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ABSTRACT
In the developed world, prostate cancer is the most common cancer diagnosis 

in men. Although prostate cancer initially presents as a non life-threatening disease, 
90% of patients will develop castration resistant prostate cancer (CRPC), which 
preludes distant metastasis and is largely accountable for prostate cancer associated 
deaths. This is because as yet, there are no viable molecular therapeutic targets for 
effective treatment of CRPC. It is now widely accepted that cancer cells can alter their 
metabolic profile during the course of tumourgenesis and metastasis such that they 
are able to survive in oxygen and nutrient-poor environments. This work was aimed 
towards gaining greater mechanistic understanding of how such ‘stresses’ in the 
tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen 
independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have 
applied technically robust and reproducible label-free liquid chromatography mass 
spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell 
lines under nutrient deficient (low glucose) conditions. This led to the identification 
of approximately 4,000 proteins - one of the largest protein datasets for prostate 
cancer cell lines established to date. The biological and clinical significance of proteins 
showing a significant change in expression as result of low glucose conditions 
was established. Novel, intuitive workflows were subsequently implemented to 
ensure the verification of selected proteins of interest in a robust, reproducible and 
high throughput manner. Overall, these data suggest that this strategy supports 
identification of protein biomarkers of prostate cancer progression and potential 
therapeutic targets for CRPC.

INTRODUCTION

Prostate cancer (PCa) is the second most common 
cancer-related cause of death in men worldwide [1-3]. 
In many cases, patients will present with an indolent, 
non-aggressive form of disease, which can be effectively 
managed by radical prostatectomy, radiotherapy, hormone 
therapy and/or active surveillance. Unfortunately, over 
time many men cease to respond to these treatments 
and progress to a more aggressive form of PCa, referred 
to as castration resistant prostate cancer (CRPC) [4]. 
Currently, there are no effective molecularly targeted 
treatment strategies for metastatic CRPC [5]. Identification 
of suitable molecular targets for management of CRPC 

requires greater mechanistic insight into PCa progression 
and the PCa tumour microenvironment. 

As with all solid tumours, the host 
microenvironment is greatly transformed during prostate 
tumor growth and tumours will be exposed to some degree 
of hypoxia and nutrient deprivation as they out-grow their 
blood supply and their metabolic activity is increased 
[6-8]. It is therefore widely accepted that the tumour 
microenvironment plays an influential role in survival, 
angiogenesis, inflammation and metastatic dissemination 
of cancer cells. Previous studies have shown that cancer 
cell lines are able to survive longer when exposed to 
extremely low nutrient supply [6]. Another study has 
demonstrated that glucose deprivation actually increases 
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resistance of cancer cells to radiation treatment [8]. To 
date, however, the role of nutrient (glucose deprivation) in 
cancer cell metabolism and PCa progression has not been 
fully elucidated [9]. 

Proteome scale technology has improved 
significantly in recent years and mass spectrometry (MS) 
has emerged as a key enabling technology for biomarker 
discovery and the identification of novel therapeutic targets 
[10]. Proteomic analysis by MS provides a comprehensive 
picture of changes in protein expression and the vast 
amount of information obtained can facilitate greater 
understanding of cancer cells’ adaption and survival in the 
tumour microenvironment [11, 12]. However, the success 
of any MS-based proteomics investigation is highly 
dependent upon the rigour in which the entire workflow 
- sample preparation, MS analysis, data analysis and 
biological interpretation of the data - is undertaken. 

In this study we have used the androgen sensitive 
LNCaP cell line and its androgen independent progeny, 
LNCaP-abl (Abl) and LNCaP-abl-Hof (Hof), to 
investigate the effects of glucose deprivation in a cell 
line model of progression to CRPC. Specific aims of this 
study were (i) to attempt to identify potential therapeutic 

targets for treatment of CRPC and (ii) to identify potential 
protein biomarkers which may be indicative of important 
changes within the tumour microenvironment that drive 
progression of CRPC. Each stage of the investigative 
process was carefully executed, with the implementation 
of novel workflows, to ensure that (i) MS analysis was 
performed on samples of high quality, (ii) observed 
changes in protein expression were not influenced by any 
experimental or technical bias (iii) potential biological 
and/or clinical significance was established for any 
identified proteins of interest and (iv) further verification 
of selected proteins of interest could be performed in a 
robust, reproducible and high throughput manner. 

RESULTS

Proteomic analysis of the effect of low glucose 
conditions

The androgen sensitive LNCaP cell line, as well 
as its androgen independent progeny, LNCaP-abl (Abl) 

Figure 1: Experimental Workflow for Proteome scale analysis of the impact of glucose deprivation in prostate cancer 
cells. Androgen sensitive (LNCaP) and androgen independent (Abl and Hof) cell lines were incubated under standard (control) cell growth 
media and low glucose (LG) media for 24 h and 48 h. Lysed cells were digested with trypsin and peptides were purified using C-18 stage 
tips. Samples prepared from both time points were analysed via LC-MS/MS on a Q-Exactive mass spectrometer with technical replicates 
(TR) and sample replicates (SR) analysed throughout each run. Data analysis was performed using PEAKS, MaxQuant and Perseus 
software. Subsequent in silico biological interrogation and validation of protein expression changes was performed using PANTHER, IPA 
and SurvExpress software. MRM assays were designed to further evaluate prioritized proteins of interest. 
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and LNCaP-abl-Hof (Hof), were used for this study as 
they represent a good model for progression to CRPC 
in a consistent genetic background. To induce “low 
glucose” conditions, PCa cell lines were cultured in RPMI 
(-Glucose) media supplemented with 5mM Glucose. This 
glucose concentration was chosen so as to not evoke a 
general stress response within the cells, which may occur 
by using concentrations of glucose lower than 5mM [9, 13-
15]. Hence, the carefully selected five fold reduction in the 
concentration of glucose used in these in vitro experiments 
can be considered reflective of changes encountered by 
the prostate tumour cells in vivo (13). Similarly, FCS was 
not omitted from the culture media when generating a low 
glucose microenvironment so as to avoid changes induced 
by restricting the proliferative capacity of the cells and 
potentially inducing apoptosis in a manner that varied 
between the cell lines [16]. Therefore, by undertaking 
the experiments in the presence of FCS, the observed 
proteome-wide alterations in protein expression are more 
likely to be solely a consequence of the change in glucose 
concentration. 

It has previously been observed that no significant 
changes in cellular metabolism are observed before 48 
hours [17], however, we hypothesise that global proteomic 
changes occurring at this early stage in tumor growth 
may be of biological significance. As such, proteomic 
analysis of the PCa cell lines was undertaken after 24 and 
48-hour incubation under low glucose conditions. Three 
independent biological replicates were prepared for LC-

MS/MS analysis as outlined in Figure 1. The resulting 
raw LC-MS/MS data was analysed though XCalibar 
and Peaks (version 7) software to assess the quality of 
chromatograms and number of protein identifications 
acquired for each sample. Over 3,000 proteins were 
identified across all samples at both time points and were 
found to belong to the following subcellular regions; 
cell part (42%), organelle (30%), macromolecular 
complex (18%) and membrane (8%). The raw data was 
then processed through the Andromeda search engine 
of MaxQuant (version 1.4.1.2) software in preparation 
for further statistical characterization using Perseus 
(version 1.5.0.15) software. Analysis of sample replicate 
(SR), technical replicate (TR) and biological replicate 
data demonstrated excellent reproducibility throughout 
the entire experimental workflow, thereby giving high 
confidence to the subsequent observations made on protein 
expression changes as result of low glucose conditions 
(Figure 2). 

Statistical characterization of proteomic changes 
induced by low glucose conditions

To further characterize low-glucose related 
proteomic changes, student’s t-test analysis was carried 
out to identify proteins showing a significant change 
in expression (p ≤ 0.05) between cells incubated in 
low glucose media and their respective controls, at 

Figure 2: Validation of experimental design and analytical robustness. Biologcal replicates (x3) were generated for all cell lines 
incubated in low glucose and standard media for 24 and 48 hours. Sample and Technical replicates were analysed at the beginning, middle 
and end of LC-MS analysis of samples from both time points. Experimental reproducibility was confirmed with scatter plots showing 
Pearson Correlation values ≥ 0.97 at both 24 hours (A(i)-(ii)) and 48 hours (A(iii)-(iv)). Biological reproducibility was established with at 
least 70% overlap in the proteins identified in replicate samples for each control cell line at 24 (B(i)) hour and 48 hour time points (B(ii)). 
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both time points. At 24 hours 55, 57 and 32 proteins 
were significantly up or down regulated as result of 
low glucose conditions in the LNCaP, Abl and Hof cell 
lines, respectfully (Figure 3A). At 24 hours the protein 
‘serotransferrin’ was significantly up regulated in each 
of the cell lines that were incubated under low glucose 
conditions. The protein ‘DnaJ homolog subfamily C 
member 7’ was significantly up regulated in only the 
androgen independent Abl and Hof cell lines after 24-
hour incubation in low glucose. At 48 hours there was, as 
expected, an increase in the numbers of proteins showing 
a significant change in expression after cell growth under 
low glucose conditions. At this time point 71, 60 and 80 
proteins were significantly up or down regulated in the 
LNCaP, Abl and Hof cell lines, respectfully (Figure 3B). 
Of these a significant change in expression was commonly 
observed for 2 proteins across all cell lines following 
incubation with low glucose, that being an up-regulation 
in ‘serotransferrin’ and down regulation in ‘proactivator 
polypeptide’. There were 9 proteins commonly 
significantly up regulated in the androgen independent cell 
lines after 48 hour incubation in low glucose conditions 

- ‘l-lactate dehydrogenase B chain’; ‘proliferating cell 
nuclear antigen’; ‘UDP-N-acetylhexosamine’; ‘heat shock 
protein 105 kDa’; ‘cAMP-dependent protein kinase type 
I-alpha regulatory subunit’; ‘Tryptophan—tRNA ligase, 
cytoplasmic’; ‘Threonine—tRNA ligase, cytoplasmic’; 
‘Ran-specific GTPase-activating protein’ and ‘Rho GDP-
dissociation inhibitor 1’. Two proteins were commonly 
significantly down regulated in the androgen independent 
cell lines following 48-hour incubation in low glucose 
conditions - ‘Polypyrimidine tract-binding protein 1’ 
and ‘Very long-chain specific acyl-CoA dehydrogenase, 
mitochondrial’. It is worth noting that serotransferrin - 
the only protein that was commonly up regulated in all 
cell lines in response to low glucose conditions at both 
time points - has previously been identified in biomarker 
studies related to pancreatic cancer, stomach cancer and 
colorectal cancer [18-20]. However, it is doubted that 
serotransferrin would ever be of great use as a biomarker 
due to it’s association with other inflammatory diseases 
including coronary disease and bacterial infection [18].

Additional notable changes in protein expression 
as result of low glucose conditions were observed 

Table 1: Common Significant Protein Changes as Result of Low Glucose Conditions

Protein names Protein IDs Gene names 24 Hours 48 hours

LNCaP

Secretory carrier-associated membrane protein 3 O14828 SCAMP3 -1.68 -1.73

Transferrin receptor protein 1 P02786 TFRC -1.45 -1.91
Serotransferrin P02787 TF +2.18 +2.68
Myosin-10 P35580 MYH10 -0.64 +0.54
Hepatoma-derived growth factor P51858 HDGF +1.07 +1.74
Probable ATP-dependent RNA helicase DDX17 Q92841 DDX17 +1.08 -1.33
RNA-binding protein 14 Q96PK6 RBM14 +1.67 -1.15
Extended synaptotagmin-1 Q9BSJ8 ESYT1 -1.77 -1.87

Abl
Serotransferrin P02787 TF +2.01 +1.33
Glucose-6-phosphate isomerase P06744 GPI +1.45 +0.97
T-complex protein 1 subunit alpha P17987 TCP1 +1.18 +0.80
Polypyrimidine tract-binding protein 1 P26599 PTBP1 -0.98 -0.94
Threonine--tRNA ligase, cytoplasmic P26639 TARS +0.90 +1.32
Stress-induced-phosphoprotein 1 P31948 STIP1 +1.12 +1.33
ATPase inhibitor, mitochondrial Q9UII2 ATPIF1 +1.02 +1.78

Hof
Eukaryotic translation initiation factor 3 subunit H O15372 EIF3H +0.70 +1.99
Serotransferrin P02787 TF +2.08 +1.55

cAMP-dependent protein kinase type I-alpha regulatory 
subunit P10644 PRKAR1A -2.04 +1.51
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for proteins associated with the Warburg effect, 
namely ‘L-lactate dehydrogenase A chain’, ‘L-lactate 
dehydrogenase B chain’ and ‘fatty acid synthase’. The 
protein ‘cathepsin D’ was also up regulated as result of 
low glucose conditions in the three PCa cell lines. This 
protein is known to be associated with autophagy. The 
connection between autophagy and cancer cell metabolism 
is considered to be of great clinical relevance in cancer 
research as metabolically stressed tumour cells rely on 
autophagy for reprogramming of their metabolism to 
accommodate their rapid growth and proliferation [21]. 
Indeed, for all of the cell lines the significantly changed 
proteins identified at both time points map onto metabolic 
processes and other biological processes associated 
with deregulated metabolism. Significantly up or down-
regulated proteins that were commonly identified within 
each cell line at both the 24 and 48 hour time point are 

listed in Table 1. The full list of significantly up or down 
regulated proteins identified within each cell line at 
both time points are listed in Supplementary data Table 
S.1. Overall, this analysis has led to the identification 
of a number of proteins that are differentially regulated 
in response to low glucose conditions and appear to be 
indicative of altered metabolism in prostate cancer cells, 
even after just 24 hours. These proteins may therefore be 
of potential clinical significance to PCa progression. 

Network and pathway analysis of the molecular 
changes occurring as result of low glucose 
conditions

In-depth analysis of the molecular changes 
occurring as result of low glucose conditions for both the 

Figure 3: Significantly changing proteins in response to low glucose conditions in PCa cell lines. Student’s t-test analysis 
(p < 0.05) was performed on each cell line to determine the effects of incubation in low glucose on protein expression. The volcano plots 
reflect the statistically significantly changed proteins (red) identified from Student’s t-test analysis of each cell line after 24h A. and 48h B. 
culturing in low glucose conditions. A small number of proteins were found to be commonly significantly changed within each cell line at 
both time points C. 
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androgen sensitive (LNCaP) and androgen independent 
(Abl and Hof) cell lines was conducted using Ingenuity 
Pathway Analysis (IPA) software. A search of the proteins 
that were either significantly up or down regulated as 
result of low glucose conditions revealed that low glucose 
treatment appeared to activate molecules that map to 
pathways associated with cell death and apoptosis - with 
a more extreme effect observed after 48 hours. The IPA 
software also indicated which of the deregulated proteins 
have previously been associated as a disease biomarker 
and/or can be targeted by known therapeutic agents. 

The loss of androgen sensitivity measured by 
proteomic analysis

The cell lines used for this study - LNCaP, Abl and 
Hof - represent a model of PCa progression from a less 
aggressive androgen sensitive phenotype (LNCaP) to a 
more aggressive androgen independent (CRPC) phenotype 
(Abl and Hof) [22-24]. Therefore, unbiased analysis of 
these cell lines following incubation in both low glucose 
and nutrient rich conditions by LC-MS/MS also allowed 
us to make observations on the molecular impact of 
androgen sensitivity. Principal component analysis of 
the data demonstrated a clear separation between the 
androgen sensitive (LNCaP) and androgen independent 
(Abl and Hof) cell lines at both time points (Figure 
4A). An analysis of variance (ANOVA) test was carried 
out to identify significantly changing proteins across all 

samples at both time points with Benjamani Hochberg (p 
≤ 0.05) false discovery rate applied for truncation. At the 
24-hour time point, 324 significantly changing proteins 
were identified across all samples and at 48 hours 259 
significantly changing proteins were identified across 
all samples. Again, these proteomic changes indicated a 
clear separation between the androgen sensitive (LNCaP) 
and androgen independent (Abl and Hof) PCa cell 
lines (Figure 4B). Across both the 24-hour and 48-hour 
time points 133 proteins were commonly identified as 
significantly changed with Benjamani-Hochberg FDR 
(p ≤ 0.05) applied. These proteins map to a number of 
‘cancer-associated’ pathways such as the FAS signaling 
pathway, TGF-beta signaling pathway, angiogenesis and 
VEGF signaling pathways (Figure 4C). Notably, a number 
of proteins that play a role in the adaptive metabolic 
response of cancer cells to the tumour microenvironment 
were among those with a significant change in expression 
between androgen independent and androgen sensitive 
cell lines. The protein ‘L-lactate dehydrogenase A chain’ 
was found to be up regulated in the androgen independent 
(Abl and Hof) cell lines while contrastingly, the protein 
‘L-lactate dehydrogenase B chain’ was up regulated in 
the androgen sensitive (LNCaP) cell line. The protein 
‘nicotinamide phosphoribosyltransferase’, which plays 
a fundamental role in providing an energy source for 
cancer cells through the biosynthesis of NAD+, was also 
among the identified proteins found to be significantly 
up regulated in the androgen independent cell lines. The 

Figure 4: Proteomic Characterisation of Androgen Sensitive and Androgen Independent PCa cell lines. The androgen 
sensitive (LNCaP) and androgen independent (Abl and Hof) show clear differences in protien epression, irrespective of low glucose 
conditions. Principal Component Analysis revealed clear separation between Androgen Sensitive and Androgen Independent PCa cell 
lines at both 24 hour (A(i)) and 48 hour (A(ii)) time points. ANOVA (p ≤ 0.05, Benjamani-Hochberg FDR) analysis revealed 324 and 259 
significantly changing proteins at 24 hours (B(i)) and 48 hours (B(ii)) respectively. Pathway analysis was conducted on the 133 proteins 
which show a significant change in expression at both time points. The most highly represented pathways are the FAS signaling, Pentose 
Phosphate and De novo purine biosynthesis pathways. The remaining equally represented pathways, represented by significantly changing 
protiens between androgen sensitive and androgen independent cell lines, are highly associated with cancer progression (C). 
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Table 2: Drug Targets Identified Through IPA Analysis of Significantly Changing Proteins Between Androgen Sensitive 
and Androgen Independent Cell Lines
Symbol Entrez Gene Name Location Type(s) Biomarker Application(s) Drug(s)

24 Hours (AS v AI)

ABCC4 ATP-binding cassette, sub-family 
C (CFTR/MRP), member 4 Plasma Membrane transporter prognosis  

AIM1 absent in melanoma 1 Extracellular 
Space other diagnosis,disease 

progression,prognosis  

ANXA5 annexin A5 Plasma Membrane transporter diagnosis,efficacy  

CDH1 cadherin 1, type 1 Plasma Membrane other diagnosis,disease 
progression,efficacy,prognosis  

CSTB cystatin B (stefin B) Cytoplasm peptidase diagnosis  

CTSD cathepsin D Cytoplasm peptidase diagnosis,unspecified 
application  

FN1 fibronectin 1 Extracellular 
Space enzyme diagnosis,efficacy,prognosis,un

specified application
ocriplasmin, L19-IL2 monoclonal 
antibody-cytokine fusion protein

HSPB1 heat shock 27kDa protein 1 Cytoplasm other diagnosis,efficacy  

KRT18 keratin 18, type I Cytoplasm other efficacy  

MME membrane metallo-endopeptidase Plasma Membrane peptidase diagnosis,efficacy,unspecified 
application  

NAMPT nicotinamide 
phosphoribosyltransferase

Extracellular 
Space cytokine diagnosis,prognosis  

NUCB1 nucleobindin 1 Cytoplasm other diagnosis  

PARP1 poly (ADP-ribose) polymerase 1 Nucleus enzyme diagnosis,efficacy,prognosis
poly ADP ribose polymerase 1 
inhibitor, veliparib, rucaparib, 
olaparib, E7449, ABT-767, CEP-9722, 
INO-1001

PDIA3 protein disulfide isomerase 
family A, member 3 Cytoplasm peptidase diagnosis  

PHB prohibitin Nucleus transcription 
regulator diagnosis  

STAT3
signal transducer and activator 
of transcription 3 (acute-phase 
response factor)

Nucleus transcription 
regulator

diagnosis,efficacy,prognosis,re
sponse to therapy  

TF transferrin Extracellular 
Space transporter efficacy,prognosis,unspecified 

application ferric carboxymaltose

TFRC transferrin receptor Plasma Membrane transporter diagnosis,efficacy  

48 Hours (AS v AI)

ANXA5 annexin A5 Plasma Membrane transporter diagnosis,efficacy  

CTSD cathepsin D Cytoplasm peptidase diagnosis,unspecified 
application  

EEF1A2 eukaryotic translation elongation 
factor 1 alpha 2 Cytoplasm translation 

regulator
prognosis,unspecified 
application  

FN1 fibronectin 1 Extracellular 
Space enzyme diagnosis,efficacy,prognosis,un

specified application
ocriplasmin, L19-IL2 monoclonal 
antibody-cytokine fusion protein

HSPB1 heat shock 27kDa protein 1 Cytoplasm other diagnosis,efficacy  

HSPD1 heat shock 60kDa protein 1 
(chaperonin) Cytoplasm enzyme diagnosis,prognosis  

MME membrane metallo-endopeptidase Plasma Membrane peptidase diagnosis,efficacy,unspecified 
application  

NAMPT nicotinamide 
phosphoribosyltransferase

Extracellular 
Space cytokine diagnosis,prognosis  

PARP1 poly (ADP-ribose) polymerase 1 Nucleus enzyme diagnosis,efficacy,prognosis
poly ADP ribose polymerase 1 
inhibitor, veliparib, rucaparib, 
olaparib, E7449, ABT-767, CEP-9722, 
INO-1001

PCNA proliferating cell nuclear antigen Nucleus enzyme efficacy,prognosis,response to 
therapy  

PDIA3 protein disulfide isomerase 
family A, member 3 Cytoplasm peptidase diagnosis  

PHB prohibitin Nucleus transcription 
regulator diagnosis  
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lysosmal enzyme ‘cathepsin D’, as well as a number of 
proteins involved in glutamine metabolism (‘bifunctional 
glutamate’, ‘glutamate dehydrogenase 1’ and ‘isocitrate 
dehydrogenase [NADP] cytoplasmic’) were also up 
regulated in the androgen independent cell lines. The 
complete list of proteins commonly identified at both 
time points with a significant change in expression, 
along with their associated KEGG pathways are listed 
in Supplementary Data Table S.2. Of the complete list of 
proteins which show a statistically significant change in 
expression between androgen independent and androgen 
sensitive PCa cell lines at both time points, the majority 
have also been identified as being significantly deregulated 
between androgen sensitive and androgen independent 
PCa cell lines in a separate study investigating the effects 
of hypoxia on PCa progression, using the same cell lines 
(manuscript under review). As such, there is evidence 
to suggest that the observations made here on protein 
expression changes can reliably be attributed to loss of 
androgen sensitivity in PCa cell lines and are likely to be 
of biological relevance to the development of CRPC. 

Based on the proteins identified through ANOVA 
analysis of the LC-MS/MS data, the top up and down 
regulated diseases and biological functions associated 
with loss of androgen sensitivity were identified for both 
time points through IPA analysis. Those that have previous 
association as a biomarker and/or therapeutic target were 
also identified in this analysis (Table 2).

Prioritisation of proteins for further evaluation

. Instead of arbitrarily selecting a handful of these 
proteins to further evaluate by traditional antibody-
based techniques, we sought to establish an approach for 
evaluation of as many proteins as possible by multiple 
reaction monitoring (MRM), a more high-throughput 
and cost-effective approach that does not rely on the 
availability of antibodies. To prioritise those that should 
be brought forward for further verification, we selected 
proteins that had been measured reproducibly in the 
LC-MS/MS analysis with coefficient of variance (CV) 
values ≤ 20%. Although recent reports suggest that MRM 
technology is certainly capable of analyzing over 100 
proteins in one experiment, this is dependent on the use of 
internal labeling strategies [25]. So, we sought to minimize 
this selection further by prioritizing those proteins that, as 

indicated by IPA analysis, have previous association as a 
biomarker and/or drug target. In total this left a final list 
of 31 proteins representing a ‘signature’ of low glucose 
(LG)-mediated molecular changes. This panel of proteins 
was therefore annotated as the LG panel (Table 3). 

Due to the reported associations between loss of 
androgen sensitivity and development of CRPC, we also 
sought to verify protein changes observed between the 
androgen sensitive (LNCaP) and androgen independent 
(Abl and Hof) cell lines irrespective of low glucose or 
control conditions. Based on %CV values and previous 
association as a biomarker and/or drug target, this resulted 
in a final list of 35 proteins for evaluation as a ‘signature’ 
of androgen sensitivity (AS) in PCa cell lines (Table 4). 
Both panels include proteins (named previously), which 
are known to play a role in the altered metabolic activity 
of cancer cells. 

Biological interrogation of selected proteins of 
interest

The data acquired in this study have potential to be 
highly informative about the molecular mechanisms of 
metabolic reprogramming, particularly the signaling events 
which may facilitate aberrant metabolic fluxes. As such, 
the prioritized panels of proteins were further interrogated 
to assess their biological relevance to the development of 
aggressive PCa. Proteins were assessed for their signaling 
activity, their sub cellular location and whether they are 
catagorised as ‘secreted’ proteins. To assess signaling 
activity proteins were searched through the ExoCarta and 
Vesiclepedia databases, both of which provide lists of 
proteins that have previously been identified in exosome-
based studies. Cellular communication through exosomes 
or other extracellular vesicles is thought to play a key 
role in cancer [26]. It was found that all proteins in both 
the LG and AS panels have previously been identified in 
exosome proteomes of human-origin samples, analysed by 
various proteomic methods including mass spectrometry. 
PANTHER software was used to assess the subcellular 
localization of the proteins. Proteins in the LG panel were 
found to be distributed among cell components as follows: 
cell part (57%), macromolecular complex (28.6%) and 
membrane (14.3%), while proteins in the AS panel are 
distributed among the cell part (50%), macromolecular 
complex (25%) and organelle (25%). Phobius and 

Symbol Entrez Gene Name Location Type(s) Biomarker Application(s) Drug(s)

PRDX1 peroxiredoxin 1 Cytoplasm enzyme diagnosis  

STOML2 stomatin (EPB72)-like 2 Plasma Membrane other prognosis  

TF transferrin Extracellular 
Space transporter efficacy,prognosis,unspecified 

application ferric carboxymaltose

TFRC transferrin receptor Plasma Membrane transporter diagnosis,efficacy  

AS = Androgen Sensitive; AI = Androgen Independent
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Table 3: Proteins Selected for Low Glucose (LG) Panel
Low Glucose Panel

Accession Protein Name Gene Name LNCaP 
24h Abl 24h Hof 24h LNCaP 

48h Abl 48h Hof 48h BM/
DT Secreted Exocarta/ 

Vesiclepedia

P38606
ATPase, H+ transporting, 
lysosomal 70kDa, V1 subunit 
A

ATP6V1A -1.715 DT ✓

P04040 catalase CAT -1.804 DT ✓

P12830 cadherin 1, type 1 CDH1 -1.671 DT ✓ ✓

P33316-2 deoxyuridine triphosphatase DUT +1.190 DT ✓

P23588 eukaryotic translation 
initiation factor 4B EIF4B +1.305 DT ✓

P49327 fatty acid synthase FASN +1.007 DT ✓

P02794 ferritin, heavy polypeptide 1 FTH1 +0.909 DT ✓

P40939 hydroxyacyl-CoA 
dehydrogenase HADHA -1.277 DT ✓

P08238
heat shock protein 90kDa 
alpha (cytosolic), class B 
member 1

HSP90AB1 +1.040 DT ✓

P11021
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa)

HSPA5 +1.495 DT ✓ ✓

P10809 heat shock 60kDa protein 1 
(chaperonin) HSPD1 -1.492 DT ✓

P14735 insulin-degrading enzyme IDE +1.180 DT ✓ ✓

P52292 karyopherin alpha 2 (RAG 
cohort 1, importin alpha 1) KPNA2 +1.516 BM, 

DT ✓

P28838-2 leucine aminopeptidase 3 LAP3 -1.889 BM, 
DT ✓

P33991 minichromosome maintenance 
complex component 4 MCM4 +1.095 BM, 

DT ✓

P55786 aminopeptidase puromycin 
sensitive NPEPPS -1.048 BM, 

DT ✓

P06748-3
nucleophosmin (nucleolar 
phosphoprotein B23, 
numatrin)

NPM1 -1.547 BM, 
DT ✓

P12004 proliferating cell nuclear 
antigen PCNA +1.445 +1.454 BM, 

DT ✓

P30086 phosphatidylethanolamine 
binding protein 1 PEBP1 +1.348 BM, 

DT ✓

P35232 prohibitin PHB -1.127 BM ✓ ✓

P00491 purine nucleoside 
phosphorylase PNP +1.625 +1.213 BM ✓

Q99460-2 proteasome 26S subunit, non-
ATPase 1 PSMD1 -1.485 BM ✓

P43487 RAN binding protein 1 RANBP1 +1.434 +2.145 BM ✓

P42677 ribosomal protein S27 RPS27 +1.705 BM ✓

P82979 SAP domain containing 
ribonucleoprotein SARNP +1.447 BM ✓

P05141
solute carrier family 25 
(mitochondrial carrier; adenine 
nucleotide translocator), 
member 5

SLC25A5 -2.331 BM ✓

P31948 stress-induced phosphoprotein 
1 STIP1 +1.119 +1.329 BM ✓

P02787 transferrin TF +2.184 +2.006 +2.076 +2.682 +1.330 +1.545 BM ✓ ✓

P02786 transferrin receptor TFRC -1.451 -1.466 -1.906 -1.312 BM ✓

P06753-2 tropomyosin 3 TPM3 +1.789 BM ✓

P30536 translocator protein (18kDa) TSPO -1.557 BM ✓

TR = Technical replicate; AS = Androgen sensitive; AI – Androgen independent
Oncomine gene summary: Green = down regulated, red = up regulated, 1-6 = number of studies reporting association
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Table 4: Proteins selected for Androgen Sensitivity (AS) Panel
AS Panel

Protein IDs Protein names Gene names %CV 
TR

Biomarker/
Drug Target AS v AI Secreted Exocarta/

Vesiclpedia

P04792 Heat shock protein beta-1 HSPB1 0.4 BM Up ✓

P07099 Epoxide hydrolase 1 EPHX1 4.5 BM Up ✓ ✓

P07339 Cathepsin D;Cathepsin D light chain;Cathepsin D 
heavy chain CTSD 5.0 BM Up ✓ ✓

O75369-2 Filamin-B FLNB 5.4 BM Up ✓

P02794 Ferritin heavy chain FTH1 7.7 BM Up ✓

P04080 Cystatin-B CSTB 8.0 BM Up ✓

Q7KZF4 Staphylococcal nuclease domain-containing protein 
1 SND1 9.8 BM Up ✓

P13667 Protein disulfide-isomerase A4 PDIA3 5.20 BM Up ✓ ✓

O75369-2 Filamin-B PRDX1 6.35 BM Up ✓

O75874 Isocitrate dehydrogenase [NADP] cytoplasmic CTSD 16.44 BM Up ✓ ✓

P07195 L-lactate dehydrogenase B chain LDHB 5.0 BM Down ✓

P13010 X-ray repair cross-complementing protein 5 XRCC5 5.4 BM Down ✓

P21333-2 Filamin-A FLNA 7.5 BM Down ✓

P35232 Prohibitin PHB 10.5 BM Down ✓ ✓

P02786 Transferrin receptor protein 1;Transferrin receptor 
protein 1, serum form TFRC 11.0 BM Down ✓

Q8NCW5-2 NAD(P)H-hydrate epimerase APOA1BP 11.8 BM Down ✓ ✓

O15439-2 Multidrug resistance-associated protein 4 ABCC4 13.3 BM Down ✓

Q01105 Protein SET SET 14.6 BM Down ✓

Q9Y4K1 Absent in melanoma 1 protein AIM1 26.2 BM Down ✓

Q02818 Nucleobindin-1 NUCB1 38.7 BM Down ✓ ✓

P04843 Dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase subunit 1 XRCC6 4.89 BM Down ✓ ✓

P49755 Transmembrane emp24 domain-containing protein 
10 HSPD1 5.78 BM Down ✓ ✓

Q16891-2 Mitochondrial inner membrane protein EEF1A2 7.20 BM Down ✓ ✓

Q13011 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, 
mitochondrial STOML2 7.34 BM Down ✓

Q5JPE7-2 Nodal modulator 3;Nodal modulator 2 XRCC5 7.84 BM Down ✓ ✓

Q99832-3 T-complex protein 1 subunit eta SET 9.73 BM Down ✓

P27797 Calreticulin PHB 18.21 BM Down ✓

P33316-2 Deoxyuridine 5-triphosphate nucleotidohydrolase, 
mitochondrial DUT 1.5 BM, DT Down ✓

P23786 Carnitine O-palmitoyltransferase 2, mitochondrial CPT2 6.1 BM, DT Down ✓

P12268 Inosine-5-monophosphate dehydrogenase 2 IMPDH2 11.1 BM, DT Down ✓

P02751-17 Fibronectin;Anastellin;Ugl-Y1;Ugl-Y2;Ugl-Y3 FN1 15.2 BM, DT Down ✓ ✓

Q14938-5 Nuclear factor 1 X-type PARP1 3.71 BM, DT Down ✓

P80303-2 Nucleobindin-2;Nesfatin-1 FN1 34.12 BM, DT Down ✓ ✓

P17987 T-complex protein 1 subunit alpha ATP1A1 2.53 DT Down ✓

Q92598-2 Heat shock protein 105 kDa IMPDH2 6.74 DT Down ✓

O15355 Protein phosphatase 1G GMPS 7.82 DT Down ✓

TR = Technical replicate; BM/DT = Biomarker/Drug Target
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SignalIP software were used to identify which proteins 
are classified as ‘secreted’ proteins. It is likely that such 
proteins would have a more prominent role in signaling 
activity and, importantly, would also be likely to be 
secreted into the blood or urine meaning that they could 
be measurable in patient biofluids. This is an important 
consideration if planning to further verify potentially 
important protein expression changes in actual human 
samples. Five proteins in the LG panel were identified as 
secreted, while 13 secreted proteins were identified in the 
AS panel (Table 3 and Table 4).

PANTHER analysis of the two protein panels 
also highlighted the pathways and biological processes 
associated with both up-regulated and down-regulated 
proteins in each panel. For the LG panel, up-regulated 
proteins mapped to the FGF signaling, EGF receptor 
signaling, apoptosis signaling, DNA replication, xanthine 
and guanine salvage, Parkinson disease, adenine and 
hypoxanthine salvage and purine metabolism pathways. 
Down regulated proteins mapped to a greater number of 
pathways, some of which include wnt signaling, CCKR 
signaling and DNA replication. Again, the biological 
processes associated with deregulated proteins include 
metabolic process, localization and biological regulation 
(Figure 5). For the AS panel up-regulated proteins mapped 
to the p38 MAPK, CCKR, angiogenesis and VEGF 
signaling pathways while down-regulated proteins mapped 
to the de novo purine biosynthesis pathway. De-regulated 

biological processes for both up and down regulated 
pathways included the metabolic process, biological 
regulation, localization and cellular process (Figure 6). 
Biological interrogation of proteomic data in this way 
means that efforts to verify observations made from LC-
MS/MS analysis can be inclusive of all proteins that may 
have true biological and/or clinical significance.

External validation of selected proteins of interest

To evaluate the potential prognostic capabilities of 
the LG and AS protein panels for PCa progression the 
proteins were further analysed using SurvExpress [27]. 
The SurvExpress bioinformatics resource includes data 
from 8 prostate cancer datasets containing a total of 1723 
samples inclusive of both blood and tissue samples. For 
this study we availed of the datasets that contained a 
minimum of 30 samples, allowing validation of the protein 
panels in 6 clinical datasets with 1,673 samples (Table 
5). For both the LG and AS panels, all proteins matched 
to genes measured in 3 of the 6 PCa datasets - Taylor 
MSKCC prostate (140 samples) [28], Gulzar Prostate (98 
samples) [29] and PRAD-TCGA-Prostate adenocarcinoma 
(497 samples) [30]. When searched against these 
databases, the combined list of selected proteins identified 
in this study gave an average concordance index (CI) of 
86.08 and 86.05 for the LG and AS panels, respectfully 

Figure 5: Biological Interrogation of Low Glucose-Associated Proteins of Interest. PANTHER anther analysis was performed 
on proteins selected based on their association with androgen sensitivity in this study. The most de-regulated biological process was that 
of metabolism (A (i) - (ii)). Protein classes associated with cell signaling activity were represented by both up and down-regulated proteins 
of interest (B (i) - (ii)). Pathways associated with cancer progression were represented by both up and down-regulated protiens of interest 
(C (i) - (ii)).
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(Table 5). It is notable that across all 6 datasets, the highest 
CI and AUC values were obtained with the combination of 
all proteins in each panel as opposed to a subset of proteins 
(Table 5). The Galsky-Oh prostate cancer dataset was of 
special interest as the data was acquired from profiling of 
whole blood samples from patients with CRPC. Analysis 
of selected proteins identified in our study indicates a 
strong association between the proteins ‘cadherin 1’ (LG 
panel) and ‘isocitrate dehydrogenase’ (AS panel) with 
CRPC based on data acquired from the study by Galsky 
and colleagues [31]. Moreover, the expression changes 
observed are consistent with that observed from analysis 
of the LC-MS/MS data acquired in this study (Figure 7 
and 8). This preliminary validation has therefore shown 
that, although a cell line model was used for this study, 
the proteins identified as significant are indeed of clinical 
relevance and, importantly, are measurable in both tissue 
and blood samples from patients. Moreover, observations 
on the CI and AUC (based on SurvExpress analysis, Table 
5) indicate that multiplexed measurement of panels of 
proteins offers much greater predictive power for disease 
risk, as opposed to individual protein measurements. 

MRM design for evaluation of selected proteins 
of interest

MRM assays for all selected proteins (69 in total) 
were designed using Skyline (version 3.5) software. 
SpectrumMill (version) software was used to process the 
raw LC-MS/MS data and generate spectral libraries to 
support selection of peptides and transitions in the Skyline 

software. Appropriate proteotypic peptide selection is 
crucial to the MRM assay development process. The mass 
spectrometry signal response of different tryptic peptides 
from the same protein can vary by as much as 100-fold 
in intensity so it is therefore imperative to select peptides 
with favorable mass spectrometry properties for optimal 
assay sensitivity and reproducibility [32, 33]. Proteotypic 
peptides deemed to have favourable mass spectrometry 
properties were selected based on criteria outlined in 
the materials and methods section. Online tools such as 
Peptide Selector, SRM Atlas and Panorama were also used 
to prioritise peptide selection towards peptides for which 
MRM assay parameters had previously been optimized. 
It was important to verify protein changes based on the 
measurement of peptides that would have led to the 
identification of target proteins in the first place. Outputs 
from Andromeda processing of the raw LC-MS/MS data 
gave information on the label-free quantification (LFQ) 
intensity of all measured peptides. One-way ANOVA 
analysis of the peptide dataset provided a critical value 
of 1.82. A fold change greater or less than 1.82 could 
therefore be considered a statistically significant change 
in expression. Peptides showing a fold change greater than 
1.82 or less than -1.82 between androgen independent and 
androgen sensitive cell lines, or within cell lines as result 
of treatment with low glucose were deemed ‘significant’ 
and therefore prioritized for MRM assay development. As 
a means of predicting which peptides would be detectable 
in the triple quadrupole mass spectrometer (QqQ) (Agilent 
6490), peptides that had previously been identified in the 
similarly designed Q-Tof mass spectrometer (6550) were 
given priority. Implementation of such criteria ensures 

Table 5: Prosate Cancer Databases for external validation of selected proteins

Database Samples Clinical Data Details
Matching 
Genes 
(LG)

CI 
(LG)

Survival 
ROC 
(LG)

Matching 
Genes (AS)

CI 
(AS)

Survival 
ROC (AS)

Taylor MSKCC 
Prostate 140

Recurrence, 
Gleason, 
Stage

Concordant assessment of DNA 
copy number, mRNA expression, 
and focused exon resequencing in 
218 prostate cancer tumors 

31/31 82.27 0.85 36/36 83.17 0.82

Galsky Oh 
- Prostate - 
GSE45705

61 Survival
qPCR profiling of whole blood 
from patients with castration-
resistant prostate cancer

2/31 52.92 0.44 1/36 53.86 0.65

Sboner Rubin 
Prostate 
GSE16560

281 Gleason
cDNA-mediated gene expression 
profiling on formalin-fixed paraffin-
embedded transurethral resection of 
prostate (TURP) samples

22/31 67.49 0.78 31/36 63.39 0.67

Gulzar-Prostate-
GSE40272 98 Recurrence Gene-expression profiling of 

prostate tumors 31/31 80.90 0.93 36/36 79.34 0.82

Kollmeyer-
Jenkins Prostate 
GSE10645-
GPL5858

596
Survival, Age, 
PSA, Stage, 
Grade

Gene expression microarray of 
tumors  using RNA from archival 
FFPE tissue

2/31 55.89 7/36 69.92 0.76

PRAD - TCGA 
- Prostate 
adenocarcinoma 
June 2016

497 Survival Gene-expression profiling of 
prostate tumors 31/31 95.08 0.87 36/36 95.65 0.88

LG = Low Glucose; CI = Concordance index; ROC = Receiver operating characteristic; AS = Androgen Sensitivity
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that efforts to verify changes in protein expression by 
MRM are based on peptide measurements that actually 
reflect protein changes observed in the discovery phase 
and are likely to provide high quality, reproducible data. 
Resulting MRM transition lists for the LG and AS panels 
are shown in Supplementary data Table S.3 and Table S.4, 
respectfully.

In order to confirm that changes in protein 
expression between samples are as result of experimental 
conditions it is important to normalize the data based on 
total protein concentration of each analytical sample. As 
such MRM assays were also designed for measurement 
of ‘house-keeping’ proteins that should be consistently 
expressed across all cell lines irrespective of treatment 
conditions. The LC-MS/MS data from analysis of the PCa 
cell lines was used to identify proteins identified in all 
cell lines under both control and low glucose conditions 
that showed no change in expression (CV ≤ 20%) across 

all individual samples. These were cross-referenced 
against a publicly available house-keeping gene database 
[34] leading to the identification of 12 ‘house-keeping’ 
proteins - THRAP3, RPL10A, SNRNP200, TOP1, APEH, 
PCB1, CBX3, TIMM44, DHX15, SLC25A5, PARK7 
and HSPA4. MRM assays have been designed for these 
house-keeping proteins in the same manner as described 
for proteins in the LG and AS panels.

DISCUSSION

Thoughtful and well-performed proteomic analysis 
studies have a very important role in this technology-
driven discipline. In the past, progress of significant 
findings has been limited by the fact that such analysis 
is difficult to perform such that the findings are robust 
and generally applicable [35]. In this study, which was 
strengthened greatly through the use of biological, sample 

Figure 6: Biological Interrogation of Proteins of Interest Associated with Androgen Sensitivity. PANTHER analysis was 
performed on proteins selected based on their association with androgen sensitivity in this study. Both up and down-regulated protiens 
mapped to similar biological processes, protein classes and pathways. The most de-regulated biological process was that of metabolism 
(A (i) - (ii)). Protein classes associated with cell signaling activity were represented by both up and down-regulated proteins of interest 
(B (i) - (ii)). Pathways associated with cancer progression - p38 MAPK, CCKR signaling, Angiogenesis and VEGF signaling - were most 
upregulated (C (i) - (ii)).



Oncotarget14387www.impactjournals.com/oncotarget

and technical replicates, a comprehensive dataset ( > 
3,000 confidently identified proteins) was acquired for 
androgen sensitive and androgen independent cell lines 
under ‘normal’ and ‘low glucose’ conditions. As well as 
profiling the effects of low glucose conditions on protein 
expression, we were also able to identify discriminatory 

protein features of androgen sensitive and androgen 
independent PCa. 

It was observed from these data that low glucose 
conditions had a profound effect on protein expression 
in both the androgen sensitive and androgen independent 
cell lines, with between 30-50 and 60-80 significantly 

Figure 7: External Validation of LG Panel. The SurvExpress bioinformatics resrouce was used to assess the potential clinical utility 
of proteins in the LG panel. Data from prostate cancer databases which contained data on the full panel of LG proteins was used to assess 
prognostic value of associated gene expression patterns between high and low risk PCa patients A.-C. Whole blood gene sequencing data 
from the Galsky-Oh database validated expression changes observed for the protein CDH1 following unbiased LC-MS/MS analysis of PCa 
cell lines D.

Figure 8: External Validation of AS Panel. The SurvExpress bioinformatics resrouce was used to assess the potential clinical utility 
of proteins in the AS panel. Data from prostate cancer databases which contained data on the full panel of AS proteins was used to assess 
prognostic value of associated gene expression patterns between high and low risk PCa patients A.-C. Whole blood gene sequencing data 
from the Galsky-Oh database validated expression changes observed for the protein CTSD following unbiased LC-MS/MS analysis of PCa 
cell lines D.
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differentially expressed proteins identified in each cell 
line at the 24 hour and 48 hour time points, respectfully 
(Figure 3). The protein serotransferrin (TF) was 
consistently significantly up regulated in all cell lines 
at both time points as result of low glucose conditions, 
however, is considered to be of limited use as a cancer 
specific biomarker. Other notable proteins that were 
found to be significantly up regulated following growth 
under low glucose conditions were lactate dehydrogenase 
A and B (LDHA and LDHB). Lactose dehydrogenase 
(LDH) is known to play a key role in aerobic glycolysis 
in cancer cells since it can provide an alternative source 
of NAD+ in the absence of mitochondrial oxidation. 
This modification of the tumor microenvornment confers 
several advantages to tumours including favouring 
invasion and suppressing anti-cancer immune effectors 
[36]. LDHA has been implicated in the pathogenesis and 
progression of many cancer types and recent proteomic 
studies have also shown LDHB to be strikingly increased 
in cancer cells [37]. Already a number of therapeutic drugs 
have been developed to target LDH-A in order to interfere 
with tumour growth and invasiveness [38, 39] while 
more recent research also suggests that LDH-B would 
be a viable target to attenuate cancer progression [40]. 
In addition to the lactate dehyrogenases, the protein fatty 
acid synthase (FASN) - a key contributor to the Warburg 
effect - was significantly up-regulated as result of low 
glucose conditions in the LNCaP-abl cell line. FASN is 
one of the key enzymes involved in de novo long-chain 
fatty acid synthesis, which cancer cells rely on in order 
to meet their markedly increased demands for membrane 
and energy production and protein synthesis [41]. Early 
up regulation of FASN in precursor lesions may therefore 
represent an obligatory metabolic acquisition in response 
to the microenvironment of premalignant lesions. As 

such, the role of FASN in cancer pathogenesis is of 
significant interest and there are numerous reports which 
attest to its utility as a therapeutic target [41-44]. Indeed 
3-V Biosciences will soon have a phase II clinical trial 
underway to investigate the use of a FASN targeting agent 
(TVB-2640) in treatment of ovarian, breast and lung 
cancer [45].

The most discriminatory protein expression changes 
were observed when comparing the androgen sensitive and 
androgen independent PCa cell lines (Figure 4). Here it 
was observed that the lacto dehydrogenase proteins LDHA 
and LDHB were decreased in the androgen independent 
cell lines as opposed to the androgen sensitive cell line. 
On the other hand, a number of proteins associated with 
glutamine metabolism - GPRS, GDH1 and IDH1 were 
significantly up regulated in the androgen independent 
cell line as opposed to the androgen sensitive cell line. 
The importance of glutamine metabolism for cancer 
growth and viability has previously been highlighted 
and the possibility of developing therapies that can 
exploit glutamine metabolism for therapeutic gain 
has been explored [46, 47]. The protein nicotinamide 
phosphoribosyltrensferase (NAMPT) was also up 
regulated in the androgen independent cell lines. NAMPT 
is the rate-limiting enzyme in the biosynthesis of NAD+ 
from nicotinamide, thereby providing cancer cells with 
one of the key metabolites essential for sustaining energy 
metabolism [48]. Increased expression of NAMPT has 
been observed in many cancer types and previous studies 
have shown that inhibition of NAMPT leads to the 
attenuation of tumour growth and induction of apoptosis 
due to NAD+ depletion [49]. In PCa it has been shown 
that NAMPT knockdown sensitizes PCa cells to oxidative 
stress caused by chemotherapeutic treatment. Taken 
together, these studies demonstrate the potential clinical 

Figure 9: Alterations in Cellular Metabolism in Response to Low Glucose Conditions and Loss in Androgen Sensititivity. 
A number of proteins identified and included as ‘signatures’ for low glucose (LG) conditions or androgen sensitivity (AI v AS) have known 
roles in regulation of the glycolysis pathway A. and TCA cycle B. As indicated in figure 9, a number of key enzymes within both pathways 
are either up or down-regulated in response to low glucose treatment (LG treatment) or between androgen independent (AI) and androgen 
sensitive (AS) PCa cell lines.
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benefit of further exploring the NAMPT pathway for PCa 
prevention and treatment [49, 50]. Another notable protein 
found to be increased in expression in the androgen 
independent cell lines as opposed to the androgen 
sensitive cell line was the lysosomal enzyme cathepsin 
D. Secreted cathepsins are suggested to have a role in 
promoting cellular motility, invasion and angiogenesis 
by degrading the extracellular matrix [51]. It has indeed 
been shown that blocking cathepsins by small molecule 
inhibitors can significantly delay cancer progression in a 
number of mouse models as well as sensitizing tumours 
to chemotherapeutic intervention [52]. Overall, a number 
of proteins with known links to altered metabolism in 
the tumour microenvironment were found here to be de-
regulated as result of low glucose and androgen sensitivity 
(Figure 9). This is in line with our current understanding 
of the tumour microenvironment and also contributes 
further evidence to the role of androgen signaling in 
promoting the Warburg effect in CRPC. From a clinical 
perspective, the role for androgen in altering cancer cell 
metabolism could have implications for the development 
of therapeutic agents.

In the last number of years the focus of biomarker 
research has shifted from trying to identify a single 
analyte to consolidating multiple analytes into biomarker 
panels/signatures that can be used for clinical diagnostics 
and patient stratification [53]. The use of MRM is 
advantageous in this respect as it allows for rapid, high 
throughput measurement of panels of proteins. Successful 
studies have previously been undertaken by our group 
that were focused on the design of MRM assays for the 
measurement of protein panels with potential prognostic 
value for PCa and other inflammatory diseases [54-56] 
Within this dataset there were a number of significantly 
changing proteins associated with low glucose conditions 
and/or androgen sensitivity. These were short-listed into 
panels for subsequent MRM development with priority 
given to those proteins with previous associations as drug 
targets or biomarkers. These panels incorporated those 
proteins that have relevant links to altered metabolism 
in cancer, indeed PANTHER analysis of all short-listed 
proteins revealed them to predominantly have roles in 
the metabolic processes. All proteins in both panels have 
previously been identified in exosome-based studies, 
thereby highlighting their potential role as signaling 
proteins. The clinical significance of selected proteins 
was verified through meta-analysis of gene array data 
acquired from studies involving various clinical cohorts. 
Selected proteins from both the AS and LG panel, which 
have previously been described as disease biomarkers, 
were shown to have a significant association with ‘high 
risk’ PCa in various large-scale clinical studies (Table 5 
Figures 7&8). Furthermore, a number of proteins from 
both panels are classified as ‘secreted’ proteins and 
therefore have potential to be measured non-invasively 

in patient biofluids. MRM assyas have been designed to 
measure these proteins (Supplementary data Table S3 and 
S4) and further experiements to optimize these assays and 
apply them for verification of protein expression changes 
are ongoing. 

A significant limitation to this study is the difficulty 
in accurately re-capitulating the tumour microenvironment 
in a 2D cell culture system. For this study analysis of 
androgen sensitivity, as well as the effects of low glucose 
conditions, was undertaken on a consistent genetic 
background using the androgen sesnsitve LNCaP cell line 
and two of its androgen independent derivative cell lines - 
LNCaP-abl (Abl) and LNCaP-abl-Hof (Hof). The Abl and 
Hof cell lines were initially established as tumour models 
that bear close resemblance to the in vivo conditions in 
which patients who receive androgen ablation therapy 
subsequently develop resistance [22]. Thus we consider 
them a satisfactory model for development of CRPC. Our 
group has previously applied workflows similar to those 
described here for proteomic profiling of the PCa tumour 
microenvironment using laser capture microdissected 
regions of patient tumour tissue [57]. Reassuringly, there 
is significant overlap between changing proteins identified 
in this cell-based study and previous tissue-based studies 
(data not shown), thus providing confidence that our cell 
line system represents a faithful model of the in vivo 
tumour microenvironment. Indeed, our unbiased label-free 
approach highlighted a number of protein changes that are 
in keeping with what has previously been reported with 
regards to the Warburg effect, glutamine metabolism and 
increased expression/activity of lactose dehydrogenases 
and lysosomal enzymes in PCa [36, 37, 58]. There is 
currently a vast repertoire of well-annotated PCa cell lines 
available for PCa research and it would be interesting to 
compare the data described here with data from alternative 
androgen-insensitive cell lines - e.g. PC-3 or DU145 - 
which are also used to model aggressive PCa [23, 24]. 

The large dataset acquired in this study has so far 
allowed us to (i) gain further biological insight into the 
PCa tumor microenvironment, (ii) identify potential 
protein biomarkers that may be indicative of treatment 
resistant PCa (CPRC) and/or altered metabolism and (iii) 
identify potential drug targets for therapeutic intervention 
in PCa. Appropriate verification of the significance of 
these proteins will be important if we are to extract 
clinically meaningful benefit from this dataset. As such, 
we have described here a thorough strategy which ensures 
that future verification studies will be undertaken using 
MRM assays that (i) are based on the measurement of 
proteotypic peptides that accurately reflect the changes 
observed at the protein level and can be routinely detected 
on a QqQ and (ii) allow for appropriate normalization 
of the MRM data based on the total protein content of 
individual samples. Overall, we believe that these data 
suggest that this strategy supports identification of protein 
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biomarkers of PCa progression under adverse conditions 
as well as the identification of novel therapeutic targets for 
aggressive PCa. 

MATERIALS AND METHODS

Cell culture

The PCa cell lines, LNCaP, LNCaP-abl (abl) and 
LNCaP-abl-Hof (Hof) were gifted to the Irish Prostate 
Cancer Research Consortium, Dublin, Ireland from the 
laboratory of Professor Helmut Klocker (Department of 
Urology, University of Innsbruck, Austria). Culturing of 
the above cell lines was conducted in a class II laminar 
flow cabinet. Cells were maintained in T175cm2 flasks 
with ventilation (Starsted) in a 5% CO2 humidified 
atmosphere at 37oC. LNCaP cells were maintained in 
Advance RPMI 1640 media (GIBCO Life Technologies) 
and supplemented with 10% foetal calf serum (FCS) 
(Sigma-Aldrich), 2μM/ml L-Glutamine (GIBCO 
Life Technologies), 50 unit/ml Penicillin and 50μg/
ml Streptomycin (GIBICO Life Technologies). Abl 
and Hof cells were maintained in Advance RPMI 1640 
media supplemented with 10% charcoal stripped FCS 
(Sigma-Aldrich), 2μM/ml L-Glutamine (GIBCO Life 
Technologies), 50 unit/ml Penicillin and 50μg/ml 
Streptomycin (GIBICO Life Technologies). For the three 
cell lines media was changed every 3-4 days. 

Simulation of low glucose conditions in PCa cell 
lines

LNCaP, Abl and Hof cell lines were seeded into 10 
cm2 culture dishes and grown to 70-80% confluence. To 
induce low glucose conditions, media was removed and 
replaced with RPMI (-Glucose) media supplemented with 
10% FCS (LNCaP) or CSS (abl, Hof) and 1% Penicillin/
Streptomycin. Cells were incubated in either low glucose 
or standard media for either 24 or 48 hours prior to cell 
lysis. For each cell line, 3 biological replicates were 
performed for each time point. 

Sample preparation for nLC-MS/MS analysis

Adherent cells were washed twice with ice-cold PBS 
and removed from cell culture plates by scraping. Cells 
were transferred into eppendorf tubes and spun for 5 min at 
3,000 g at 4oC. PBS was removed and cell pellet was lysed 
by sonication in 100 μl 1% sodium dodecyl sulfate (SDS; 
Sigma Aldrich). Samples were heated at 95oC for 5 min to 
encourage denaturation, and subsequently centrifuged at 
14,000 g for 10 min at 4oC to remove cell debris. Protein 
concentration of cell lystates was measured by BCA assay 

according to manufacturer’s instructions (Pierce). Whole 
cell lysates were prepared for nLC-MS/MS analysis 
according to the filter aided sample preparation (FASP) 
method as described by Wisniewski et al (AK 49). Briefly, 
50 μg cell lysate proteins were reduced through boiling 
(95oC for 5 min) with DTT in a final concentration of 0.1 
M. 200 μl UA buffer (8 M Urea, 0.1 M Tris-HCL, pH 8.5) 
was added to each sample, and samples were transferred 
to 30,000 MQCO Vivacon 500 spin filters (Sartorious) and 
centrifuged at 14,000 g for 40 min, 21oC. Bound proteins 
were alkylated through 5 min incubation of spin filters in 
0.05 M iodoacetamide (IAA) followed by centrifugation 
at 14,000 g for 30 min, 21oC. Spin filter membranes 
were then washed three times through addition of UB 
(8 M Urea, 0.1 M Tris/HCL, pH 8.0) and centrifugation 
at 14,000 g for 40 min, 21oC. For maximum protein 
identifications, sample protein was digested with both 
Lys-C (Wako Chemicals GmbH) and Trypsin (Promega) 
enzymes. Proteins were initially digested overnight 
with Lys-C (enzyme: substrate 1:50) in a wet chamber. 
Digestion was completed by a 3-hour incubation with 
Trypsin (enzyme: substrate 1:100) in a thermomixer set 
to 37oC, 600 rpm. Digestion was stopped by acidification 
of samples through addition of trifluoroacetic acid 
(TFA) to a final concentration of 1%. Peptide material 
from digested cell lysates were purified using C18 resin 
ZipTips® (Millipore). Each ZipTip contains C18 resin 
packed into a 10 μl pipette tip with a loading capacity of 
5 μg protein/peptide for tip. This allows for purification 
of peptide material of molecular weight between 0-50 
kDa. For purification of cellular peptides, the C18 resin 
was activated with 10 μl acetonitrile (x10). The resin was 
then equilibrated by pipetting 10 μl 0.5% trifluoroacetic 
acid (TFA) (x10). Peptides were then bound to the resin by 
pipetting 15 μl of digested sample through the resin (x10). 
Bound peptides were eluted into fresh eppendorfs in 25 μl 
Elution Buffer [70% acetonitrile, 0.1% TFA] (x2). This 
process was repeated four times for each sample to ensure 
maximum yield of purified peptide for nLC-MS/MS 
analysis. Eluted peptides were dried down under vacuum 
for approximately 1 hour at 30 oC and re-suspended in 
30 μl Buffer A [3% CAN, 0.1% formic acid] to allow for 
≈3 μg peptide per 5 μl injection on the Q-Exactive mass 
spectrometer.

nLC-MS/MS analysis

Samples were analysed by nano-flow reverse phase 
LC using a Q-Exactive mass spectrometer connected 
online to an Ultimate Ultra3000 chromatography system 
(both Thermo Fisher Scientific) as described [59]. Briefly, 
dried peptides were reconstituted in 0.01 % TFA and 5 
µl of each sample were loaded onto an in house prepared 
analytical column (150 mm length, 75 µm inside diameter) 
packed in house with 1.9 µm ReprosilAQ C18 (Dr 
Maisch GmbH). Tryptic peptides were separated using a 
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130-minute linear gradient from 4 % to 32 % acetonitrile 
at a flow rate of 250 nl/min. The mass spectrometer was 
operated in data-dependent acquisition mode with a top-
12 MS/MS scanning approach. For protein label-free 
identification and quantification, tandem mass spectra and 
peptide fragments of the 12 most abundant peaks were 
acquired in the linear ion trap by peptide fragmentation 
using higher energy collisional dissociation (HCD). A 
2300 V potential was applied to column with a capillary 
temperature of 320 °C. Samples generated for each time 
point were analysed in two separate experimental runs in a 
randomized order. To monitor the technical reproducibility 
of the experiment, sample replicates (SR) and technical 
replicates (TR) - generated from pooled sample material 
post-digest and post-peptide ‘clean up’, respectfully - 
were analysed at the beginning, middle and end of the 
experimental run order for both the 24 and 48 hour time 
points. 

Data processing and statistical analysis

PEAKS (version 7) software was used to determine 
the number of peptides and proteins identified in each 
sample. Files generated from nLC-MS analysis (.d) were 
directly uploaded onto the PEAKS software and database 
searching was performed using ‘HumanUniprot’ database 
[39,704 protein sequences] (downloaded 01/11/2013) 
with the following search parameters applied: enzyme: 
trypsin, maximum missed cleavages: 2, species: Homo 
Sapiens, variable modifications: oxidation methionine, 
4-hydroxynonenal (4-HNE), lysine acetylation at N and 
C termini, amidation, ammonia loss at N and C termini, 
precursor ion tolerance: 10 ppm, product ion tolerance: 
0-3 and maximum variable modifciations per peptide: 3. 
The false discovery rate (FDR) was set to 0.1%. The raw 
LC-MS/MS data was then processed using MaxQuant 
computational proteomics platform version 1.4.1.2. 
Raw files were directly imported into the software and 
protein identifications were generated by processing 
the data through the in-built Andromeda search engine 
matched, against the Uniprot/Swissprot database [40.452 
protein sequences] (downloaded 29/07/2014) with 
FDR set to 0.5%. Additional search parameters were 
as follows, enzyme: trypsin, allow up to two missed 
cleavages, species: Homo sapiens, fixed modification: 
carbimidomethylated cysteine, variable modification: 
oxidation methionine, minimum peptide length: 7 amino 
acids. The precursor mass tolerance window was set to 6 
ppm and product mass tolerance was 20 ppm. A minimum 
of 2 peptides was required to confirm protein identification. 
This search provided a full list (.txt format) of peptide and 
protein identifications along with their respective label-
free quantitation (LFQ) intensities. Further data processing 
and statistical analysis was performed by uploading this 
.txt file into Perseus (version 1.5.0.15), provided as part of 
the MaxQuant software solution package (www.maxquant.

org). Here, the data were filtered to remove all protein 
contaminants, reverse-phase proteins, and those proteins 
only identified by site - an automated data processing 
feature of the Perseus software. The software was then 
used for imputation, normalization, PCA, hierarchical 
clustering and statistical analysis of the data. Briefly, data 
for analysis was transformed to a log2 scale and missing 
values were imputed with constant values to allow 
the assignment of the presence or absence of proteins 
between conditions. All statistical t-tests, to distinguish 
proteins differentially expressed between conditions, 
were performed with a p value threshold of 0.05. For 
hierarchical clustering, Euclidean distances were applied 
using logarithmised intensities after z-score normalisation 
of the statistically significant data. Principal component 
analysis was undertaken on logarithmised values only. 
Differentially expressed proteins were further analysed 
using Ingenuity Pathway Analysis Knowledge Database 
(Ingenuity Systems) to map statistically significant 
proteins to the pathways and biological processes in which 
they were enriched.

MRM design and data analysis

Candidate proteins for MRM verification were 
selected from the full list of significantly changing proteins 
based on their %CV values. The %CVs were calculated 
using data from the SR and TR samples as these were 
analysed as a means of removing any technical bias from 
the LC-MS/MS data acquired of the biological replicates. 
In total, 157 of the proteins that were significantly changed 
in expression as result of low glucose conditions with 
CV ≤ 20% were identified. This list was further refined 
to include only those proteins with previous association 
as a biomarker or therapeutic target. MRM assay design 
was performed using Skyline software (MacCoss 
laboratory, Washington DC version 3.5). Raw LC-MS/
MS data from Q-Exactive analysis of the experimental 
lystates was used to generate spectral librraies in Skyline. 
Proteotypic peptides with associated spectral library 
data were selected for all proteins of interest according 
to the following criteria: no missed cleavages or ‘ragged 
ends’, sequence length between 8-25 amino acids. 
Where possible, peptides sequences with reactive (C) or 
methionine (M) residues were avoided. Where possible, 
peptides that were identified in the discovery (nLC-MS/
MS) analysis were prioritized. SRM atlas - which acts 
as a public repository of developed MRM assays - was 
also used to guide selection of proteotypic peptides. 
Between 2 and 3 peptides were selected for each protein 
initially with 4 - 5 transitions selected per peptide. For all 
transitions, precursor ions with a charge state of 2 were 
selected with product ions limited to singly charged y 
ions. In order to minimize potential interferences, ions 
with m/z close to the precursor ions or an m/z > 1,000 
were excluded. A working MRM was determined based 

http://www.maxquant.org
http://www.maxquant.org
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on the dot product ( ≥ 0.85), quality of peak shape (no 
fronting or tailing, minimum of 10 data points collected 
per peak) and coefficient of variance (CV < 20%). The 
MRM assays were developed using a pooled sample of 
all digested lysate from the three cell lines (low glucose 
and control) at both time points. MRM analysis was 
undertaken on an Agilent 6490 QqQ mass spectrometer, 
with 5 sample replicates analysed for each round of assay 
optimisation. Raw data (.d) was uploaded directly into 
Skyline for analysis. Visual inspection aided manual 
interrogation of peptide peaks to ensure that the correct 
peak was identified for each target peptide. Subsequently, 
a report was exported from Skyline containing information 
on the area, full width half maximum (FWHM), retention 
time and peak rank for all transitions. 
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