandwich ELISA (enzyme-linked immunosorbent
assay) was used according to the manufacturer’s recommen-
dations (Thermo Fisher Scientific). The intensity of the
resulting colorimetric reaction was measured at 450-nm wave
length with use of the spectrophotometric plate reader
Fluorostar Omega (BMG LabTech).

Testing the Influence of IGF-1 on Cell In Vitro and Ex
Vivo Cultures

To evaluate the influence of IGF-1 on survival, proliferation,
and maturation of rat oligodendrocytes, different concentra-
tions (varying from 10 to 50 ng/ml) of this compound
(Thermo Fisher Scientific) were added to the culture medium
of oligodendrocytes and the organotypic hippocampal slices
immediately after OGD for the following 5 days. In another
experimental variant, the endogenous IGF-1 released by glial
cells to the culture medium was neutralized by addition of the
extens ive amounts of e i ther ant i IGF-1 (1:1000;
MerckMillipore) or antiIGF-1R (receptor) antibodies (1:400;
Abcam). The effectiveness of IGF-1R or IGF-1 neutralization

was verified by application of ELISA method. Accordingly,
the culture media were collected and assayed for testing the
possible IGF-1 presence. Standard culture media (with no
supplements), conditioned by control primary glial monocul-
tures, served as a positive control. Then the cells and slices
were fixed with 4% paraformaldehyde (PFA) in PBS for
20 min and 40 min, respectively, rinsed three times with
PBS and subjected to immunostaining with the selected
antibodies.

Immunostaining of Differentiating Cells

In order to use immunostaining techniques, the glial monocul-
tures were fixed 5 days after OGD, while hippocampal slices
were fixed 7 days after the procedure. To verify the homoge-
neity of glial cell cultures, cells were labeled with the selected
lineage-specific antibodies, i.e., with antiIBA1 (1:200,
Abcam) to distinguish microglia, antiCNPase (1:100, Merck
Millipore) to detect oligodendrocytes, and antiGFAP (1:200,
Merck Millipore) to visualize astrocytes. To evaluate differ-
entiation of oligodendrocytes in the primary cultures and in
the organotypic hippocampal slices, an additional
immunolabeling was performed with oligodendroglial
lineage-specific antibodies directed against NG2 (1:100,
Chemicon) and Olig2 (1:500, Merck Mill ipore) .
Proliferating cells were visualized with antiKi67 antibody
(1:100, Leica). Unspecific binding of antibodies was eliminat-
ed by incubating the fixed cells and the slices with 10% nor-
mal goat serum (Sigma) in PBS containing 0.1% (0.25% for
tissue slices) Triton X-100 (Serva) for 1 h at room tempera-
ture. All of the primary antibodies were applied overnight at
4 °C. Secondary antibodies conjugated to fluorescent dyes,
i.e., Alexa Fluor-488 and Alexa Fluor-546 (1:1000, Thermo
Fisher Scientific) were used to label the immunostained cells.
To visualize cell nuclei, Hoechst 33342 was applied during
15 min incubation. After immersing in the Fluoromount™
reagent (Sigma), the resulting slides were used for picture
acquisition by means of the LSM 780/ ELYRA PS.1
superresolution confocal system (Carl Zeiss). The analyzed
area of the hippocampal slice or cell culture corresponded to
0.386 mm2.

Sholl Analysis of Cell Branching

In order to evaluate a progress in the oligodendrocyte differ-
entiation process, the branching of immunolabeled NG2+ cells
was examined in hippocampal slices by application of Sholl
morphometric analysis. Accordingly, the Z-stack microscopic
images were collected, and the maximum intensity projections
of individual cells were created to obtain detailed images of
cells with all their branches on 2D plane. Subsequently, masks
of cells were drawn with use of semiautomatic tracing method
in the NeuronJ plugin to ImageJ software in order to generate
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the binary images of cell branching. A number of intersections
of cell proccesses with consecutive concentric circles around
the cell body were recorded, and a number of quantitative
descriptors were calculated. All of the performed Sholl mea-
surements were based on the following parameters: starting
radius − 5 μm and radius step − 1 μm.

Statistical Analysis

Biochemical measurements were done at least in triplicate,
with two dilutions of the examined sample on each plate.
The cells labeled by means of immunofluorescent techniques
were counted on randomly selected 5–10 visual fields on each
of at least five slides from each of the three experiments. A
statistical analysis of the collected data was performed with
the application of the GraphPad PRISM 8.0 software,
selecting an one-way analysis of variance (ANOVA) followed
by the Bonferroni’s multiple comparison test as a tool to com-
pare experimental groups. All the data were expressed as
mean standard deviation. The calculated differences were rec-
ognized as the significant if: *p < 0.05, **p < 0.01;
***p < 0.001, ****p < 0.0001.

Results

Influence of Hypoxic-Ischemic Insult on Endogenous
IGF-1 Expression in Rat Neonatal Brains

With aim of addressing the question about the potential impact
of neonatal hypoxia-ischemia on the IGF-1 availability in the
affected brains, the animal in vivo model of perinatal asphyxia
was used (Fig. 1). Taking into consideration that the main
neurological disabilities resulting from asphyxic injury in sur-
vived babies might be associated with the malfunctioning of
hippocampus, this region was isolated and analyzed separate-
ly. Additionally, to evaluate the possible influence of HI on
the hemisphere contralateral to the insult, the IGF-1 levels
were measured separately in the both brain hemispheres
(Fig. 2a) and the both hippocampi (Fig. 2b). Accordingly, as
revealed by quantitative studies, just 1 day after the HI insult
(1 PI), the amount of IGF-1 was significantly elevated in the
ipsilateral hemisphere in comparison with the hemisphere
contralateral in relation to the insult (38.7%; p < 0.01) and
to control brains (24.9%; p < 0.05) (Fig. 2a). The examination
of tissue lysates obtained from the brains collected 3, 7, and 14
after the injury did not revealed any statistically relevant dif-
ferences between the injured and the control hemispheres
(p > 0.05). This suggests that during the later post injury pe-
riod, the amounts of IGF-1 decreased and stabilized at the
physiological level. Interestingly, the highest endogenous lev-
el of IGF-1 in the neonatal brains was detected 7 days after the
injury (which corresponds to P14) and was estimated at

1143.00 ± 119.37 pg per mg of the total protein content.
During the following week (7–14 PI), an approximate 3-fold
decrease (to 357.94 ± 35.74 pg/mg total protein content) was
recorded in the samples derived from the control brains (Fig.
2a). While examining hippocampi, a 2-fold decrease in the
IGF-1 level was observed between day 7 and 14 postinjury
(from 752.53 ± 221.73 to 368.73 ± 64.39 pg IGF-1/mg of total
protein content) (Fig. 2b). Interestingly, the upregulation of
the IGF-1 level 24 h after the HI insult was not observed in
this brain region. However, IGF-1 quantification at different
time-points postinjury indicates that the observed increase in
its physiological amounts proceeds more slowly in the hippo-
campi affected by HI (p < 0.05 for 1PI vs 3PI and p > 0.05 for
3PI vs 7PI) in comparison with controls (p < 0.0001 for 1PI vs
3PI and p < 0.001 in case of 3PI vs 7PI).

Influence of Hypoxic-Ischemic Insult on
Paracrine/Autocrine IGF-1 Release in Ex Vivo Cultures
of Organotypic Hippocampal Slices

To eliminate potential augmentation of centrally generated
IGF-1 and delivered via brain-blood barrier (BBB) to the ner-
vous tissue, the ex vivo cultures of organotypic hippocampal
slices were used. This approach (presented in Fig. 1) allowed
us to focus on the paracrine/autocrine effects of IGF-1 secret-
ed in situ by neural cells. As revealed by the obtained data, the
IGF-1 amounts in the hippocampal slices cultured up to
14 days (7 days before and 7 days after OGD) were similar
to those determined in the hippocampi during the in vivo stud-
ies, pointing to the important role of neural cells as the endog-
enous source of this factor in hippocampal region (Fig. 3).
Likewise, there was also no difference between the control
and the OGD-treated tissue. The amount of IGF-1 in the sam-
ples collected 5 days and 7 days after the insult was below the
lower limit of detection defined by the ELISA kit’s manufac-
turer, suggesting decrease in IGF-1 secretion during following
days of the ex vivo culture. Since cell differentiation and se-
nescence is remarkably accelerated in the cultured tissue
slices, this time-point seems to be relevant to the 7–14 PI
period of the in vivo model.

Effect of IGF-1 Supplementation on Oligodendroglial
Proliferation in Hippocampal Slices

To identify the proliferating cells within the nervous tissue of
the hippocampal region, the antibody against Ki67 protein in
the dividing cell nuclei together with markers specific for ol-
igodendroglial lineage were used. First of all, the possible
influence of various IGF-1 doses on oligodendrocyte progen-
itor cells was tested. As determined by quantitative biochem-
ical methods, the IGF-1 concentrations range between 0.5 and
1 ng per mg of total protein content in the nervous tissue (Figs.
2 and 3). Since in the performed ex vivo study the cultures of
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hippocampal slices were supplemented with the exogenous
IGF-1, the calculation of concentrations of the added com-
pound were based on the manufacturer recommendations.
Likewise, supplementing oligodendroglial or slice cultures
with insulin (which is an analog of IGF-1) in concentration
of 10 ng/ml (for instance in ITS supplement) was recommend-
ed for use to support oligodendroglial survival. Therefore, the
tested IGF-1 doses were estimated for 10, 20, and 50 ng per ml
of culture media, and their influence on oligodendrocyte pro-
liferation was verified by immunohistochemical analyses. The
first interesting observation concerned the significantly (p
< 0.01) reduced number of dividing neural cells in hippocam-
pal slices after OGD insult when compared with untreated
controls (Fig. 4a, b). While added at the highest of the applied
doses (50 ng/ml), the IGF-1 turned out to stimulate the process
of cell proliferation in the control slices (p < 0.05) when com-
pared with those untreated with IGF-1; however, the given

treatments seemed to be insufficient to promote cell division
in the injured slices and to stimulate in this way process of
neuroregeneration. Accordingly, the cell proliferation rate in
OGD-injured slices cultured with addition of IGF-1 at con-
centration of 50 ng/ml was still significantly (p < 0.0001) low-
er than in control slices supplemented with the same IGF-1
dose (Fig. 4b).

Focusing the analyses on oligodendroglial progenitor cells,
visualized by immunolabeling the membrane marker NG2,
specific for the very early stage of oligodendrocyte differenti-
ation process, also showed no significant effect on enhancing
rate of cell proliferation after treatment with the applied doses
of IGF-1. Interestingly, in spite of being temporarily deprived
of oxygen and glucose, the number of proliferating OPCs in
the entire fraction of the dividing neural cells remained mark-
edly unchanged when examined 5 days after the insult.
Accordingly, in the cultured hippocampal slices of rat

Fig. 3 IGF-1 quantification in the
organotypic hippocampal slice
culture 1 day and 3 days after
oxygen-glucose deprivation. The
concentrations of IGF-
1determined by ELISA-based
measurement were normalized
versus total protein concentration
in individual samples. Presented
values are mean ± standard devi-
ation. *p < 0.05, **p < 0.01

Fig. 2 IGF-1 level in rat brains at various time-points after hypoxic-
ischemic insult applied to P7 rat pups, determined in: aBrain hemispheres
(without hippocampus) and b Isolated hippocampal region. The plain
green bars represent concentration of IGF-1 in brains of control animals,
striped green bars represent hemispheres contralateral to the site of the
injury (which became hypoxic due to the applied model) and the gray

bars corresponds to the hemispheres ipsilateral to the site of injury (hyp-
oxic-ischemic). Presented values are mean ± standard deviation. The dif-
ferences between the examined groups were marked as statistically sig-
nificant if: significant*p < 0.05, **p < 0.01; ***p < 0.001, ****p <
0.0001
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neonatal brain, the dividing OPCs (NG2+/Ki67+) constituted
17.35 ± 5.33% in controls and 12.55 ± 2.11% after the OGD
procedure of all the cycling cells (Fig. 4c). Subsequent exam-
ination of the results of the supplementing slice cultures with
different IGF-1 doses indicated a general, significant decrease
of the NG2+/Ki67+ fraction in control slices, while after OGD
this proportion significantly increased (Fig. 4d). This was fur-
ther confirmed by examination of the number of dividing
OPCs within total NG2+ fraction. Accordingly, the performed
statistical analysis revealed that the stimulation of OPC pro-
liferation by was most pronounced when IGF-1 was added at

concentrations of in the injured slices is the most pronounced
in concentration of 10–20 ng/mg (p < 0.01) (Fig. 4e). The
obtained results showed that IGF-1 specifically increases pro-
liferation rate of oligodendroglial precursors after OGD
injury.

The subsequent examination of Olig2 immunolabeling, an
oligodendroglial lineage-specific transcription factor
expressed during both the cell commitment and differentia-
tion, indicated however that the injury stimulated the oligo-
dendrocytes to propagate (Fig. 5a, b), causing a 67.3% in-
crease in the number of Olig2+/Ki67+ cells when the slices

Fig. 4 Impact of oxygen and glucose deprivation followed by various
treatments on proliferation of neural cells in the organotypic hippocampal
slices, determined 5 days after the insult. a Immunohistochemical
visualization of oligodendrocyte progenitors (NG2+, green) and
proliferating, Ki67-positive cells (red). Cell nuclei are stained with
Hoechst 33342 (blue). White arrows indicate dividing oligodendroglial
progenitors (NG+/Ki67+). Microphotographs show hippocampal slices
cultured in control conditions (I-III), affected by OGD (IV-VI) and after
different treatments applied to OGD-injured cultures (VII-XII). Scale bar

is equivalent of 50 μm. b Evaluation of the number of dividing neural
cells after OGD and in response to various experimental treatment; c The
number (expressed as the absolute values) of OPCs in various experimen-
tal conditions; d Calculation of the dividing OPC fraction in the entire
pool of cycling cells in the nervous tissue of the hippocampal region. e
Increase in number of proliferating OPCs in OGD-injured hippocampal
slices treated with various IGF-1 doses. Presented values are mean ±
standard deviation; the results were considered as significant if:
*p < 0.05, **p < 0.01; ***p < 0.001, ****p < 0.0001
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were treated with 50 ng IGF-1 after OGD (p < 0.05). As
shown, neither neutralizing IGF-1 nor blocking its receptor

had an impact on the number of Olig2-expressing cells in
the hippocampal slices (Fig. 5b). This observation suggests

Fig. 5 Impact of oxygen and glucose deprivation followed by various
treatments on proliferation of oligodendroglial cells (labeled with the
lineage-specific marker Olig2) in the organotypic hippocampal slices,
determined 5 days after the insult. a Immunolabeled oligodendrocytes
(Olig2+, green) and proliferating cells visualized by anti-Ki67 antibody
(red). Cell nuclei are stained with Hoechst 33342 (blue). White arrows
indicate dividing cell nuclei in oligodendrocytes (Olig2+/Ki67+).

Microphotographs show hippocampal slices cultured in control condi-
tions (I-III), affected by OGD (IV-VI) and after different treatments of
OGD-injured cultures (VII–XII). Scale bar is equivalent of 50 μm. b
Calculation of the dividing oligodendroglial fraction in the entire pool
of cycling cells. The values are mean ± standard deviation; the statistical
differences were considered as significant if: *p < 0.05, ***p < 0.001,
****p < 0.0001

Fig. 4 (continued)
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that in the selected concentrations, IGF-1 might be effective in
promoting oligodendroglial proliferation, which is not limited
however to the progenitor stage only.

Supplementation of IGF-1 Stimulates Ramification of
Oligodendroglial Processes in Hippocampal Slices

With regard to the fact that one of the descriptors of oligoden-
drocyte differentiation is the complexity of the elaborated cell
processes, a morphometric examination of the multibranched
NG2-positive immature oligodendrocytes was performed.
Accordingly, the labeled cells grown in the lowest, 10 ng/
mg IGF-1 concentrations, were subjected to the Sholl analysis
(Fig. 6a, b).

As shown by the linear plot (Fig. 6c), the control cells were
the most branched, in spite that the number of primary
branches and enclosing radius (indicating the size of the cell)
were similar to the parameters recorded for the cells injured by
the OGD procedure. Additionally, among numerous descrip-
tors calculated for the relevant images (Fig. 6d), the ramifica-
tion index (corresponding to the ratio of the maximum number
of intersections to the number of primary branches) pointed to

the most interesting differences between the examined vari-
ants of experimental work. Namely, statistically significant
differences (p < 0.05) were observed when the hippocampal
slices subjected to the OGD procedure were compared with
those treated with 10 ng/ml IGF-1 after the insult. This indi-
cated that supplementing the culture media after OGD with
IGF-1 in as low concentrations as 10 ng/ml led increasing the
number of intersections in the cell processes, thus promoting
their ramification and indicating the role of this growth factor
in oligodendrocyte differentiation.

IGF-1 Secretion by Neonatal Glial Cells Is Differently
Affected by Hypoxic-Ischemic Condition In Vitro

To address the question if any type of glia may be responsible
for the observed changes in the endogenous IGF-1 content at
24 h after the applied insult, the secretion of this factor was
evaluated in the obtained glial monocultures. As revealed by
the quantitative biochemical studies, an autocrine expression
of IGF-1 strictly depended on the type of glial cell.
Accordingly, the level of IGF-1 measured in culture media
conditioned by astrocytes was a whole order of magnitude

Fig. 6 Morphometric analysis of
the branched, NG2-positive oli-
godendrocytes in the organotypic
hippocampal slices. The graphical
masks of an individual cell were
drawn by application of NeuronJ
software (a) and then subjected to
Sholl analysis (b). Number of in-
tersections of cell branches with
consecutive concentric circles
around cell body were recorded
(c), and a number of quantitative
descriptors was calculated (d).
The differences were recognized
as significant if *p < 0.05
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higher than those enriched by IGF-1 released by either mi-
croglia or differentiating oligodendrocytes.

While IGF-1 secretion by astrocytes was 1.5-fold increased
during the first day after OGD when compared with control
values (p < 0.0001; Fig. 7a, b), the amounts of this growth
factor released by microglia is 2 times lower than in control
culture (1 day after OGD; p < 0.0001; Fig. 7c, d). Similar
effect was observed during examination of oligodendrocyte
cultures (3 days after OGD; p < 0.05; Fig. 7e, f).
Concentration of IGF-1 in media collected from oligodendro-
cyte culture at 24 h after OGD was below the lower limit of
detection; therefore, the additional measurements were per-
formed in cell lysates. The mean amount of the intracellular
IGF-1 in controls was estimated at 859.03 ± 206.47 pg/mg
total protein content),while after 1 h after OGD, it was reduced
to 765.81 ± 192.45 pg/mg total protein (p = 0.4).

Supplementing Oligodendroglial Cultures with
Exogenous IGF-1 Does Not Affect Cell Proliferation
but Promotes Their Differentiation

Results obtained during studies on hippocampal slices were
verified by establishing primary cultures of rat oligodendro-
cyte progenitors, performing OGD procedure to evoke HI
stress and applying the same treatments as for the cultured
hippocampal slices. Likewise, the opposite experimental ap-
proaches were used. The first one was based on eliminating
the IGF-1 influence by either neutralizing this factor or

blocking its receptor with specific antibodies. The second ap-
proach involved supplementing culture media immediately
after the injury with rat recombinant IGF-1 at concentrations
10 ng/ml and 50 ng/ml. To evaluate the results of the applied
treatments on proliferation and differentiation of cultured oli-
godendrocytes, the expression of the selected lineage specific
markers was examined by means of immunocytochemistry
5 days after OGD injury. Accordingly, as deduced from cal-
culation of the immunolabeled Ki67-positive cells, addition of
IGF-1 immediately after OGD did not stimulated oligoden-
drocyte proliferation (Fig. 8a, b). However, neutralization of
oligodendrocyte-derived IGF-1 resulted in a significant (p
< 0.01) decrease of the number of dividing cells (Fig. 8b),
suggesting an autocrine effect on the cell proliferation.

The obtained results also showed that applying any type of
the designed treatments after OGD resulted in a significant
decrease in fraction of Olig2+ positive cells, as deduced from
estimating number of cells in which this transcription factor
was localized in the cell nuclei (Fig. 8c, d). Subsequent anal-
ysis of differentiating, CNP-positive oligodendrocytes, char-
acterized by more complex morphology revealed that IGF-1
concentration of 50 ng/mlin culture media after OGD reduced
the number of maturing cells (to 89.9% ± 5.9% of CNPase+

cells), when compared with either OGD-subjected and un-
treated cell cultures (96.6% ± 1.9% of CNPase+ cells;
p < 0.05) or to the OGD-subjected cultures supplemented with
IGF-1 at concentration of 10 ng/ml (96.3% ± 2.7% CNPase+

cells; p < 0.05; Fig. 8e, f). Those results point to the important

Fig.7 Quantification of IGF-1 in the culture supernatants of astrocytes (a,
b), microglia (c, d) and oligodendrocytes (e, f) 24 and 72 h after oxygen-
glucose deprivation, respectively. Monocultures are stained with the

lineage-specific markers (green), while cell nuclei are visualized with
Hoechst 33342 (blue). Scale bars corresponds to 50 μm. Presented values
are mean ± standard deviation *p < 0.05, ****p < 0.0001
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role of the local IGF-1 concentration in regulation of oligo-
dendrocyte maturation.

Discussion

The cells forming the nervous tissue are functionally interde-
pendent and interplay by both responding to and releasing
numerous factors, which altogether create the local tissue mi-
croenvironment. This is especially pronounced in the case of

gliogenesis process and oligodendrocyte differentiation, in
which the subsequent developmental stages are strictly regu-
lated by the in situ concentration of instructive signals [4,
52–55]. Among them, the IGF-1 is thought to be one of the
most important factors engaged in regulation of the majority
of processes associated with oligodendrocyte functioning.

The growing list of evidence points to the altered availabil-
ity of IGF-1 in a wide spectrum of neurodegenerative disor-
ders. While after traumatic brain injury (TBI) the endogenous
IGF-1 level has been shown to increase, in multiple sclerosis

Fig.8 Immunocytochemical analysis of oligodendrocyte cultures fixed
5 days after OGD followed by testing various experimental treatments.
The applied antibodies included anti-Ki67 to label proliferating cells (a,
b), as well as anti-Olig2 to stain transcription factor localized in the cell
nuclei (c, d) and antiCNPase (e, f) to visualize differentiating

oligodendrocytes. Results are showed as box and whisker graphs. A
vertical line in box represents a median of the obtained values. Bottom
and upper edges of the box represent the first and third quartile, respec-
tively. Whiskers indicate the minimum and the maximum value of the
results. Scale bar equals 50 μm
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(MS), which is one of the most deeply studied demyelinating
diseases, a local deficiency of this growth factor has been
observed, often within the areas of demyelination. Alteration
of IGF-1 level is thought to be also one of the features of the
white matter disorders developing in a result of the experi-
enced perinatal asphyxia. Since the neonatal period coinci-
dences with the most active processes of gliogenesis, oligo-
dendrocyte survival and differentiation, as well as myelination
of the newly derived neurons, the insufficient amounts of en-
dogenous trophic factors, including IGF-1, might unfortunate-
ly efficiently contribute to the resulting myelin deficiency, or/
and malformation of the white matter tracts [56–59]. The re-
cent clinical studies confirmed that the IGF-1 level in serum is
significantly decreased in newborns with hypoxic-ischemic
encephalopathy [60]. A number of preclinical studies have
been performed based on IGF-1 systemic administration in
order to at least partially alleviate deleterious effects of the
experienced birth asphyxia. Depending on the way and mode
of the IGF-1 administration (for instance intraventricular ver-
sus intranasal or subcutaneous, in one or several repeated
doses, within narrow therapeutic window or after the onset
of first neurological symptoms, alone, or combined with other
therapy etc.), different beneficial effects have been reported in
animal models of birth asphyxia. Among others, increased cell
proliferation, rescued loss of Olig2-positive cells in the white
matter and reduced lesion volume were observed [61–64]. To
date however, the moderate therapeutic hypothermia is the
sole clinical intervention after perinatal asphyxia. Moreover,
even if applied within the narrow therapeutic window and for
a prolonged time, hypothermia does not always confer neuro-
protection and has been shown to be unsuccessful in more
severe cases of asphyxic episodes. Actually, it seems that hy-
pothermia neither provides complete brain protection nor
stimulates the repair necessary for improving the
neurodevelopmental outcome. New treatment options are
therefore urgently needed to protect fragile developing brains
from the fatal consequences of hypoxic–ischemic damage and
to restore their proper physiological functioning [65–67].

Recently, there is an ever growing recognition concerning
the role of autocrine/paracrine IGF-1 signaling in brain devel-
opment and metabolism [68, 69]. This factor is known to be
distributed by the circulating blood system due to endocrine
production under control of growth hormone (GF) and active-
ly transported to the CNS through the choroid plexus by
transcytosis; however, it is also secreted in situ by various cell
types [70, 71]. Recent findings highlight the role of cells
inhabiting the nervous tissue as a source of locally available
IGF-1 in tissue microenvironment. It is hypothesized the en-
dogenous IGF-1 released in situ by neural cells exerts the main
pleiotropic effects on the neighboring cell functions.

To address the issue about the role of central versus para-
crine IGF-1 secretion in oligogliogenesis, a study based on a
step-wise approach was performed. First of all, the endoge-
nous quantities of IGF-1 were determined in the rat brains
after the insult triggered by the transient hypoxic-ischemic
conditions. After considering the timeline of neonatal brain
development, especially in the context of progress in
myelination of various brain regions in humans versus ro-
dents, P7 rats, which correspond to 30th postconceptional
day (PC), were selected for performing the animal model of
perinatal asphyxia [72–74]. Accordingly, 7th postnatal day in
rats is still within the peak on oligogliogenesis and just prior to
the onset of myelination in the hippocampus (33 PC), striatum
(34 PC), and corpus callosum (35 PC). These facts seemed to
be of vital importance in the context of our previous findings
which showed that myelination in the indicated brain regions
10 weeks after the HI was significantly deficient or aberrant
[75]. Apart from the existence of the malformed myelin
sheaths in the hippocampus, the data obtained in another study
showed the impaired processes of neurogenesis and
gliogenesis in the rat hippocampus in the in vivo model of
perinatal asphyxia [76]. Taking into consideration the above
mentioned observations, together with the proven cognitive
and intellectual dysfunctions being the main and commonest
consequences of the experienced perinatal asphyxia [69,

Fig. 9 Potential therapeutic strategy aiming at promotion of
oligodendrocyte maturation. Perinatal asphyxia leads to a transient
increase of IGF-1 level in neonatal brain, inhibiting cell proliferation in
developing brain. In the later period, IGF-1 stabilizes on the physiological
level. OPCs deficiency triggered by perinatal asphyxia is compensated by

cycling and differentiating oligodendrocytes. IGF-1 administration (or
enhancement of IGF-1 expression by cells within the nervous tissue)
would promote branching of cell processes, improving efficiency of
myelination process
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77–81], the hippocampal region was subjected to close (i.e.,
in vivo and ex vivo) scrutiny.

The applied approach led to interesting observations about
the significant, transient increase of the IGF-1 amounts in
neonatal brains 24 h after the insult. However, the similar
effect was absent in the examined hippocampi. To further
evaluate, whether the increased IGF-1 quantities are derived
from the central sources and are due to the intensified pene-
tration of this factor via neonatal BBB, the subsequent in-
depth studies were based on series of ex vivo experiments,
which allowed eliminating the influence of the peripheral
IGF-1, distributed by the circulatory system. This approach
confirmed the previous in vivo observations concerning the
unaltered IGF-1 level in the nervous tissue localized within
the hippocampal regions. However, in spite of the lack of
alterations in the IGF-1 amounts, a decreased rate of cell pro-
liferation was observed within the ex vivo examined hippo-
campal area. Interestingly, the proportion of the dividing
OPCs to the rest of the cycling neural cells remained un-
changed which was due to the observed accelerated prolifer-
ation of oligodendroglial progenitors.

This new observation could be contributed to the applica-
tion of physiologically relevant normoxic conditions for the
entire performed study. As revealed by the data obtained from
one of our recent studies [51], oxygen level is one of the major
factors affecting proliferation and differentiation of oligoden-
drocytes. To date, the majority of the published studies on
glial cells were conducted in standard laboratory conditions,
i.e., the cells were cultured in ambient (corresponding to 16–
21%) oxygen concentration, which however was shown to
accelerate cell maturation. In the present study, the
organotypic slices were cultured after OGD in conditions cor-
responding to physiological normoxia, i.e., in 5% O2, relevant
to physiological conditions found in the nervous tissue
[82–84]. The period of cell proliferation was therefore extend-
ed, and the deficiency of oligodendrocyte progenitors was
supposedly compensated for in response to the insult.
Additionally, due to testing various doses of IGF-1, the com-
position of the culture medium was seriously restricted.
Namely, ITS supplement, which is routinely added to cell
and slice cultures, was not used during the present study,
due to its containing insulin, transferrin, and selenium.
Adding transferrin is also supposed to accelerate oligoden-
droglial differentiation [85]. Transferrin might also induce cell
death by ferroptosis [86]. Taken together, the process of oli-
godendroglial maturation in the presently created conditions
seems to have slowed-down in comparison with the previous
observations and thus more resembling physiological pro-
ceeding of the examined process. Accordingly, as shown by
the present study, although IGF-1 levels at macroscopic ex-
aminations seemed to be unaltered, the local IGF-1 concentra-
tions, and its bioavailability due to in situ secretion by glial
cells could modulate oligodendroglial functioning. Taking

into consideration the IGF-1 half-life (counting for few-mi-
nutes), the local paracrine effect might be critical for normal
oligodendroglial development.

Likewise, with the aim of precisely evaluating the IGF-1
impact on oligodendroglial differentiation in the nervous tis-
sue microenvironment, a morphometric analysis of the differ-
entiating cell morphology by means of the Sholl software was
applied. This allowed us to assess the degree of ramification of
the cell processes, elaborated during the differentiation pro-
cess to enwrap around axons and to form a myelin segment.
Oligodendrocytes are known to be able to myelinate several
neighboring axons; thus, subsequent myelin segments are
made up by different oligodendroglial cells. From this point
of view, there is no need for cells to elongate their processes in
search of axons to be myelinated. Oligodendroglial response
to local instructive signals, derived from neurons and trigger-
ing myelinogenesis [87–89], seems to be assured rather by
high complexity of process branching. Numerous cell exten-
sions allow sensing in situ the paracrine signals, as well as
those provided by direct cellular interactions (cell-to-cell con-
tacts). As alluded to above, the examination of several mor-
phometric descriptors of oligodendroglial cells differentiating
in the microenvironment of the nervous tissue of the hippo-
campal region revealed that the IGF-1 impacted significantly
on the ramification of cell processes, even in the lowest of the
tested IGF-1 concentrations. As therefore could be deduced
from the presented ex vivo study, treatment with the tested
growth factor is effective in stimulating OPC proliferation,
and it might efficiently improve cell maturation. This finding
is important in the context of the previously reported observa-
tions of retarded oligodendrocyte differentiation and aberrant
myelinogenesis after the neonatal hypoxic-ischemic episode
[75, 90]. It could also be correlated with clinical observations
of the white matter disturbances in the brains of babies who
survived perinatal asphyxia and associated with the following
underdevelopment of enfant cognitive processes [91–94]. As
therefore could be deduced from the presented studies, a tran-
sient increase in the IGF-1 level in neonatal brains during the
first 24 h after hypoxic-ischemic insult leads to an inhibition
of oligodendroglial proliferation, which is afterwards compen-
sated for by the increased number of dividing cells in the later
period after perinatal asphyxia, when IGF-1 stabilizes at the
physiological level. It seemed to be reasonable to administrate
the IGF-1 in that period as a pharmacological treatment to
promote oligodendrocyte maturation and to prevent the devel-
opment of white matter disorders (Fig. 9).

Those conclusions were further supported by the data ob-
tained from the subsequent studies aimed at testing the influ-
ence of various IGF-1 doses on oligodendrocytes in vitro con-
ditions mimicking physiological normoxia. Accordingly, an
analysis carried out on CNP-ase+ oligodendrocytes character-
ized by complex morphology typical of the advanced stage of
the maturation process, confirmed that IGF-1 was highly
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efficient in preventing the arrestment of oligodendrocyte dif-
ferentiation after the hypoxic-ischemic insult. Moreover, our
results indicate that neonatal oligodendrocytes are themselves
a source of this factor. Contrary to astrocytes, however,
hypoxic-ischemic injury negatively influences IGF-1 release
by oligodendrocytes.

Among the investigated types of glial cells in the context of
IGF-1 secretion, astrocytes attract a special attention. They
were shown to express both IGF-1 and its receptors, which
play a crucial role in regulating glucose uptake by these cells
and thus providing neurons with metabolic substrates on de-
mand [95–99]. The increased secretion of this growth factor
by astrocytes exerted neuroprotective effect on hippocampal
neurons after traumatic brain injury [100]. The impact of IGF-
1 on the increase in number of astrocytes, as well as elevated
amount of connexins and gap junctions was reported [101].
Additionally, insulin-like growth factor 1 gene therapy was
shown to promote astrocyte branching [102]. Interestingly,
as shown in the present study, astrocytes actively respond to
temporal hypoxic-ischemic condition by significantly upreg-
ulating secretion of IGF-1 protein during first 24 h after the
insult.

There is also the growing recognition of the role the
microglial cells play in neonatal neurodevelopment. Namely,
this cell population (CD11c+) exhibits unique properties dur-
ing the early postnatal period, providing neurosupportive and
myelinogenic signals [103, 104]. Oligodendrocyte-microglia
cross-talk has been shown to play an important role both under
physiological conditions (during neurodevelopment and ag-
ing) and in different pathological disorders [105–108].
Moreover, there is a growing list of evidence that IGF-1 is
involved in modulation of neuroimmunological processes
[109–112]. Since neuroinflammation is associated with the
majority of diseases distinguished as white matter disorders
and associated with hypo- or demyelination of the nervous
system [113, 114], this growth factor is considered to be one
of the main tools in combating the mentioned neurodegener-
ative disorders. Postulated involvement of IGF-1 in promoting
angiogenesis [115] and in this way helping to overcome oxy-
gen and metabolic crisis within the tissue affected by transient
hypoxia-ischemia, might additionally contribute to initiation
of neuroregenerative processes. In this context, the downreg-
ulation of IGF-1 expression by microglial cells, shown in the
present study, may contribute not only to oligodendrocyte
malfunctioning but also to in situ modulation of
neuroinflammation.

Taken together, the accumulating evidences of the impor-
tant influence of IGF-1 in the early development of the ner-
vous system indicate the major role of autocrine source of this
compound, essential for proliferation and maturation of neural
cells and establishing cellular interactions. In our previous
neurodevelopmental studies, we have shown that even subtle,
physiological changes in composition of local tissue

microenvironment (specific for a given brain region) are po-
tent to drive commitment and differentiation of neonatal oli-
godendrocyte progenitors [54]. Local concentration of IGF-1,
resulting among others from autocrine activity of macro- and
microglial cell, de facto modulates in situ cell functioning. It
seems to be especially important for oligodendrocytes and
their progenitors, which are known to be vulnerable to differ-
ent types of insults (including hypoxic-ischemic injury) and
extremely sensitive to external stimuli, present either in nor-
mal or pathophysiological microenvironment. Thus fine
tuning of IGF-1 availability in extracellular compartments
could turn out to be crucial for completing a multistep process
of oligodendrocyte differentiation, which manifests itself by
acquiring ability for myelinogenesis.

Keeping in mind diversified secretory response of glial
cells to hypoxia-ischemia, leading to a changed tissue homeo-
stasis and limited effectiveness of strategies based on IGF-1
administration, potential alternative strategies to promote
neuroreparative processes could be considered [116, 117]. It
seems reasonable to indicate the cells forming neural tissue as
a target of pharmacological interventions in pathological con-
ditions affecting CNS. Instead of-or in addition to- supplying
exogenously IGF-1, which has to cross the BBB to exert its
pleiotropic effects, the medicaments (like for instance small
molecules, cAMP), might be preclinically tested and used in
modulating microglia response to insult (e.g., promoting po-
lar izat ion between M1 proinflammatory and M2
antiinflammatory phenotypes) and in this way enhance endog-
enous in situ IGF-1 release to the local tissue microenviron-
ment. Such an indirect strategy, based on targeting other types
of neural cells, might be beneficial for stabilizing tissue ho-
meostasis thus improving oligodendrocyte functioning in
pathophysiological conditions and contributing to restorative
processes.
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