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Neutrophils are the largest population of circulating leukocytes and the first responder

against invading pathogens or other danger signals. Sophisticated machineries help

them play critical roles in immunity and inflammation, including phagocytosis, superoxide

production, cytokine and chemokine production, degranulation, and formation of

neutrophil extracellular traps (NETs). After maturation and release from the bone marrow,

neutrophils migrate to inflamed tissues in response to many stimuli. Increasing evidences

indicate that neutrophils are critically involved in the pathogenesis of liver diseases,

including liver cancer, thus making them promising target for the treatment of liver

diseases. Here, we would like to provide the latest finding about the role of neutrophils

in liver diseases and discuss the potentiality of neutrophils as target for liver diseases.

Keywords: neutrophils, liver regeneration, alcoholic liver disease, non-aloholic liver disease, hepatocellular

carcinoma

INTRODUCTION

Neutrophils are the most abundant white blood cells in mammals, representing the first line
of innate defense against invading pathogens or other foreign bodies. Moreover, they play
significant roles in shaping adaptive immunity and function as coordinators of the overall immune
and inflammatory responses. Sophisticated processes, including phagocytosis, reactive oxygen
species (ROS) generation, degranulation, cytokines and chemokines production, and neutrophil
extracellular traps (NETs) release are vital for the immunological functions of neutrophils (1).
Neutrophil loss or deficiency due to diseases or side effects of therapy is usually associated with
severe recurrent infection (2, 3). However, excess infiltration and/or activation of neutrophils
in the tissue can cause chronic inflammation, limit tissue repair, and lead to loss of organ
function (4). Previous studies have indicated that neutrophil-induced inflammation occurs during
the pathogenesis of a range of chronic diseases and cancer. Therefore, neutrophils represent a
promising therapeutic target for various diseases (1), and various targeting approaches, including
targeting neutrophil development and production, interfering with neutrophil accumulation at the
site of infection/inflammation and reversing the detrimental changes of neutrophil phenotype that
occur during certain pathological conditions, as well as mitigating the harmful effects of NETs (1, 2)
have emerged.

The role of neutrophils in the pathogenesis of liver diseases has garnered intense interest in
recent years. Neutrophils routinely patrol the liver sinusoids and there are few resident neutrophils
in the liver. Instead, they can be recruited into the liver rapidly during acute liver infection or injury
and serve as the principal phagocyte type responsible for pathogen clearance. The infiltration of
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neutrophils is commonly seen in all types of liver diseases.
However, the overwhelming activation of neutrophils can also
induce liver damage. Therefore, neutrophils are considered to
be double-edge swords during acute liver inflammation. The
importance of neutrophils in the chronic liver diseases (CLD)
has also been appreciated in recent years because they can
communicate with other immune and non-immune cells within
the liver. In the recent review, we would like to provide the
emerging evidence for the relevance of neutrophils during
various liver diseases, and discuss the potentiality of neutrophils
as target for liver diseases. We also discuss how CLD affects
granulopoiesis, neutrophil phenotype, and function.

PRODUCTION OF NEUTROPHILS AND
MEDIATORS OF THEIR FUNCTION

Since they are among the shortest-lived cells in mammals,
neutrophils rely on constant replenishment from the bone
marrow through highly controlled granulopoiesis (∼1011

neutrophils are produced from the human body every day)
(5), and further increase under stress conditions (which is
called “emergency granulopiesis”) (6). They originate from
haematopoietic stem cells to common myeloid progenitor to
lineage-committed progenitors that mature into neutrophils (3).
Transcription factors, such as CCAAT/enhancer binding protein
(C/EBPα), PU 1, and RUNX1 are necessary for neutrophil
maturation during steady-state granulopoiesis, while C/EBPβ

severs as a master regulator for emergency granulopoiesis (6, 7).
Neutrophil production, maturation, release, and elimination are
under tight control to maintain homeostatic stability and balance
between antimicrobial and proinflammatory functions. A major
regulator is granulocyte colony-stimulating factor (G-CSF),
which promotes neutrophil development by engaging with
G-CSF receptor and their release via downregulation of CXCR4
and upregulation of CXCR2 in neutrophils (1). Release mature
neutrophils then migrate into inflamed tissues in response to
various stimuli, such as chemokines (CXCL1, CXCL2) gradient.

The maturation of neutrophils is characterized by the
condensation andmutilobular appearance of the nucleus, and the
emergence of cell type-specific intracellular granules (7). During
granulopoiesis, three types of granules are formed consecutively,
namely, primary, secondary, and tertiary, as well as secretary
vesicles of endocytic origin, all of which are prepackaged with
antimicrobial and tissue-destructive factor, along with various
neutrophil receptors. They are all readily available to be released
to participate in the host response to inflammation or infection
(1, 8). For instance, the azurophil (primary) granules are the
reservoirs of myeloperoxidase (MPO), neutrophil elastase
(NE), proteinase 3, (PR3) and most proteolytic and bactericidal
proteins, and are considered to be the microbicidal compartment
mobilized during phagocytosis. The specific (secondary)
granules harbor antimicrobial lactoferrin, neutrophil gelatinase-
associated lipocalin (LCN2), and chitinase-3-like protein-1.
Gelatinase (tertiary) granules contain matrix metalloproteinase
9 (MMP9), collagenase (MMP8), and cathelicidin antimicrobial
peptide. Secretory vesicles are rich in transmembrane receptors

that integrate into the plasma membrane as exocytosis
occurs (9).

Another weapon that helps neutrophils to capture pathogens
is NETs, which are extracellular structures composed of
chromatin coated with histones, proteases, and granular and
cytosolic proteins. The formation of NETs is complicated and
has been reviewed elsewhere (3, 10). NETs bind viruses, bacteria,
fungi, and parasites, preventing their spread. They can also
trap platelets and erythrocytes to initiate coagulation, and trap
tumor cells to promote their spread (11). Thus, inappropriately
formed or improperly degraded NETs can become pathogenic
and are implicated in various non-infectious diseases such as
CLD and cancer.

NEUTROPHILS AND ACUTE LIVER
DISEASES

Neutrophils and Two-Thirds Partial
Hepatectomy
The liver has a remarkable regenerative capacity with
compensatory re-growth of the liver after liver damage,
including physical resection or chemical injury (12, 13). Liver
regeneration is a complicated and well-organized process
involving multiple genes and signaling pathways that initiate
or promote liver regeneration. Most knowledge on liver
regeneration comes from the rodent model of two-thirds partial
hepatectomy (PHx). In this model, two-thirds of the rodent liver
is removed surgically, and mature quiescent hepatocytes of the
remnant liver proliferate to restore the original liver mass and
function (14). Inflammatory cells such as Kupffer cells (KCs),
dendritic cells, and T cells control this process either through
direct interactions with hepatocytes or indirectly by releasing
inflammatory cytokines (15). However, studies regarding the
role of neutrophils in liver regeneration are limited. Neutrophils
promote liver regeneration by binding intracellular adhesion
molecule (ICAM-1), triggering KC-dependent release of
hepatocyte mitogens, interleukin (IL)-6 and tumor necrosis
factor (TNF) α (16). This is demonstrated in neutropenic mice,
which show delayed liver regeneration and reduced hepatic
levels of TNFα and IL-6 (16). Furthermore, significant changes
in neutrophil phenotype are observed in patients who undergo
PHx. This has been proposed to be important in defense against
gut-derived endotoxins following hepatic resection (17, 18).

Neutrophils and Drug/Chemical-Related
Liver Injury
Drug/chemical-related liver injury [such as acetaminophen
(APAP) and tetracarbon chloride (CCl4)] can result from
chemical/drug-induced oxidant stress and tissue injury and/or
by the local upregulation of inflammatory mediators (19), and is
usually accompanied by a huge infiltration of neutrophils in the
liver during the early phase (20). Danger-associated molecular
patterns (DAMPs), such as HMGB1 and lipid peroxidation
products from dying hepatocytes, and proinflammatory
mediators such as IL-1β and TNFα released from KCs can guide
neutrophils into damaged tissues, leading to a multistep process
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that involves ATP release, adhesion molecule upregulation,
formation of a chemical gradient (CXCL1, CXCL2), formyl
peptide signals, and finally clearance of necrotic debris
(21, 22). Neutrophil invasion often aggravates the liver by the
secretion of cytotoxic reactive oxygen and nitrogen species
or proinflammatory cytokines such as IL-1β and TNF (22).
In mouse models of acute and chronic liver injury, TLR2 and
the S100A8–S100A9 signaling pathway act as key regulators of
hepatic CXCL2 and TNF expression and subsequent neutrophil
infiltration (23).

NEUTROPHILS AND LIVER
ISCHEMIA-REPERFUSION

Severe liver damage may occur in ischemia-reperfusion (IR)
during liver transplantation or surgical liver tumor resection,
when the blood supply is restored after a long period of
ischemia. This hepatic inflammation is initiated by the ischemic
period but occurs mainly during the reperfusion phase and is
characterized by a large neutrophil recruitment to the liver (24).
In liver IR (LIR), the acute inflammatory response has two
consecutive stages: ROS exacerbates liver damage in the first 6 h
of reperfusion, while neutrophil recruitment plays a major role in
the next 18 h of reperfusion (25). The neutrophil-derived MMP9
can also promote the recruitment of neutrophils to the damaged
site (24). The recruited neutrophils partially mediate damage
through oxidative stress in a mitogen-activated protein kinase-
activating protein kinase 2 (MK2)-dependent manner and the
production ofMPO (26, 27). And the neutrophils-derivedMMP9
can promote recruitment and MPO activation of neutrophils
(28), which form a positive loop to exacerbate the IR injury
(IRI). COX-2 derived from hepatocytes reduces liver injury by
decreasing endoplasmic reticulum stress, neutrophil infiltration,
and oxidative stress, while escalating autophagy, and apoptosis
(29). Similar to this mechanism, extracellular vesicles derived
from human umbilical cord blood mesenchymal stem cells also
moderate IRI by downregulating neutrophil respiratory burst and
oxidative stress (30).

NE may have the ability to mediate adhesion and
extravasation of neutrophils in IRI (31). In fact, the recruited
neutrophils induce the production of macrophages monocyte
chemoattractant protein-1 (MCP-1) through NE and oxygen-
free radicals (32). MCP-1 upregulates the expression of ICAM-1
in endothelial cells and promotes the adhesion of neutrophils
and endothelial cell damage (33). In addition to mediating
endothelial cell damage and aggravating IRI, NE also aggravates
IRI in other ways. In IRI, NE downregulate the expression of
prostacyclin, which decreases the expression of downstream
insulin-like growth factor 1, which has been reported to
inhibit the expression of endothelial monocyte-activating
polypeptide-II, a neutrophil chemotactic factor (34). Elevated
NE, as the putative ligand of TLR4, causes the upregulation
of TLR4 in macrophages and hepatocytes, which induces
the inflammatory cascade responses in IR (35). NE inhibitor
sivelestat treatment inhibits the infiltration and activation
of neutrophils and apoptosis and reduces proinflammatory

factors such as TNF-α and IL-6, and downregulates
chemokines (36).

Net also mediates the inflammation, thrombotic diseases,
cancer, and autoimmune diseases (37). LSECs/IL-33/ST2 axis
(38), IL-17A (39), mast cell degranulation (40), and TIMP-1
(41) are the driving force of NET in LIR. NET has cytotoxic
effects on hepatocytes in vivo and in vitro, and triggers a KC
inflammation response by upregulating the inflammatory factors
IL-1β, IL-6, TNF-α, and chemokines CXCL10 andMCP-1 (42). In
addition, acrolein produced under chronic stress boosts oxidative
burst and NET formation, which induces HepG2 nuclear and
mitochondrial damage in IRI (43). Extravasated neutrophils
cause hypochlorous acid (HOCl) to diffuse into hepatocytes
and contribute to oxidative modification of proteins during the
reperfusion phase (44). Neutrophils also damages hepatocytes
by releasing proteases, TNF-α, TGF-β and leukotrienes (45).
In turn, the histones and HMGB1, acting as DAMPs, from
damaged hepatocytes also elicit NET formation by activating
neutrophil TLR4- and TLR9-Myd88 signaling in LIR (42). The
results indicate that a positive feedback loop is formed between
NET formation and hepatocyte apoptosis, which mediates liver
toxicity and organ injury. Therefore, targeting the associated
mediator of neutrophils may be a useful way to improve the
survival of patients after liver tranplantation or surgical liver
tumor resection (Table 1). The other functions of neutrophils in
liver IRI are shown in Tables 2, 3.

NEUTROPHILS AND CHRONIC LIVER
INFLAMMATION

Liver Fibrosis
Liver fibrosis is the main consequence of chronic liver injury
of any etiology and may progress to cirrhosis and liver cancer.
Activation of hepatic stellate cells (HSCs) that transdifferentiate
from vitamin A–storing pericyte-like cells to α-SMA-positive,
collagen-producing myofibroblasts is now well-established as the
central driver of fibrosis (76, 77).

Infiltration of neutrophils is commonly observed in patients
as well as in mice with alcohol or non-alcohol-induced
steatohepatitis (78, 79). However, the role of neutrophils during
liver fibrogenesis remains controversial. On one hand, increased
expression of neutrophil (and mast cells)-derived IL-17 is a
common signature of advanced liver fibrosis, which upregulates
the expression of TGF-β receptor in HSCs and promotes liver
fibrosis, and blocking IL-17/IL-22 alleviates liver fibrosis (80).
IL-17A (secreted by Vγ2T or Th17 T cells) also promotes
the recruitment of neutrophils into the liver and promotes
liver fibrosis induced by Schistosoma japonicum infection (81)
or bile duct ligation (BDL) (82). Mechanistically, neutrophils
are shown to activate HSCs via the production of ROS and
MPO (56, 74, 83). Activated HSCs produce GM-CSF and IL-
15 to promote neutrophil survival (83), and cytokine-induced
neutrophil chemoattractant to facilitate the recruitment of
neutrophils (84), thus creating a positive feedback loop and
exacerbating liver fibrosis. Moreover, neutrophils downregulate
the butyrate receptor GPR43 and upregulate the secretion
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TABLE 1 | Therapeutic targets of neutrophils in liver diseases.

Neutrophils in liver

diseases pathology

Disease examples Therapeutic way Therapeutic targets References

Insufficient function of

neutrophils

HCC, ALD Enhancement the function

of neutrophils

Adding G-CSF (46, 47)

Excessive function of

neutrophils

LIR, APAP, NAFLD, acute

and chronic liver injury

(CCl4), ALD, HCC

Inhibition of neutrophils

function

Targeting neutrophils NETs,

blocking the signal transduction,

targeting NE, targeting

CXCR2-FPR1, inhibiting

neutrophils recruitment, adding

GR-1 antibody

(10, 22–24, 35,

36, 48–51)

Abnormal and pathogenic

function of neutrophils

Acute and chronic liver

injury, HCC

Restore the neutrophils

function

Inhibiting CCRK or hepatic IL-6 (52, 53)

G-CSF, granulocyte colony-stimulating factor; FPR1, formyl peptide receptor 1; CCRK, cell cycle-related kinase.

of TNF-α and IL-6, thereby promoting intestinal microbial
translocation and exacerbating CCl4-induced liver fibrosis (85).
Overexpression of HNP-1, a type of α-defensin, promotes the
proliferation and activation of HSCs (86). And neutrophils
induce proteolytic tissue damage by NE (61).

On the other hand, neutrophils have also been shown to
contribute to collagen degradation during the resolution of
fibrosis via their expression of MMPs (65). A recent report
also demonstrated that neutrophils mediate the resolution of
liver inflammation and fibrosis through microRNA (miR)-223
delivery to liver macrophages, favoring macrophage polarization
toward a regenerative phenotype (87). Interestingly, another
recent study by Yang et al. (88) also identified the beneficial effects
of neutrophil-derived ROS on polarizing macrophages toward an
alternative or reparative and anti-inflammatory phenotype in an
APAP-induced liver injury model. In addition, the injection of
autologous bone marrow-derived macrophages in mice during
CCl4-mediated liver injury has been shown to lead to the
recruitment of neutrophils into the liver, upregulation of MMPs,
and anti-fibrotic effects (89).

What makes the thing complicated is that there are some
reports showed that neutrophils were dispensable for establishing
chronic inflammation and hepatic fibrosis. One report showed
that neutrophils have minimal effects on BDL-induced liver
fibrogenesis, as there is no significant difference in the production
and deposition of collagen in the livers of anti-neutrophil
antiserum treated mice or mice with neutrophil dysfunction
due to transgenic expression of IL-8 (90). Another report
showed that neutrophils are not essential to the hepatotoxin
α-naphthylisothiocyanate-induced liver fibrosis, as there was
comparable fibrosis between wild type and CXCR2 (the key
receptor for neutrophil recruitment) konckout mice (91). While
infiltration of neutrophils is a common feature of human
liver diseases, defective neutrophil recruitment does not impact
chronic liver fibrosis (23).

In conclusion, these data reveal an elaborate role of
neutrophils during liver fibrosis, reflecting their adoptive ability
to a phenotype tightly regulated by the integration of signals
derived from the microenvironment.

Alcoholic Liver Disease
Alcoholic liver disease (ALD) is a spectrum of liver injury,
ranging from hepatic steatosis to alcoholic hepatitis and cirrhosis
(92), which is caused by excessive alcohol consumption. Chronic
hepatocellular injury and death are intimately related to oxidative
ethanol metabolism. A large number of neutrophils can be
found in the liver of ALD patients, and markers of neutrophils
(such as Ly6G, MPO, E-selectin) are upregulated (93). Moreover,
neutrophils-derived MPO act as a marker for the infiltration of
neutrophils, and predict the prognosis in patients with alcoholic
cirrhosis (55). DAMPs, which are released following necrotic
cell death, trigger macrophage and neutrophil activation, with
senescence (via natural killer cells) and autophagy being the
major regulators of liver inflammation (94). Factors that mediate
hepatic infiltration of neutrophils include the CXCL1/CXCR2
axis (95), LCN2 (96), IL-33/ST2 (97), osteopontin (98), E-selectin
(99), and activated type I natural killer T cells (100). Recruited
neutrophils then release H2O2, NE (60), protease 3 (92), and
proinflammatory factors (IL-8, TNF-α), or downregulate anti-
inflammatory IL-10 to contribute to ALD (101). Therefore,
neutrophils are a major contributor to the development of ALD,
and targeting them may be a promising therapeutic strategy
for ALD. Indeed, the blockade of inflammatory mediators
involved in neutrophil infiltration or deletion of neutrophils
ameliorates alcoholic liver injury in mouse models of early
steatohepatitis (48).

However, excessive alcohol consumption frequently exerts
negative effects on neutrophils, including granulopoiesis, and
neutrophil release and function (46). Advanced ALD is
also accompanied by granulicytopenia (102) and impairment
of neutrophil function (103, 104). Infectious complications,
including septic infections, occur in ∼50% of ALD patients,
which are the main cause of death in these individuals (104,
105). Therefore, neutrophil therapy in ALD patients requires
special caution. Administration of G-CSF to increase neutrophil
counts and improve their function, in adjunction to standard
therapy, has been shown to substantially increase the survival
of patients with either severe alcoholic hepatitis or alcoholic
liver failure (46).
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TABLE 2 | The function of neutrophils granule component in liver disease.

Factors Models of

liver disease

Pathogenesis References

The granule components of neutrophils

MPO IRI Oxidative damage to the tissue (27)

NAFLD Modulate the infiltration of neutrophils

and T cells, induce pro-inflammatory

factors

Increase liver cholesterol

Promote NAFLD toward advanced

stages with fibrosis

(54)

ALD Act as a marker for the infiltration of

neutrophils, and predict the prognosis

in patients with alcoholic cirrhosis

(55)

Fibrosis Activate HSCs, upregulate

fibrosis-related genes, and induce the

oxidative stress in vitro

Induce the hepatocyte death in vivo

(56)

HCC Expedite the HCV infection to HCC (57)

NE IRI Adherence and extravasation of

leukocyte via basement membrane

degradation

Stimulates the production of MCP-1

by macrophages in vitro

Decreases endothelial production of

prostacyclin and insulin-like growth

factor-I in rats

(31, 32, 58,

59)

NAFLD Insulin resistance

Induces the activation of

pro-inflammatory factors

(49, 50)

ALD Induces proteolytic damage (60)

Fibrosis Induces proteolytic tissue damage (61)

HCC Induces proteolytic damage (62)

MMP9 IRI Promotes recruitment and MPO

activation of neutrophils

(28)

NAFLD Elevated MMP9 drives the NASH and

fibrosis progress

(63)

ALD Regulates homeostasis of the liver

microenvironment

(64)

Fibrosis Degrades ECM and basement

membrane components

(65)

HCC Decreases cell apoptosis and

promote tumor metastasis

Acts as a strong angiogenic stimulant

(66, 67)

Non-alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is the most common
chronic liver disease, with a worldwide prevalence of 25%
(106). It is an umbrella term that covers a continuum of liver
conditions varying in severity of injury and resulting fibrosis:
from hepatic steatosis alone (non-alcoholic fatty liver or NAFL)
to a more serious condition with inflammation, hepatocyte
damage, and pericellular fibrosis [non-alcoholic steatohepatitis
[NASH]] (107). The presence of metabolic syndrome in an
individual is the strongest risk factor for NAFLD. Its common
pathologic drivers are the accumulation of toxic lipid species,
which induce hepatocellular stress, injury, and death, leading to

TABLE 3 | The other activity of neutrophils in liver disease.

Factors Models of

liver disease

Pathogenesis References

The other activity of neutrophils

NET IRI Have cytotoxic effect on liver cells

and trigger Kupffer cells inflammation

response

Trigger nuclear and

mitochondrial damage

(38, 39, 41–

43)

NAFLD Accelerate the establishment of a

pro-inflammatory environment in

NASH

(68)

ALD Related to sepsis inflammation levels (69)

Fibrosis Promote hepatic inflammation and

fibrosis

(70)

HCC Cytotoxic resistance

Express inflammatory mediator from

captured HCC

Promote tumor invasion,

angiogenesis, and growth

(68, 71)

Oxidative stress IRI Oxidative stress (26, 29, 30)

NAFLD Aggravate tumor risk by reducing

damage recognition and nucleotide

resection repair

(72)

ALD Promote the transition from ALD to

liver fibrosis

(73)

Fibrosis Upregulate of collagen synthesis in

HSCs

(74)

HCC Have toxic effects on HCC (75)

fibrogenesis and genomic instability that predispose individuals
to cirrhosis and hepatocellular carcinoma (HCC) (107).

NASH is characterized by hepatic neutrophil infiltration (79).
The ratio of NE to α1-antitrypsin (108), plasma concentration of
PR3 and NE (109), neutrophil-to-lymphocyte ratio (110), serum
levels of LCN2 (111), NETs (68), and MPO (112) significantly
increase in patients with NAFLD. And elevated MMP9 from
the neutrophils drives the NASH and fibrosis progress (63).
Factors that mediate hepatic infiltration of neutrophils include
activation of Th17 cells expressing IL-17A (113, 114), MPO (54),
and gut-microbiome-derived DAMPs (115, 116).

Neutrophils then release a plethora of factors that play
important roles in NAFLD. NE is an important regulator of
insulin signaling, and depletion of NE results in enhanced insulin
sensitivity, attenuated inflammation, and decreased liver damage
in high-fat diet-fed mice (49, 50). Neutrophil PR3 also mediates
insulin resistance in NAFLD (117). Neutrophil-derived serine
proteases, namely NE, PR3, and cathepsin G, are important
for the activation of pro-IL-1β/pro-IL-18, which are essential
for NASH (118). The combined knockout of Caspase-1 and
NE/PR3 genes in mice results in reduced inflammation and liver
steatosis (118).

MPO, found in the primary granules of neutrophils, is released
into both the phagolysosomes and the extracellular environment
upon neutrophil activation. MPO catalyzes the formation of
reactive oxygen intermediates, such as HOCl, a potent oxidant
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that interacts with superoxide anions to induce hepatocyte death
(119, 120). HOCl can also damage DNA and inhibit DNA repair,
thus leading to HCC development in NAFLD (72). MPO can
also activate HSCs and promote fibrogenesis in methionine- and
choline- deficient diet-induced NAFLD (56). In addition, MPO
triggers the polarization of M2-type macrophages, which express
high levels of TGF-β, MMP1, and MMP12, and promote fibrosis
in NASH (49).

Neutrophil-derived NETs were found to promote the
accumulation of macrophage in the liver, which then establish a
favorable inflammatory microenvironment for HCC growth in
an experimental NASH model (68). Interestingly, blocking NETs
does not affect steatosis and free fatty acid accumulation but
inhibits HCC development (68).

NEUTROPHILS AND HCC

HCC is a common result of chronic liver disease. Its pathogenesis
varies, with the main cause being chronic viral infection
or inflammatory environment caused by a large leukocyte
infiltration. The multiplying neutrophils in the liver accelerate
tumor angiogenesis, epithelial-mesenchymal transition, and
growth by producing MMP-9 (66), NET, and hepatocyte growth
factor, thereby exacerbating HCC and metastasis (121). Thus,
the infiltrating neutrophils may be pro- or anti-tumorigenic
depending on the complex tumor niche.

In the tumor microenvironment, under the action of TGF-
β, tumor-associated neutrophils (TAN) are divided into N1-
and N2-TAN. TGF-β in the tumor microenvironment induces
tumor-promoting N2-TAN, and blocks TGF-β-induced tumor-
inhibiting N1-TAN (122). N1-TAN inhibits tumor progression
through tumor cytotoxicity, inflammation, and immunity
response. On one hand, the secreted elastase can promote the
degradation of vascular endothelial growth factor A (VEGF-
A), basic fibroblast growth factor, and α-defensin and inhibit
angiogenesis (123). On the other hand, the secretion of ICAM-
1, CXCL10, and TNF-α promotes inflammation and inhibits
tumor growth (124). However, N2-TAN is more common in the
tumor microenvironment. The greater inflammation caused by
infiltrated TAN and tumor-associated macrophage is the primary
causative factor for the high morbidity of liver cancer (125). TAN
is directly involved in HCC in vitro and vivo. TAN releases TGF-β
and bone morphogenetic protein 2, which upregulate miR301b-
3p, which in turn is crucial for the formation of caner stem cells
in HCC, which are characterized by low levels of E-cadherin and
high levels of vimentin and N-cadherin (126). These cancer stem
cells form a positive feedback loopwith TAN (126). The dual roles
of TAN in HCC are summarized in Figure 1. In addition, there
are a group of circulating neutrophils, which have been shown to
be a poor prognostic factor for overall survival of patients with
HCC. They promote the development of HCC through p53 and
STAT3 signaling pathways (135).

FIGURE 1 | Dual roles of TAN in HCC. IFN-β, interferon-β; IL-8, interleukin-8; TGF-β, transforming growth factor-β; ICAM-1, intercellular cell adhesion molecule-1;

CXCL, chemokine (C-X-C motif) ligand; TNF-α, tumor necrosis factor-α; NE, neutrophil elastase; VEGF, vascular endothelial growth factor; MMP9, matrix

metalloproteinase 9; HGF, hepatocyte growth factor; CCL, chemokine (C-C motif) ligand; EMT, Epithelial-Mesenchymal Transitions; BMP2, bone morphogenetic

protein 2; LSAMP, limbal gene expression membrane protein. TAN plays a critical role in pro-tumor and anti-tumor in HCC. Under the action of TGF-β (127), TAN

differentiates into N2 phenotype, which promotes tumor development; while under the condition of IFN-β (128) and IL-8 (129), TAN differentiates into N1 phenotype,

which limits tumor progression. N2 secretes MMP9, VEGF (128) to promote tumor angiogenesis; secretes HGF (130), CCL2, CCL17 (131), NE (132) to promote tumor

metastasis and infiltration; secretes TGF-β2, BMP2 to promote the production of microRNA 301b-3p, inhibits the production of LSAMP, promotes the production of

CXCL5. CXCL5 recruits more TAN (133). N1 secretes ICAM-1, CXCL10, TNF-α (124, 134) to promote inflammation. At this time, NE secreted by N1 will degrade

VEGF α-defensins collaborating with Angiostatin K1-3 (123) secreted by N1 to inhibit angiogenesis and inhibit tumor progression.
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NET formation from neutrophils is higher in patients with
HCC (71), and the high expression of NET supports HCC
through cytotoxic resistance and an elevated inflammatory
response (68). The interaction between captured HCC and
internalization NETs contributes to the acquisition of invasive
potential of HCC via TLR4/9-COX2 signaling (71). More
importantly, the hypoxic environment within the tumor
exacerbates NET formation, which forms a positive feedback loop
to aggravate liver injury (136). Although DNase/PAD4−/− mice
do not exhibit changes in the progression of fatty liver, inhibiting
the formation of NETs can successfully inhibit HCC growth
(68). Recently, a clinical retrospective investigation revealed
that higher pre-surgery NET levels are associated with shorter
relapse-free survival/overall survival in patients with primary
liver malignancies (137). This indicates that targeting NETs may
be a potential therapeutic strategy against HCC.

Oxidative stress is critical for the development of HCC.
Intracellular ROS and glutathione are elevated in neutrophils
and others leukocytes in patients with early HCC (138). The
neutrophils-derived oxidative stress partially initiates the HCC
through MPO, which is expressed in neutrophils and KCs
(139). MPO-derived HOCl damages DNA bases and impairs
nucleotide excision repair, thus favoring somatic mutations and
tumor progression (140). Activated neutrophils can also release
cytochrome c via the production of ROS, which exerts anti-tumor
effects against several carcinomas (141). The use of zinc oxide
nanoparticles to mimic ROS from neutrophils or macrophages
shows that ROS has toxic effects on HCC (75). The neutrophil-
derived ROS against human HCC can be visualized at the cellular
level (142).

Angiogenesis is critical for tumor progression, as blood
provides oxygen and nutrients for cancer cells. The accumulation
of neutrophils initiates the tumor angiogenic switch by releasing
MMP9 in para-carcinoma from human HCC (51). MMP9 is
produced by various types of cells, but human neutrophils can
produce TIMP-free MMP9, which acts as a strong angiogenic
stimulant (67). Elevated neutrophils can also upregulate the
expression of VEGF and sinusoidal vasculature in HCC (51).
Consistent with the above findings, neutrophils recruited in HCC
and its products of IL-6 and IL-8 precipitate a proinflammatory
microenvironment, which exacerbates the invasion of HCC in
vitro and develops into angiogenesis and tumormetastasis in vivo
(143). The inhibition of GR-1 with monoclonal antibodies has
been shown to decrease tumor size and microvessel density in
HCC-bearing mice (51).

In addition to affecting HCC itself, neutrophils affect the
progression of HCC by acting on other immune cells. Cancer-
associated fibroblasts in HCC enhance the level of programmed
death-ligand 1 (PDL1)+ neutrophils via IL-6/STAT3, which is
essential for the survival and functional activation of neutrophils
(144). PD-L1+ neutrophils impair the function of T cells via PD-
L1/programmed cell death protein 1 signaling (144). Neutrophils
enhance the level of myeloid-derived suppressor cells, thereby
inhibiting T cell function (145). Meanwhile, neutrophils

also inhibit the interferon-γ production by peripheral blood
mononuclear cells, which is associated with a low survival
rate and high tumor burden (146), and can downregulate
the IL-2-receptor-α and ICAM-1 receptor signaling, which in
turn mediate cell-mediated immune resistance (147). This is
indicated that targeting the neutrophils can improve the HCC by
enhancing the activity of other immune cells.

CONCLUSION

Hepatic infiltration of neutrophils is a common feature of most
types of liver diseases. While they mainly function against
invading pathogens and remove debris and dead cells, they can
also induce and aggravate hepatocyte injury and promote the
progression of liver diseases by producing ROS, degranulation,
inflammation mediators, and/or shaping immunity. Therefore,
neutrophils represent a potential target for liver diseases.
Targeting strategies should be disease-specific, either to enhance,
inhibit or restore neutrophil function, and some strategies have
been in clinical use or in different stages of clinical trials (1, 2).
However, it is of note that manymodels use anti-Ly6G antibodies
to deplete neutrophils in situ, and debris of these died neutrophils
in the injured tissue may exacerbate immune cell activation and
phenotype, thus promoting liver diseases (148). New models are
needed to overcome these potential drawbacks. The phenotypic
and functional heterogeneity of neutrophils has been recognized
in recent years (149); however, heterogeneity of neutrophils
is largely unknown in liver diseases. A recent report revealed
that neutrophils enter the tissues and acquires remarkable
heterogeneity at the chromatin, RNA, and receptor levels (150).
Therefore, new techniques such as single-cell sequencing, Assay
for Transposase-Accessible Chromatin-sequencing (ATAC-seq),
or multispectral imaging may help to thoroughly characterize
the heterogeneity of neutrophils during the development of
liver diseases, and provide new therapeutic approaches for the
treatment of liver diseases.
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