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Abstract
Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical proper-
ties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional 
machine learning algorithms are known to work best on balanced datasets. The class imbalance introduces a bias in the 
performance of these algorithms due to their preference towards the majority class. Here, we present a comparison of the 
performance of seven different meta-classifiers for their ability to handle imbalanced datasets, whereby Random Forest is 
used as base-classifier. Four different datasets that are directly (cholestasis) or indirectly (via inhibition of organic anion 
transporting polypeptide 1B1 and 1B3) related to liver toxicity were chosen for this purpose. The imbalance ratio in these 
datasets ranges between 4:1 and 20:1 for negative and positive classes, respectively. Three different sets of molecular 
descriptors for model development were used, and their performance was assessed in 10-fold cross-validation and on an 
independent validation set. Stratified bagging, MetaCost and CostSensitiveClassifier were found to be the best performing 
among all the methods. While MetaCost and CostSensitiveClassifier provided better sensitivity values, Stratified Bagging 
resulted in high balanced accuracies.
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SMOTE	� Synthetic minority over-sampling technique
SVM	� Support vector machines

Introduction

A wide range of classification and regression methods have 
been applied in QSAR studies. However, many classification 
methods assume that datasets are balanced in terms of the 
number of instances of each class and thus give equal impor-
tance to all classes, often resulting in classification models 
of poor accuracy [1, 2]. A major problem that arises in this 
context is class imbalance, i.e. the number of instances of 
one class substantially differ from those of the other classes. 
Especially in the field of drug discovery, imbalanced data-
sets [2–4] need to be frequently dealt with [2]. Character-
istically, a classifier developed on an imbalanced data set 
shows a low error rate for the majority class and a high error 
rate for the minority class [5, 6]. Nevertheless, a few studies 
pointed out that the class imbalance is not a main obstacle 
in learning [7, 8], and several methods have been developed 
to address this issue. These methods can be broadly divided 
into (1) data-oriented/re-sampling techniques; (2) algorithm-
oriented methods; and (3) combinatorial/ensemble/hybrid 
techniques [2, 3, 7, 9, 10].

Several studies compared classifiers that handle imbal-
anced datasets. Schierz et al. [11] compared four WEKA 
classifiers (Naïve Bayes, SVM, Random Forest and J48 tree) 
and reported SVM and J48 to be the best performing for bio-
assay datasets. Lin and Chen in 2013 found SVM threshold 
adjustment as the best performing classifier (among linear 
discriminant analysis, Random Forest, SVM and SVM-
threshold adjustment) to deal with imbalanced HTS datasets 
[9]. Later, Zakarov et al. used under-sampling and thresh-
old selection techniques on several imbalanced PubChem 
HTS assays to test and develop robust QSAR models in the 
program GUSAR [12]. In a recent study, Razzaghi et al. 
reported multilevel SVM-based algorithms to outperform 
conventional SVM, weighted SVM, neural networks, linear 
regression, Naïve Bayes and C4.5 tree using public bench-
mark datasets having imbalanced classes and missing values 
and real data in health applications [13].

A comprehensive comparison of the performance of dif-
ferent meta-classifiers on datasets with different levels of 
class imbalance, which would provide guidance for choos-
ing the appropriate method for an imbalanced dataset, has 
not been attempted so far. Herein, we evaluated the perfor-
mance of seven distinct meta-classifiers from the three afore-
mentioned categories on four datasets from the toxicology 
domain. The imbalance ratio of the datasets ranges from 
1:4 to 1:20 for the positive and the negative class, respec-
tively. The meta-classifiers were applied to build classifi-
cation models based on three different sets of descriptors. 

Considering its wide applicability in modeling imbalanced 
datasets, Random Forest was used as the common base-clas-
sifier for all models [14–18]. Further, we discuss the reasons 
behind the superior performance of certain meta-classifiers 
in comparison to the others while explaining their intrinsic 
limitations.

Methods

Training datasets

Four different datasets from the biomedical sciences domain 
were used in this study. Two of these are the OATP1B1 and 
OATP1B3 inhibition datasets consisting of 1708 and 1725 
compounds, respectively. Both were compiled and used in 
our previous study that reported classification models for 
OATP1B1 and 1B3 inhibition [19]. The other two datasets 
come from the toxicology domain and are related to drug-
induced cholestasis for human data and animal data which 
comprise 1766 and 1578 compounds, respectively. Both 
datasets were published in a previous study that reported 
computational models for hepatotoxicity and other liver tox-
icity endpoints [20].

External test datasets

The external test sets for OATP1B1 and 1B3 inhibition 
from our previous study served as test datasets in this study 
[19]. The test set for human cholestasis was compiled in 
two stages from two previous studies [21]. The positives for 
human cholestasis were compiled from literature [22–25] 
and from the SIDER v2 database [26, 27]. As cholestasis is 
one of the three types of drug induced liver injury (DILI), 
and the compounds that are negative for DILI will also be 
negative for cholestasis, the negatives for drug-induced liver 
injury compiled in a previous study [21] were used as nega-
tives for cholestasis. Overall, the external human cholestasis 
dataset consisted of 231 compounds. No data were available 
for animal cholestasis to be used as an external test data-
set. The composition and degree of class imbalance of each 
training and test dataset is presented in Table 1.

The chemotypes in the datasets were curated using the 
following protocol:

–	 Removed all inorganic compounds according to chemical 
formula in MOE 2014.09 [28].

–	 Removed salts and compounds containing metals and/or 
rare or special atoms.

–	 Standardized chemical structures using Francis Atkinson 
Standardiser tool [29].

–	 Removed duplicates and permanently charged com-
pounds using MOE 2014.09 [28].
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–	 3D structures were then generated using CORINA (ver-
sion 3.4) [30], and energy minimized with MOE 2014.09 
[28], using default settings (Forcefield MMF94x, gradi-
ent 0.05 RMS kcal/mol/A2, preserving chirality).

Molecular descriptors

Three different sets of descriptors were calculated for each 
of the datasets:

1.	 All 2D MOE [28] descriptors (192 descriptors in total).
2.	 ECFP6 fingerprints (1024 bits) calculated with RDKit 

[31].
3.	 MACCS fingerprints (166 bits), calculated with PaDEL 

software [32].

Machine learning methods

Random Forest [33] implemented in the WEKA software 
suite [34, 35] was used as a base-classifier along with all the 
meta-learning methods evaluated in this study. The number 
of trees was arbitrarily set to 100 (default), since it has been 
shown that the optimal number of trees is usually 64–128, 
while further increasing the number of trees does not neces-
sarily improve the model’s performance [36]. The following 
meta-classifiers were investigated: (1) Bagging, (2) Under-
sampled stratified bagging, (3) Cost-sensitive classifier, (4) 
MetaCost, (5) Threshold Selection, (6) SMOTE and (7) 
ClassBalancer.

1.	 Bagging (Bootstrap AGGregatING) [37] is a machine 
learning technique that is based on an ensemble of mod-
els developed using multiple training datasets sampled 
from the original training set. It calculates several mod-
els and averages them to produce a final ensemble model 
[37]. A traditional bagging method generates multiple 
copies of the training set by selecting the molecules 
with replacement from training set in a random fashion. 

Because of random sampling, about 37% of the mol-
ecules are not selected and left out in each run. These 
samples create the “out-of-the-bag” sets, which are used 
for testing the performance of the final model. A total 
of 64 models were used for our analysis, since it was 
shown in an earlier study by Tetko et al. [38] that larger 
numbers of models per ensemble (e.g. 128, 256, 512 
and 1024) did not significantly increase the balanced 
accuracy of models.

2.	 Under-sampled stratified bagging [2, 8, 38] In this 
method, the total bagging training set size is double the 
number of the minority class molecules. Although a 
small set of samples was selected each time, the major-
ity of molecules contributed to the overall bagging pro-
cedure, since the datasets were generated randomly. The 
performance of the developed models is tested with mol-
ecules from the “out-of-the-bag” set [38]. Since only one 
way of stratified learning, i.e., under-sampling stratified 
bagging, was used in the study, we refer to it as “Strati-
fied Bagging”.

	   Bagging and Stratified Bagging were used as imple-
mented in the Online Chemical Modeling Environ-
ment (OCHEM) [39, 40]. For other meta-classifiers, 
WEKA(v. 3-7-12) [34, 35] was used.

3.	 Cost sensitive classifier [2–4, 10, 11] is a meta-classi-
fier that renders the base classifier cost-sensitive. Two 
methods can be used to introduce cost-sensitivity: (i) 
reweighting training instances according to the total cost 
assigned to each class, i.e. the weights are applied dur-
ing learning, or; (ii) predicting the class with minimum 
expected misclassification cost (rather than the most 
likely class), i.e. the “cost-sensitive” is introduced in 
the test phase. In our case, the cost sensitivity was intro-
duced according to method (i) using the CostSensitive-
Classifier from the set of meta-classifiers of the WEKA 
software [34, 35].

4.	 MetaCost [41] is another application that provides the 
methodology to perform cost-sensitive training of a clas-
sifier in a generalized meta-learning manner independent 
of the underlying classifier. It is a combination of Cost-

Table 1   An overview of the training and test datasets used in this study

Dataset name Total number of 
compounds

Number of 
positives

Number of 
negatives

Imbalance ratio (nega-
tives: positives)

Source

OATP1B1 inhibition training 1708 190 1518 8:1 Kotsampasakou et al. [19]
OATP1B1 inhibition testing 201 64 137 2:1 Kotsampasakou et al. [19]
OATP1B3 inhibition training 1725 124 1601 13:1 Kotsampasakou et al. [19]
OATP1B3 inhibition testing 209 40 169 4:1 Kotsampasakou et al. [19]
Cholestasis human training 1766 347 1419 4:1 Mulliner et al. [20]
Cholestasis human testing 231 53 178 3:1 Kotsampasakou et al. [21]
Cholestasis animal training 1578 75 1503 20:1 Mulliner et al. [20]
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sensitive meta-classifier and Bagging [37]. The algo-
rithm uses class-relabeling, i.e. it modifies the original 
training set by changing the class labels to the so-called 
“optimal classes”. The classifier is then trained on this 
modified training set, which results in having the error 
rate minimized according to the cost matrix provided 
to the MetaCost algorithm. This implementation uses 
all bagging iterations when reclassifying training data. 
MetaCost is advantageous as, unlike CostSensitiveClas-
sifier, a single cost-sensitive classifier of the base learner 
is generated, thus giving the benefits of fast classifica-
tion and interpretable output (if the base learner itself is 
interpretable). MetaCost further differs from traditional 
bagging by the fact that the number of examples in each 
resample may be smaller than the training set size. This 
variation improves the efficiency of the algorithm. More 
details about the method can be found in [41].

	   For both CostSensitiveClassifier and MetaCost, sev-
eral trials of different cost matrices were applied, until 
a satisfactory outcome was retrieved.

5.	 ThresholdSelector [42] is a meta-classifier implemented 
in WEKA [34, 35] that sets a threshold on the probabil-
ity output of a base-classifier. Threshold adjustment for 
the classifier’s decision is one of the methods used for 
dealing with imbalanced datasets [2, 43]. By default, the 
WEKA probability threshold to assign a class is 0.5, i.e. 
if an instance is attributed with a probability of equal or 
less than 0.5, it is classified as negative for the respec-
tive class, while if it is greater than 0.5, the instance is 
classified as positive. For our study, the optimal thresh-
old was selected automatically by the meta-classifier by 
applying internal fivefold cross validation to optimize 
the threshold according to FMeasure (Eq. 7), a measure 
of a model’s accuracy which considers both precision 
and sensitivity [44].

6.	 SMOTE [45] (Synthetic minority over-sampling tech-
nique) increases the minority class by generating new 
“synthetic” instances based on its number of nearest 
neighbours. SMOTE, as implemented in WEKA, was 
used to generate synthetic examples. For our study, five 
nearest neighbours of a real existing instance (minor-
ity class) were used to compute a new synthetic one. 
For different datasets, different percentages of SMOTE 
instances were created, which can be found in the sup-
plementary information (Table S1). The complete algo-
rithm is explained in [45].

7.	 ClassBalancer [34, 35, 46] reweights the instances so 
that the sum of weights for all classes of instances in 
the data is the same, i.e. the total sum of weights across 
all instances is maintained. This is an additional way to 
treat class imbalance, unlike CostSensitiveClassifier or 
MetaCost, which try to minimize the total misclassifica-
tion cost.

With respect to parameters, not for all classifiers a param-
eter optimization was performed. For instance, no parameters 
were adjusted for ClassBalancer since it automatically reas-
signs weights to the instances in the dataset such that each 
class has the same total weight [46]. For Bagging and Strati-
fied Bagging, the only parameter to optimize would be the 
number of bags. In our case, the number of bags was adjusted 
to 64 as a previous study [38] suggests that generation of 64 
models provides satisfactory results without exponentially 
increasing the computational cost. In case of ThresholdSe-
lector, an optimal threshold was selected automatically via 
fivefold cross-validation before selecting the final model on 
the basis of FMeasure. For both CostSensitiveClassifier and 
MetaCost, the cost for misclassification was initially applied 
in accordance with the imbalance ratio, which, in case it did 
not provide a sensitivity of at least 0.5, was further increased 
to arrive at the final model. In case of SMOTE, similar prin-
ciples were applied: initially, the number of the synthetic 
instances created was set to a number that balances the two 
classes. If insufficient, it was further increased until no fur-
ther improvement in sensitivity (with no reduction in speci-
ficity) was observed. The detailed parameter settings of the 
best performing models for each method are provided in the 
supplementary material (Table S1).

Validation

All models were evaluated in a 10-fold cross-validation fol-
lowed by an external validation performed on independent 
test sets, except for Bagging and Stratified Bagging. For 
Bagging and Stratified Bagging, since multiple training data-
sets were generated by selecting the molecules with replace-
ment from training set in a random fashion, this leaves out 
about 37% of the instances in each run. Therefore, these 
molecules that constitute the ‘out-of-the-bag’ sets are later 
used for testing the performance of the final model.

Model performance assessment: selection 
of the optimal method

Prior to identifying the best performing method, an opti-
mal model for each meta-classifier was selected. The best 
parameters for the model were selected using linear search 
(as explained in the “Methods” section). For all models, dif-
ferent performance measures including sensitivity (Eq. 1), 
specificity (Eq. 2), accuracy (Eq. 3), balanced accuracy 
(Eq. 4), Matthews correlation coefficient (MCC, Eq. 5), area 
under the curve (AUC) and precision (Eq. 6) were calculated. 
A model was considered eligible for selection if the 10-fold 
cross-validation provided a sensitivity value of at least 0.5 
and a specificity value not less than 0.5. As the datasets are 
relevant to different toxicological endpoints, sensitivity was 
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considered more important. For a highly imbalanced data-
set, accuracy may be misleading. Therefore we considered 
balanced accuracy (which considers both sensitivity and 
specificity) as a more appropriate performance measure to 
compare different classifiers for their ability to handle imbal-
anced datasets. If two models provided the same sensitivity, 
the model that demonstrated higher balanced accuracy was 
prioritized for selection. Furthermore, 20 iterations were per-
formed by varying the seed for cross validation [by assigning 
values from 1 (default) to 20]. For Bagging and Stratified 
Bagging, the 20 iterations were performed by changing the 
random seed for the Random Forest generation by assigning 
values from 1 (default) to 20. After cross-validation, average 
values for different performance measures were calculated 
and compared. The best method was then evaluated by per-
forming a statistical t-test in R [47], as well as on the basis of 
the performance on external test sets. The individual settings 
used in selecting the best model for each meta-classifier can 
be found in the supplementary information (Table S1).

(1)Sensitivity =
TP

(TP + FN)

(2)Specificity =
TN

(TN + FP)

(3)Accuracy =
(TP + TN)

(TP + FP + TN + FN)

(4)Balanced Accuracy =
1

2

(

(TP)

(TP + NP)
+

(TN)

(TN + FP)

)

(5)

MCC =
{(TP × TN) − (FP × FN)}

{(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)}1∕2

TP: true positives; TN: true negatives; FP: false positives; 
FN: false negatives.

Results and discussion

Tables S2–S5 in the supplementary material report the per-
formance measures for predictions on all datasets used in 
this study. The performance values of the base-classifier 
(Random Forest) are also reported to facilitate a comparison 
with the investigated methods. For each dataset, the mean 
and the standard deviation values of performance of the best 
performing models (based on 20 iterations) were calculated 
and are reported in Tables S6–S9 (supplementary material). 
Figure 1a–c, Figure S1(a–d) in the supplementary material 
provide a comparison of performances of different meta-
classifiers on the three test datasets (no test set available for 
animal cholestasis) and four training sets respectively.

Irrespective of the dataset and the descriptor set used, 
Random Forest was found to be the weakest performing clas-
sifier as anticipated. Except on the test dataset for human 
cholestasis, Random Forest alone did not yield a sensitivity 
greater than 0.5, which indicates that assistance of a meta-
classifier indeed consistently improves performance when 
handling imbalanced datasets. Among the Meta-Classifier 
based methods, bagging provided the lowest performance. 
A simple reason behind the failure of Bagging is that it only 

(6)Precision =
(TP)

(TP + FP)

(7)FMeasure =
2TP

(2TP + FP + FN)

Fig. 1   Comparison of performances of different meta-classifiers on 
test sets a OATP1B1 inhibition b OATP1B3 inhibition c human chol-
estasis. x-axis corresponds to the sensitivity and on the y-axis is the 
specificity. The squares correspond to MOE descriptors, the trian-
gles correspond to ECFP6 fingerprints and the circles correspond to 

MACCS fingerprints. Each classifier is depicted in a different color: 
red for RF standalone, green for Bagging, blue for Stratified Bagging, 
dark pink for CostSensitiveClassifier, cyan for MetaCost, yellow for 
ThresholdSelector, orange for SMOTE and dark violet for ClassBal-
ancer. Please note that the scaling for the two axes are different
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does resampling without any effort to balance or weight the 
two classes.

Threshold Selection was frequently found to be among 
the good performing methods. In many cases, this classifier 
could handle imbalance very well. However, the sensitivity 
measures were poor in comparison to other classifiers. This 
could be due to the fact that the thresholds were selected 
on the basis of FMeasure, as accuracy and specificity are 
not suitable due to the high impact of the majority class. If 
the selection of best models is done purely on the basis of 
sensitivity, this classifier yields very good sensitivity val-
ues (0.8–1.0), however with a radical decrease in specificity 
(0.2–0). Notably, Threshold Selection provided better results 
in combination with a second meta-classifier. But since the 
aim of the study was to compare the classifiers individually, 
this trend was not investigated further.

Stratified Bagging, CostSensitiveClassifier and Meta-
Cost were consistently the best performing classifiers in 
both cross-validation and test set validation for all the data-
sets (see Fig. 1, Figure S1 in the supplementary material). 
Further, the t-test on the basis of 95% confidence interval 
(exact p-values not shown here) indicated a statistically 
significant difference in performance between the selected 
methods (meta-classifiers). The statistical test was per-
formed pair-wise for all the obtained performance meas-
ures, with more stress on sensitivity and balanced accuracy. 
Both MetaCost and CostSensitiveClassifier tended to yield 
higher sensitivities while Stratified Bagging, on the other 
hand, was found to be superior in terms of MCC, balanced 
accuracy and AUC. An advantage of Stratified Bagging is 
that it is a straightforward method with only one parameter 
to optimize, i.e. the number of bags. On the other hand, cost-
sensitive approaches tend to give more weight to sensitivity 
when needed, which is an advantage for toxicity prediction. 
Although both methods provided comparable performances, 
the cost that had to be applied was greater in case of Cost-
SensitiveClassifier in comparison to MetaCost. This is due 
to the fact that the latter is a hybrid classifier which com-
bines Bagging with the application of a cost, thus equili-
brating the dataset more easily. It should further be noted 
that the computational cost for MetaCost is higher than that 
for CostSensitiveClassifier. On the other hand, Stratified 
Bagging is not computationally demanding (for the optimal 
parameter of 64 bags). Since each bag is double the size of 
the minority class, the calculation of models using Stratified 
Bagging requires less computational time, compared to the 
models built using Bagging (the bags are of the same size 
as the training set) and MetaCost (includes both bagging 
and weighting).

SMOTE and ClassBalancer were only in a few cases able 
to provide a sensitivity of at least 0.5 in both cross-validation 
and test set evaluation. Considering its reputation in han-
dling such problems, the poor performance of SMOTE was 

quite surprising. We assume that the small size of the data-
sets could be the primary reason behind SMOTE’s poor per-
formance. The datasets used in this study are much smaller 
in size compared to the HTS datasets in which the minority 
class has enough instances for SMOTE to generate synthetic 
instances, although the overall imbalance ratio is typically 
in the range of 100:1 [12, 45, 48].

With respect to the different sets of descriptors used, the 
performance of the classifiers on different datasets remained 
almost the same. Of all the descriptors, 2D MOE descrip-
tors and MACCS fingerprints provided the best performance 
across many of the datasets, while ECFP6 fingerprints 
consistently performed lower. Considering the amount of 
information encoded in ECFP6 (1024 bits) in comparison 
to MACCS fingerprints (166 bits) and the MOE descriptors, 
it might be assumed that the poor performance of ECFP6 
is subject to the individual datasets in this study. This also 
highlights the fact that sometimes simple set of descriptors 
could provide better results than complex and highly popu-
lated descriptors. Moreover, in other recent studies [49–51] 
different descriptor and fingerprint combinations did not 
demonstrate significant differences in performance.

Overall, the best classifiers performed well regardless of 
the type of data (toxicity endpoint or a general or specific 
in vitro endpoint), the type and number of descriptor sets 
used, or the degree of class imbalance. However, there were 
instances where a dataset related to in vivo toxicity (animal 
cholestasis) could not be successfully handled by the best 
classifiers. Finally, highly sophisticated meta-classifiers 
such as Stratified Bagging and MetaCost, that combine re-
sampling and a way to weight the two classes, performed in 
principle better than Bagging and ClassBalancer.

Conclusions

In this study, we compared the performance of seven differ-
ent meta-classifiers for their ability to handle imbalanced 
datasets. We demonstrated that, for all datasets used in the 
study, Stratified Bagging performed at least as good as cost-
sensitive approaches such as MetaCost and CostSensitive-
Classifier and in most cases outperformed them. Random 
Forest (as a standalone classifier) and Bagging were unable 
to address the imbalance issue. Interestingly, the choice of 
descriptors did not play a substantial role in ranking the 
performance of different classifiers. Thus, considering that 
Stratified Bagging can be directly used in combination with 
any machine-learning method without parameter optimiza-
tion, a general recommendation for handling imbalanced 
datasets is to wrap the modeling process in the stratified bag-
ging loop. However, one should also consider the computa-
tional cost, as extensive re-sampling can be computationally 
expensive. Therefore, a method that balances between the 
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complexity of the algorithm and computational cost would 
be an ideal choice to obtain optimal results.
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