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A B S T R A C T

Numerous designs have been proposed for phase I clinical trials. Although studies have compared their per-
formances, few have considered the effects of changing design parameters. In this article, we review a few
popular designs, including the 3 + 3, continuous reassessment method (CRM), Bayesian optimal interval (BOIN)
design, and Keyboard design, and evaluate how varying design parameters (such as number of dose levels, target
toxicity rate, maximum sample size, and cohort size) could impact the performances of each design through
simulations. Excluded from our analysis is the mTPI-2 design, which operates in the same way as the Keyboard.
Our results suggest that regardless of the choices of design parameters, the 3 + 3 design performs worse than the
other ones, and BOIN and Keyboard have comparable performance to CRM. For any design, the performance
varies with the choice of parameters. In particular, it improves as sample sizes increase, but the magnitude of
benefit from increasing sample sizes varies substantially across scenarios. The impact of cohort size on design
performances seems to have no clear direction. Therefore, BOIN and Keyboard designs are generally re-
commended due to their simplicity and good performance. With regard to choices of sample size and cohort size
in designing a trial, it is recommend that simulations be performed for the particular clinical settings to aid
decision making.

1. Introduction

The purpose of phase I clinical trials is to identify an appropriate
dose for experimentation in subsequent phase II and phase III studies.
This dose is typically the maximum tolerated dose (MTD), defined to be
the dose level whose corresponding toxicity probability is closest to the
target toxicity probability [1]. Many statistical designs have been pro-
posed for phase I dose finding, and they can be categorized as algo-
rithm-based designs, model-based designs, or model-assisted designs
[2,3]. Algorithm-based ones, such as the 3 + 3 design [4], utilize a set
of rules for dose escalation and de-escalation. Despite their ease of use
and transparency, these designs have been shown to have poor oper-
ating characteristics. On the other hand, model-based designs assume a
statistical model for the dose-toxicity curve, and model parameters are
updated based on observed data accumulated during the trial [2]. The
most popular and well-studied design of this kind is the continual re-
assessment method (CRM) [5,6]. These designs have good operating
characteristics but require continuous model updates during the trial,
which have limited their implementation. Model-assisted designs (also
called interval-based designs) utilize statistical models but their dose

escalation rules can be determined prior to the trial and, therefore, offer
ease in implementation [3]. Designs of this kind include the modified
toxicity probability interval (mTPI) design [7] (as well as its upgrade,
the mTPI-2 design) [8], the Bayesian optimal interval (BOIN) design
[9], and the Keyboard design [3].
Several studies have compared the performances of the designs

described above. Horton et al. [10] compared the CRM, mTPI, and
BOIN designs but did not include the Keyboard design in their com-
parisons and only considered target toxicity rate of 0.20. Zhou et al.
[11] added the Keyboard design to their review and evaluated two
target toxicity rates, 0.20 and 0.30. However, they focused on scenarios
with large number of doses (6 and 8), and we are interested in evalu-
ating if their findings would remain the same under settings with fewer
dose levels, as phase I trials sometime have only 3 or 4 dose levels
[12,13]. Moreover, both studies considered a few sample sizes and
cohort sizes of 1 and 3 and assessed relative performances of various
designs given a particular sample size or cohort size. We would like to
evaluate from an alternative perspective in the sense that for a given
design, we explore how performance varies when the sample size or
cohort size changes.

https://doi.org/10.1016/j.conctc.2019.100379
Received 25 October 2018; Received in revised form 30 April 2019; Accepted 15 May 2019

∗ Corresponding author. Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Blockley 108/109,
Philadelphia, PA, 19104, USA.

E-mail address: yazhu@pennmedicine.upenn.edu (Y. Zhu).

Contemporary Clinical Trials Communications 15 (2019) 100379

Available online 17 May 2019
2451-8654/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/24518654
https://www.elsevier.com/locate/conctc
https://doi.org/10.1016/j.conctc.2019.100379
https://doi.org/10.1016/j.conctc.2019.100379
mailto:yazhu@pennmedicine.upenn.edu
https://doi.org/10.1016/j.conctc.2019.100379
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conctc.2019.100379&domain=pdf


Therefore, this paper has two objectives: First, to extend previous
findings about the relative performances of 3 + 3, CRM, BOIN, and
Keyboard designs into settings with fewer dose levels, and second, for
any given design, to evaluate how the performance changes with
varying sample sizes and cohort sizes. The rest of the paper is organized
as follows. In the Methods section, we give an overview of the phase I
trial designs of interest and describe the simulation procedures. The
Results section presents the findings from our simulations. We elaborate
on our results in Discussion and offer concluding remarks in
Conclusions.

2. Methods

We first summarize the four designs to be evaluated: the most
commonly used algorithm-based design (3 + 3) and model-based de-
sign (CRM) as well as two interval-based designs (BOIN and Keyboard).
We also include an overview of the mTPI-2, which is shown to be the
same as the Keyboard design [11]. In all designs, the tested doses di,

= …i I1, , , where I is the total number of dose levels, are pre-specified
by the clinical investigators. Toxicity is a binary outcome with the
target toxicity rate denoted as , and the dose toxicity relationship is
assumed to be monotonically increasing. All designs start at the lowest
dose.

2.1. 3 + 3 design

There are various versions of the 3 + 3 design, and we adopt the
most commonly used one that considers the dose to be safe if there is
less than one third of patients experiencing toxicity [4,14]. The trial
starts with the lowest dose level and treats 3 patients at a time. At the
current dose level, if there are no toxicities for the 3 patients, then the
procedure escalates to the next dose level. If one toxicity is observed, 3
more patients are treated at the same dose level. If there are 2 or more
toxicities, de-escalate to the lower dose, or if the trial is already at the
lowest dose, stop the trial and declare all doses are toxic. When an
additional 3 patients are treated at the same dose level, if there is 1
toxicity observed out of the total 6 patients, then escalation to next dose
occurs. Otherwise, de-escalate to the lower dose level. The dose level
that has at most 1 toxicity out of 6 treated patients will be declared as
MTD, and 6 patients have to be treated at the dose level to be declared
as MTD. We will use this definition to estimate the MTD in our simu-
lations.
It is common to have an expansion cohort after MTD is found that

treats additional patients at the MTD—to gather more toxicity data
around the MTD and obtain preliminary data about efficacy [15]. The
size of the expansion cohort typically ranges from 6 to 15 patients, and
it is suggested that 10 to 20 patients in the expansion cohort may sig-
nificantly increase the probability of selecting the true MTD [16,17]. To
make the 3 + 3 design comparable to other designs, after MTD is found,
the remaining patients are treated at the estimated MTD until the
maximum sample size is reached, but MTD will not be updated during
the expansion phase.

2.2. Continual Reassessment Method (CRM) design

The continual reassessment method (CRM) assumes a parametric
dose-toxicity relationship and employs a Bayesian approach [5,18]. It
specifies a dose-toxicity model and a prior distribution for the model
parameters, and posterior distributions are calculated based on the
observed toxicity data. Suppose the dose-toxicity model has the general
form =p f d a( , )i i , where pi is the toxicity probability at dose level i, di
is the ith dose level, and a is a parameter with the prior distribution
denoted as g a( ). To improve numerical stability, raw dosage di are
rarely used; instead we often use the effective doses xi (also referred to
as the skeleton), which are determined as follows. We first elicit a prior
guess of toxicity probability at each dose level, denoted as p̃i, which is

either chosen by clinicians, or determined using the algorithm in Lee
and Cheung [19]. Given the prior toxicity p̃i and based on the dose-
toxicity model, we then back-solve the effective dose xi as

= =x f p a a( ˜ , ˜)i i
1 , where =ã 0 is the prior mean of a. Therefore, the

actual model used for model fitting is =p f x a( , )i i .
Let ni be the number of patients treated at dose level i and Yi be the

number of toxicities observed at dose level i. Then the likelihood of the
observed data is given by = =L x Y a f x a f x a( , , ) ( , ) (1 ( , ))i i i
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From this, the estimated probability of toxicity at dose level i given
observed data is =p f x a g a data daˆ ( , ) ( | )i i

0
and the dose with pos-

terior toxicity probability p̂i closest to is the estimated MTD. The next
cohort is treated at the estimated MTD and this process continues until
maximum sample size is reached.
We used the “dfcrm” package in R to implement the CRM design

with the common specification of one-parameter logistic dose-toxicity
model and not allowing dose-skipping during dose escalation [6]. We
used the getprior function to obtain the prior based on the method
suggested by Lee and Cheung [19]. Specifically, the desired half width
of the indifference interval is set to 0.25 times the target toxicity rate.
We provide sample R codes with specifications for argument inputs in
the Appendix.

2.3. Bayesian Optimal Interval (BOIN) design

Bayesian optimal interval (BOIN) design was proposed by Liu and
Yuan [9]. In this design, dose escalation and de-escalation are de-
termined by where the observed toxicity rate at the current dose p̂i lies
in a prespecified toxicity tolerance interval, which contains the target
toxicity [20]. Specifically for dose level i, the local BOIN design seeks
to identify the interval [ , ]i i1 2 that contains the target , and i1 and
are selected to minimize incorrect decisions about the next dose level
assigned under hypothesis testing framework involving three point
hypotheses: = = =H p H p H p: , : , :i i i i i i0 1 1 2 2, where 1 is the
toxicity probability corresponding to the highest dose below the MTD
such that dose escalation should occur and 2 is the lowest toxicity
probability that is considered toxic and de-escalation should occur.
Correct decisions under hypotheses H0, H1, and H2 are staying (S), es-
calation (E), and de-escalation (D), respectively. Under the Bayesian
paradigm, each hypothesis is assigned a prior probability of being true:

= =P H k( ), 0, 1, 2.ki ki The decision error rate is defined as
= + +P H P S H P H P E H P H P D H( , ) ( ) ( | ) ( ) ( | ) ( ) ( | )i i i

c
i i

c
i i

c
i1 2 0 0 1 1 2 2 . The

values of i1 and that minimize the decision error rate are the bound-
aries at which the posterior probabilities of H1 and H2, respectively, are
greater than that of H0. Given the observed data, Liu and Yuan showed

that the desired values are =
+( )

i
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Dose escalation decisions are determined by comparing p̂i to the
boundaries: if p̂i i1 , escalate to level +i 1, if p̂i i2 , de-escalate to
level i 1, and if p̂i i i1 2 , stay at the same dose level i. The dose
also remains at the same level if p̂ i1 2 or if p̂I i1 . This process
continues until the maximum sample size is reached. Safety rules that
override previous dose escalation rules can also be applied. For ex-
ample, if the current dose is too toxic (say,

> >P p Y n and n( | , ) . 95 3i i i i ), then the current dose and higher
ones are eliminated from the remaining portion of the trial. In addition,
if the first dose level is too toxic, then the trial is stopped and MTD is
deemed not available.
At the completion of the trial, isotonic regression is used to de-

termine an efficient statistical estimate of MTD [21]. This procedure
identifies the doses that violate the monotonicity assumption and
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adjusts their toxicity rates to maintain monotonicity—replacing toxicity
estimates of violators with their average.
We implemented the BOIN design using the “boin” package in R,

and sample R codes with specific choices for arguments are presented in
the Appendix. Online software is also available at trialdesign.org.

2.4. Keyboard design

The Keyboard design was proposed by Yan et al. [3], in which dose
escalation is determined by the location of the strongest key relative to
the target dosing interval that includes target toxicity . The strongest
key is defined to be the dosing interval that most likely contains the true
toxicity rate of the current dose, which is determined based on the
posterior probability that each interval includes the target toxicity.
More specifically, the Keyboard design partitions the (0,1) interval

into a series of equal-width dosing intervals (called keys) and the proper
dosing interval is called the “target key,” which is the one that includes
the target toxicity rate θ. The target key is first specified (e.g. target key
is 0.2–0.3) and then other keys are constructed to be of the same length
and partition the rest of the (0,1) interval. With the observed data, if the
strongest key is below the target key, escalation results; if it is above the
target key, then de-escalation should occur; if it is the target key, then
stay at the current dose. Like the BOIN design, additional safety rules
may also be applied, and once the trial is completed, isotonic regression
is used to obtain the MTD.
We implement the Keyboard design using R codes obtained from the

authors. Online software is also available at trialdesign.org.

2.5. mTPI-2 design

Guo et al. [8] propose the mTPI-2 design as way to overcome pro-
blems of the modified toxicity posterior intervals (mTPI) design [7,22].
The mTPI design uses a set of decision rules for dose finding based on
toxicity posterior intervals. For each interval, the unit probability mass
(UPM), is defined to be “the ratio of the probability of the interval and
the length of the interval” [7]. The (0,1) interval is partitioned into
three parts: the equivalence interval ( , )1 2 which is the one that in-
cludes the target θ, the interval above (called the overdosing interval),
and the interval below (called the underdosing interval). The equiva-
lence interval is similar to the target key in the Keyboard design. Based
on the observed toxicity data, the posterior probability of each interval
reflects the probability that the true toxicity rate is within that interval.
If the underdosing interval has the highest UPM, then escalate to the
next dose. If the overdosing interval has the highest UPM, then de-es-
calate to a lower dose. Otherwise, treatment remains at the same dose
level.
Due to the mTPI design's high risk of overdosing patients—exposing

subjects to doses above the MTD, modifications have been proposed in
the mTPI-2 by dividing the interval into subintervals of equal length
(the length of the equivalence interval). The optimal rule involves
finding the interval with the largest posterior probability—the “win-
ning” interval. Thus, if the winning interval lies above the equivalence
interval, escalate to the next dose level; if the winning interval is below,
de-escalate; and if the winning interval is the equivalence interval, stay
at the same dose.
Although based on different theoretical justifications, it is noted that

the mTPI-2 and Keyboard designs are actually identical [11]. Therefore,
the subsequent comparisons focus on the Keyboard design and the re-
sults apply to mTPI-2 as well. Online software is available for the mTPI-
2 design at https://udesign.laiyaconsulting.com/.

2.6. Simulation procedures

We conduct simulations to assess the design performances with
varying study design parameters. One thousand trials are generated for
all simulations unless specified otherwise. We perform two sets of

simulations, one set for 6 dose levels and one set for 3 dose levels. For
the 6 dose level setting, we consider five dose toxicity scenarios
(Fig. 1a). The first scenario with toxicity probabilities (0.05, 0.12, 0.20,
0.30, 0.45, 0.60) represents a steady linear increasing dose-toxicity
curve. The second scenario (0.10, 0.10, 0.11, 0.25, 0.50, 0.70) features
a jump in the latter part of the curve. The third scenario (0.01, 0.03,
0.05, 0.15, 0.20, 0.45) represents a situation where toxicities are low at
the first few doses but are followed by larger increases. The fourth
scenario (0.12, 0.16, 0.20, 0.24, 0.27, 0.30) consists of small increases
in toxicity rates between consecutive dose levels, and the range of
toxicities is small overall. The fifth scenario (0.05, 0.20, 0.35, 0.50,
0.75, 0.90) consists of a large range of toxicity probabilities. For the 3
dose level setting, we consider three dose-toxicity scenarios (Fig. 1b).
Scenario 6 with toxicity rates (0.10, 0.35, 0.60) represents a faster
linear increase, Scenario 7 with toxicity rates (0.05, 0.10, 0.35) re-
presents a jump at dose level 3, and Scenario 8 with toxicity rates (0.12,
0.20, 0.28) represents a slower linear increase.
We evaluated two target toxicity probabilities of 0.15 and 0.30. For

our first objective of evaluating relative performances of various de-
signs given a design setting, we assumed the cohort size to be 3 patients
and the maximum sample size to be 36 patients for the 6 dose level
setting and 18 patients for the 3 dose level setting. As mentioned before
for the 3 + 3 design, the expansion cohort was treated at MTD to
achieve the maximal sample size. For our second objective of evaluating
the impact of sample size and cohort size on a given design's

Fig. 1. True toxicity probabilities for simulation scenarios. Circles indicate
MTD when target is 0.15, and triangles indicate MTD when target is 0.30.
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performance, we used varying sample sizes and cohort sizes. More
specifically, we considered 15 to 42 patients with increments of 3 pa-
tients for the 6 dose level setting and 12 to 33 with increments of 3
patients for the 3 dose level setting. The 3 + 3 design was excluded in
these comparisons because it does not update the MTD estimate as more
patients are treated (after the MTD is estimated). For cohort size, we
considered either 1, 2, or 3 patients per cohort.

2.7. Metrics for performance

In evaluating the performance of a phase I dose-finding trial, factors
that come into play include statistical properties and ethical con-
siderations. Statistically, a method that yields accurate estimates of
MTD with high precision is desired. Ethically, a design that treats fewer
patients at low ineffective doses or at overly toxic doses is preferred.
Therefore, we look at common criteria such as percentage of correct
selection (PCS)—the probability of selecting the true MTD—and
average number of patients treated at the true MTD. In addition, we
obtain the probability of selecting each dose level as the MTD to see
how likely each design selects the doses near the true MTD. We also
evaluate boxplots for the number of patients treated at MTD to better
understand its distribution besides the simple summary of an average.

3. Results

Fig. 2 presents PCS and the average number of patients treated at the
true MTD, for target toxicity rates of 0.15 and 0.30 and all the dose-
toxicity scenarios in the 6 dose level setting. For the target toxicity rate of
0.15, CRM, BOIN and Keyboard designs have similar PCS, while the 3 + 3

has lower PCS in all the dose scenarios (Fig. 2a). For the target toxicity rate
of 0.30, the difference between the 3+ 3 design and other designs is more
substantial in most scenarios (Fig. 2b). For the average number of patients
treated at the true MTD, the performances of all the designs are similar
with slightly worse performance by the 3 + 3 design (Fig. 2c and d). We
note that in Scenario 4 with target toxicity 0.30 (Fig. 2b), the CRM exhibits
lower PCS. This is because the prior toxicity probabilities obtained from
the default getprior function were substantially different from the true
toxicity probabilities. These results suggest that the CRM is sensitive to
specification of the prior. Specifically, for target toxicity of 0.30, the prior
obtained from the getprior function is (0.07, 0.16, 0.30, 0.45, 0.59,
0.69), which differs considerably from the true toxicity probabilities (0.12,
0.15, 0.20, 0.24, 0.27. 0.30). If we instead use the true toxicity prob-
abilities as the prior, then PCS for CRM would increase to 60.6%.
To further explore the patterns in MTD selection, we look at the

percent of selecting each dose level as the MTD (Supplementary Fig. 1).
In general, the CRM, BOIN, and Keyboard designs have similar pro-
portions of selecting each dose level as the MTD. For these three de-
signs, the percentage selection is highest at the true MTD and tends to
be much higher at doses adjacent to the true MTD than those further
away. However, the 3 + 3 design is more likely to incorrectly select
lower dose levels as the MTD. When looking at the boxplots of number
of patients treated at the true MTD (Supplementary Fig. 2), we see that
the median number of patients treated at MTD is lower for the 3 + 3
design than the other designs, even though the difference in mean
(which is largely influenced by extreme values) is much attenuated.
Moreover, the 3 + 3 design either has more between-trial variability as
suggested by the larger inter-quartile range or uniformly undertreats
patients as suggested by lower values of both the 1st and 3rd quartiles.

Fig. 2. PCS and average number of patients treated at the true MTD, for 6 dose levels, assuming sample size of 36 and cohort size of 3.

Y. Zhu, et al. Contemporary Clinical Trials Communications 15 (2019) 100379

4



Fig. 3 demonstrates the effect of maximal sample size on PCS, for 6
dose levels. In general, increasing the maximum sample size somewhat
increases PCS for both target rates of 0.15 and 0.30, for all the three
designs, in all the scenarios. However, the magnitude of increases in
PCS varies across scenarios and designs. For example, for Scenario 1
with target toxicity of 0.30, increasing sample sizes yields larger

increases in PCS for CRM than for BOIN and Keyboard; in contrast, for
Scenario 4 with target toxicity of 0.30, increasing sample size yields
increases PCS for BOIN and Keyboard but not for CRM. Note again that
in Scenario 4 with target toxicity 0.30, CRM has poor performance
because the prior toxicity probabilities were misspecified as described
before, and this appears to persist even with increasing sample sizes.

Fig. 3. PCS by maximal sample sizes, for 6 dose levels, assuming cohort size of 3, over 100,000 trials.
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The impact of different cohort sizes (1, 2, and 3 patients per cohort)
on PCS under 6 dose levels are plotted in Fig. 4. Across all scenarios and
designs, PCS can change as much as 20% with changes in cohort size.
However, for a given design and given scenario, the effect of cohort size
does not appear to follow any one direction—PCS either increases or
decreases with increasing cohort size.

For the 3 dose level setting, PCS and average number of patients
treated at the true MTD are presented in Fig. 5. The results show that
the 3 + 3 design has lower PCS than the other designs with the dif-
ference becoming more pronounced for a higher target toxicity rate
(Fig. 5a and b).The average number of patients treated at the true MTD
is similar across the four designs, with a slightly lower number for the

Fig. 4. PCS by cohort sizes, for 6 dose levels, assuming maximum sample size of 36.
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3 + 3 design in some scenarios. As noted in the 6 dose level setting,
CRM has lower PCS in the scenario where the prior obtained from the
default getprior function is substantially different from the truth,
which is illustrated again in Scenario 7 with target toxicity 0.15
(Fig. 5a).
When evaluating the effect of maximum sample size for the 3 dose

level setting, the results again suggest that the sample size effect varies
across scenarios and designs (Fig. 6). Increasing sample sizes yields
increased PCS in some but not all scenarios/designs.
For the effect of cohort size, the results are similar to those for 6

dose levels in that there are no directional effects in PCS with increasing
cohort size (Fig. 7).

4. Discussion

In this paper, we seek to assess the relative performances of several
phase I clinical trial designs under various design parameter settings
and also to evaluate how the performance changes with varying design
parameters for any given design. We have demonstrated that regardless
of the choices of design parameters, the performances of the model-
assisted designs (BOIN and Keyboard/mTPI2) are comparable to that of
the model-based CRM design while the 3 + 3 design has poorer per-
formance. This confirms previous findings and extends them to the
settings with fewer number of dose levels [3,15,22,23].
In particular, our findings under the 3 dose level setting provide

evidence to advocate the novel phase I designs over the traditional
3 + 3 design in this setting. As mentioned before, previous studies often

assume a large number of dose levels, such as 6 doses [8,10,11,14] or 8
doses [10,11]. However, phase I trials may have fewer number of tested
dose levels (such as 3 or 4 dose levels), especially for pediatric trials
[24–26] and immunotherapy trials [13,27]. There is the perception that
novel phase I trial designs will not provide much benefit and 3 + 3
designs may be adequate if there are fewer doses. However, our si-
mulations suggest that even with three dose levels, the 3 + 3 design
still performs much worse than the CRM, BOIN, and Keyboard/mTPI2
designs.
While in many cases CRM performs as well as or better than BOIN

and Keyboard designs, CRM is sensitive to the choice of prior toxicity
probabilities, which has been noted previously [28]. Moreover, as de-
monstrated in our simulations, the poor performance of CRM due to a
misspecified prior may not be improved by simply increasing the
sample size. Therefore, it is strongly recommended that one use the best
historical information available to elicit priors (e.g. use adult data to
elicit priors for pediatric trials). Another approach is to use the Bayesian
Model Averaging Continual Reassessment Method (BMA-CRM) [28],
which employs multiple priors and adaptively weights the CRM model
associated with a prior based on its consistency with the observed data.
Although phase I trials are often small with a limited number of

patients, such as 12 to 18 patients [17], it is unclear how the designs
perform under different sample sizes. Most simulation studies assume a
maximum sample size that is 6 times the number of dose levels con-
sidered [3,10,15], such as 36 patients for 6 dose levels, but there is no
clear justification for this choice. Our findings show that an increase in
sample size does not always translate to increased PCS, and a sample

Fig. 5. PCS and average number of patients treated at the true MTD, for 3 dose levels, assuming sample size of 36 and cohort size of 3.

Y. Zhu, et al. Contemporary Clinical Trials Communications 15 (2019) 100379

7



size less than 6 times the number of doses may be sufficient. However,
the adequate sample size varies with different target toxicities, different
dose-toxicity relationships, and different designs; therefore, we cannot
assume a larger sample size results in substantial accuracy gain nor that
a smaller sample size provides adequate accuracy, without performing
simulations to evaluate.
With respect to the choice of cohort size, our results suggest that

there is no universal recommendation of a particular size. Ahn [23]
considers the impact of having 1, 2, or 3 patients per cohort for the
CRM in his simulation study and indicates that a cohort size of 1
patient requires the least number of patients to find the MTD but the
largest number of cohorts and thus the longest time to complete the
trials. Because patient enrollment often needs to be suspended after
each dose cohort to wait for toxicity assessment, for a fixed total
sample size, a smaller cohort size or, equivalently, a larger number of
cohorts, means that the trial will be suspended more often and thus

will take longer time to complete. It may be speculated that having a
smaller cohort size allows more frequent updating of the dose-toxi-
city models and thus more accurate MTD estimation, but our results
demonstrate that using a smaller cohort size does not necessarily
yield higher PCS. When choosing cohort size in practice, we re-
commend conducting simulations to understand the differences in
PCS and to consider its practical implications such as total length
(time) of the trial.

5. Conclusions

In summary, model-assisted designs (BOIN and Keyboard/mTPI2)
perform as well as the CRM, and also offer similar simplicity in im-
plementation to the traditional 3 + 3 design. The advantage of the CRM
is that it can be more efficient than the BOIN and Keyboard because it
utilizes all available information (all toxicities across all doses), but the

Fig. 6. PCS by maximal sample sizes, for 3 dose levels, assuming cohort size of 3, over 100,000 trials.
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performance of the CRMmay be affected by how close the prior is to the
true toxicity rates. When selecting design parameters such as maximal
sample size and cohort size, simulations for the particular clinical set-
tings are necessary to understand the pros and cons of different choices.
The decision making should take into account both the statistical per-
formance such as PCS and practical considerations such as feasibility
and availability of resources for completing the trial.
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Appendix

The following is sample R code for the CRM design for target toxi-
city of 0.15 using Scenario 1 under the 6 dose level setting, assuming a
maximum sample size of 36 and a cohort size of 3. Specifically, we used

the default intercept value of 3 for the one-parameter logistic model.
The default method is “bayes”, which uses a normal prior with mean 0
and default variance of 1.34.

true_tox < -c(0.05, 0.12, 0.20, 0.30, 0.45, 0.60)
theta < −0.15
ndose < −6
library(dfcrm)
prior < -getprior(halfwidth=0.25*theta, target =
theta, nu = round(ndose/2), nlevel = ndose,
model = "logistic")
crmsim(PI = true_tox, prior = prior, target = theta,
n = 36, x0 = 1, nsim = 1000, mcohort = 3, restrict = TRUE,
count = FALSE, model = "logistic”, seed = 134)

The following is sample R code for the BOIN design for target
toxicity of 0.15 using Scenario 1 under the 6 dose level setting, as-
suming a maximum sample size of 36 and a cohort size of 3:

Fig. 7. PCS by cohort sizes, for 3 dose levels, assuming maximum sample size of 18.
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true_tox < -c(0.05, 0.12, 0.20, 0.30, 0.45, 0.60)
theta < −0.15
library(BOIN)
get.oc(target = theta, p.true = true_tox, ncohort = 12,
cohortsize = 3, seed = 134)

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.conctc.2019.100379.
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