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Abstract

Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular
microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M
protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within
macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet
unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and
compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early
phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection.
Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular
environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent
processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene
regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic
shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/
S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within
macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed
significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The
findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression
of specific two-component systems.
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Introduction

S. pyogenes is an important human pathogen causing an

estimated 500,000 deaths yearly [1]. The bacterium is associated

with a wide disease spectrum ranging from mild infections of the

skin and mucosa such as impetigo and tonsillitis [2] to severe

invasive infections associated with high mortality, such as toxic

shock syndrome and necrotizing faciitis [3,4]. Although S. pyogenes

is often found extracellulary in the host, we and others have

demonstrated that the pathogen can reside intracellularly and

circumvent bacterial killing in both human macrophages [5,6] and

neutrophils [7,8]. In macrophages, S. pyogenes resides within

phagocytic vacuoles that not only serve as safe-havens but also

niches for replication [6]; thereby contributing to bacterial

persistence during invasive infection. In these phagocytic cells,

the bacterial surface anchored M protein was recognized as an

important factor contributing to S. pyogenes intracellular survival

[6,7].

During the infection process, it is of importance for bacteria to

efficiently adapt to the changing environments within the host.

Pathogenic bacteria have been shown to employ various

mechanisms to fine-tune expression of virulence factors in

response to growth conditions and stresses encountered in different

niches and stages of infection [9]. Normally, a distinct set of

virulence factors are expressed during each stage of infection,

many of which are regulated by TCSs. The TCSs generally consist

of a sensory and a regulatory component where the sensor

component is typically a transmembrane histidine kinase that

recognizes one or more environmental signals, such as changes in

ion concentration, osmotic pressure or pH [10]. The majority of

response regulator are cytoplasmic transcription factors that may

either repress or activate transcription of target genes [9,10]. In

S. pyogenes, 13 different TCSs have been mapped, out of which 4

have been studied in more detail: CovR/S, FasBCAX, SptR/S

and Ihk/Irr. The best characterized is the control of virulence

(CovR/S) system, also known as CsrR/S [11,12]. CovR/S affects

around 15% of the bacterial genome and acts primarily by
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repressing transcription of virulence factors such as the hyaluronic

acid capsule, streptokinase, streptolysins O and S, and cysteine

protease Mac/IdeS [12–14]. Recently, CovR/S has received

considerable attention due to the emergence of specific hyper-

virulent streptococcal strains associated with in vivo selection of

mutations in covS [14–19]. FasBCAX regulates fibronectin/

fibrinogen binding, hemolytic activity and streptokinase transcrip-

tion [20], SptR/S has been shown to be important for the

persistence of S. pyogenes in human saliva [21] and the Ihk/Irr was

recently reported to be important for S. pyogenes resistance to

neutrophil killing [22].

Once inside the cell, bacterial survival and replication depend

on significant metabolic adaptation, so that available nutrients can

be efficiently utilized. As human bacterial pathogens are hetero-

trophs, there is a constant need for carbon inside the cell to serve

as energy sources and as substrates for the production of the

different macromolecules, such as protein and cell envelope

components utilized by the pathogen. The major carbon and

nitrogen substrates are normally transported by specialized

pathways and uptake systems, such as ATP-binding cassette

(ABC) transporters and phosphotransferase systems (reviewed in

[23]). In S. pyogenes (strain SF370), 36 ABC transporters have been

identified, and their functions suggested to be associated with

systems regulating transport of iron, phosphate, inorganic ions,

sugars, dipeptides/oligopeptides and amino acids [24].

We have previously shown that S. pyogenes can survive inside

human macrophages through M protein dependent inhibition of

phagosomal maturation [6]. In the present study, we sought to

identify bacterial genes involved during early stages of intracellular

persistence in macrophages, i.e. the primary host cell harboring S.

pyogenes at the tissue site of infection [5]. Using microarrays we

established the gene expression profile of intracellular S. pyogenes in

human macrophages. Our results revealed a differential gene

expression profile with 145 altered genes in intracellular as

compared to extracellular bacteria. Notably, we observed

significant up-regulation of the ihk/irr TCS in intracellular S.

pyogenes at the early phase of infection. Our results suggest

a multifaceted bacterial adaptation to the intracellular environ-

ment in macrophages.

Results

Differential Gene Expression Patterns between
Intracellular and Extracellular Bacteria
The infectious cycle of bacteria within host cells involves several

distinct phases, where each phase is likely to be associated with

specific gene expression profiles [13]. Here we aim to model the

early adaptive phase that is required to support intracellular

survival. For this purpose, bacterial transcriptome profiles were

determined 2h post-infection (pi) of primary human monocyte-

derived macrophages. Only intracellular bacteria were taken into

account, as extracellular or adherent bacteria were killed off by

antibiotics. All infections were done with the clinical S. pyogenes

5448 isolate of the M1T1 serotype, previously well-characterized

with respect to intracellular trafficking and survival in macro-

phages [6]. Extracellular control bacteria were cultured without

cells under identical growth conditions. Bacterial RNA was

reversely transcribed into cDNA and hybridized to customized

microarrays of printed oligonucleotides [13,14]. We observed stark

differences in gene expression profiles of intracellular bacteria

when compared to extracellular bacteria with 145 genes having

a significantly altered expression (P, 0.05) (Fig. 1A). The majority

of the up-regulated genes in intracellular bacteria were involved in

cell wall synthesis and energy production (Fig. 1B). Phage-encoded

genes is another category in which many genes were found to be

up-regulated, some as high as 50-fold. The genes were associated

with different prophages, including F70.1, F370.2 and F370.3.
The two most strongly up-regulated were Spy0676 and Spy0698

(20 and 50-fold, respectively), both associated with F370.1. These
genes, as well as most of the other deregulated phage-associated

genes, encoded for hypothetical proteins with unknown function.

The phage-encoded category also included a transcriptional

repressor, which was down-regulated 4-fold. In contrast, genes

associated with nucleotide metabolism, transcription and oxidative

stress were in general down-regulated in intracellular S. pyogenes

when compared to extracellular bacteria (Fig. 1B). Other

functional categories such general metabolism, protein synthesis

and transporters varied greatly and no trend of up- or down-

regulation could be seen observed (Fig 1B). However, some genes

were clearly differentially expressed. These include the ABC

transporters (Spy2032/2033 and Spy0385), which are of impor-

tance for efficient metabolism due to their involvement in import

and export of nutrients as well as in transport of ions. Our

microarray data revealed an 8-fold up-regulated activity of an

ABC transporter (Spy 2032/2033) and of the iron ABC

transporter (Spy0385) (Fig. 2A). Another interesting finding was

that the TCS ihk/irr genes (Spy2026/2027) were respectively 7-

and 3-fold up-regulated in intracellular S. pyogenes (Fig. 2A). To

validate these data, new infection assays were performed from

which RNA was extracted and analyzed for selected genes using

TaqMan qRT-PCR. In agreement with the previous result, ihk/irr

genes and the ABC transporters all showed marked up-regulated

expression ranging between 8–14-fold in intracellular when

compared to extracellular bacteria (Fig. 2B).

The Ihk/Irr TCS has previously been reported to influence

expression of 351 genes, as identified by microarray analyses of

wildtype and irr-deficient S. pyogenes mutant strains [25]. Here we

find that 22 of the 145 differentially expressed genes in

intracellular S. pyogenes 2h pi are among the Ihk/Irr regulated

genes (Table 1). Several of these genes did not have the same

regulatory pattern (up– or down-regulation), which is not

surprising considering the large variation seen between early and

late exponential phase, as reported by Voyich et al [25]. However,

9 genes did show the same regulatory pattern, most being

identified during the early exponential phase and involved in

biosynthesis or metabolism (Table 1).

Fine-tuned Gene Regulation through Temporal
Expression of TCSs During the Infectious Cycle
The gene expression data, together with the fact that TCSs are

commonly involved in bacterial adaptation to environmental

stimuli, suggests a role for Ihk/Irr in the early adaptive phase of S.

pyogenes to the macrophage intracellular environment. Our recent

study [6] demonstrated that at later time-points, following

a replicative phase, S. pyogenes egress out of the cells, at which

point they are fit to infect new cells. Thus at this point, the bacteria

must be equipped with appropriate virulence factors for infectivity.

It seems unlikely that the Ihk/Irr would also support the later

phases of infections considering that only few virulence genes has

been reported to be regulated by Ihk/Irr. To test this, the gene

expression experiments were extended to include a 6h time point,

representing a late phase of macrophage intracellular infection. In

addition to ihk/irr, the emm1 gene and the TCS CovR/S were

selected for the analyses. The latter is a negative response regulator

of many streptococcal factors including the capsule, which confers

anti-phagocytic activity. Real-time qRT-PCR analysis revealed

a pronounced shift between the two TCSs over time (Fig. 3A and

B). During the early adaptation phase, both ihk and irr genes are

Intracellular S. pyogenes Gene Expression Profile
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highly up-regulated but their expression decreases as the infection

proceeds. In contrast, covR and covS genes were markedly up-

regulated at 6h when compared to 2h pi. Interestingly, the highest

expression of ihk/irr was seen at 2h pi, whereas at 1h pi the levels

were lower, although not as low as at 6h pi (3D). As we are using

an infection model without centrifugation, bacterial uptake occurs

over an extended period, which results in a heterogeneous

intracellular bacterial population with respect to the stage/phase

of infection. Thus, samples at 1h pi are likely to include

a substantial portion of bacteria that have just entered and not

yet adapted to the intracellular environment. This in turn could

explain differences in gene expression between 1h and 2h pi. In

line with this reasoning, expression of covR/S varied greatly

between donors (3E). This temporal transition from Ihk/Irr to

CovR/S is consistent with our hypothesis that the gene expression

reverts from an adaptive/replicative profile to a profile that can

promote bacteria-mediated cell lysis, infectivity and further

dissemination of infection. To further support this, we analyzed

the expression of the hasA gene encoding for the anti-phagocytic

hyaluronic acid capsule, which is one of the major genes

suppressed by the CovR/S TCS [26]. qRT-PCR analyses showed

that in 2 out of 3 experiments performed, the hasA gene was 8- to

4-fold down-regulated at 6h pi, whereas in one experiment it

remained unaltered. Although not under the control of either Ihk/

Irr or CovR/S, another gene of interest is the emm1 gene, due to its

previously shown importance for intracellular survival [6]. Our

microarray data from the 2h infected cultures did not reveal

a deregulated expression. However, qRT-PCR analyses showed in

average a 2-fold increase in expression of the emm1 gene in

bacteria recovered 6h pi when compared to 2h pi (p =

0.03)(Fig. 3C). Interestingly, the lowest expression of emm1 was

seen at the 1h time point (Fig 3F).

To functionally assess whether these differences in gene

expression between 2h and 6h makes the strains more fit to egress

and infect new cells, a re-infection assay was established in which

bacteria were collected from cells infected for 2h and 6h pi. The

recovered bacteria were then allowed to re-infect new cells for 2h

after which intracellular bacterial load was determined. In line

with our hypothesis, data from two separate experiments revealed

markedly higher bacterial load in cells infected with bacteria

recovered from 6h pi when compared to bacteria from 2h pi

cultures (Fig. 3G).

Importance of Ihk/Irr in Intracellular S. pyogenes
To further test whether Ihk/Irr contribute to intracellular

survival of S. pyogenes in human macrophages, an isogenic ihk/irr-

deficient mutant (Dihk/irr 5448) was generated and its in-

tracellular survival was compared to that of the wild-type (WT)

parent strain (Fig. 4). Infection frequency was assessed by lysis of

infected cells and enumeration of colony forming units (CFU), as

well as by microscopic assessment of the percentage of cells

harboring viable bacteria. The results revealed that infection with

the Dihk/irr 5448 was associated with somewhat lower in-

tracellular bacterial counts (Fig 4A), as well as lower % of infected

cells at 4h pi, when compared to the wt 5448 (Fig 4B). Two donors

were monitored over time (4–8h) for % infected cells and

corroborating our previous data with respect to wt 5448 [5], the

frequency of infected cells decreases over time, while no

differences between Dihk/irr and wt 5448 infected cells could be

observed (data not shown). Cell viability was assessed by flow

cytometry through staining with a membrane impermeable dead

cell marker. Our results reveal that S. pyogenes infection results in 6–

12% cell death, as compared to 2–4% for uninfected cells (Fig 4C).

Importantly, there were no differences in cellular death between

cells infected with either strain (Fig. 4C). However, monitoring the

infection and egress of bacteria over time by determining bacterial

CFUs in antibiotic-free cell cultures revealed consistently lower

Figure 1. Differential gene expression profile in intracellular
versus extracellular bacteria. A) Heat map of genes (n = 145) that
displayed significantly (P : , 0.05) altered expression in intracellular
versus extracellular S. pyogenes at 2h pi. RNA from 3 biological
replicates were hybridized to microarrays and analyzed as described in
the material and method section. Red color indicates up-regulation of
genes; green down-regulation and black colored genes are not active as
compared to house-keeping genes in the respective condition. B) Bar
graph displaying differently expressed genes according to functional
categories. Red bars indicate $75% of the genes are up-regulated,
green bars indicate that $75% of the genes are down-regulated and
black bars indicate that there is no consistent trend within the category.
doi:10.1371/journal.pone.0035218.g001
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bacterial counts in cultures infected with the mutant when

compared to the WT (P = 0.03) (Fig. 4D and E). Taken together,

our data confirmed a positive effect of the Ihk/Irr TCS on

bacterial load in cultures of infected macrophages, due to either

enhanced intracellular survival and/or enhanced egress of the

bacteria out of the cells.

Discussion

S. pyogenes is a versatile and efficient colonizer of many

environments by virtue of its sophisticated ability to adapt to the

changing milieu both with respect to metabolic processes and

virulence profile [9,27]. Here we focus on transition of S. pyogenes

from an extracellular to an intracellular pathogen in human

macrophages and we demonstrate that 145 genes are differentially

transcribed during the early adaptation phase. Many of the up-

regulated genes have established functions in cell wall synthesis

and metabolism. As such they include several ABC transporters,

which can contribute to bacterial metabolism and virulence

through import/export of ions and nutrients [28]. Among the

transporter genes, the ABC transporter system Spy2032/2033

demonstrated the highest up-regulation (8- and 14-fold in

microarray and qRT-PCR analyses, respectively) in intracellular

when compared to extracellular bacteria. Interestingly, these genes

were also found to be up-regulated during infection in human

whole blood [29] and thus seem to be important during S. pyogenes

infections in humans.

Considering that many important virulence factors are

associated with mobile genetic elements [30], it was noteworthy

that many of the phage-encoded genes were up-regulated in

intracellular bacteria. Most of these deregulated phage-encoded

genes encoded for hypothetical proteins with unknown functions,

and none of the classical phage-encoded virulence factors, such as

streptococcal pyrogenic exotoxin (Spe) A, SpeC, and DNases

(Streptodornase and mitogenic factors), were identified. The

importance of prophages in the evolution of diversification and

emergence of hyper-virulent streptococcal clones is well recog-

nized [31,32]. Aziz et al [32] compared the hyper-virulent M1T1

5448 strain (i.e. same strain as in present study) with the laboratory

reference M1T1 strain SF370. The analyses revealed that the two

strains share a 95% homology, and notably the majority of the

differential 5% consists of phage related sequences being present in

the hyper-virulent clinical M1T1 isolate [32].

A major finding of our microarray analysis was the up-

regulation of genes encoding the TCS Ihk/Irr during the early

phase (i.e. 2h) of infection, indicating that this TCS influences gene

expression supporting intracellular bacterial persistence in macro-

phages. The Ihk/Irr system was first discovered by Federle et al

[12] as a TCS with homology to the PhoPS response regulator in

Bacillus subtilis [33]. The PhoPS system is widely distributed among

bacterial species and is involved in regulating virulence factors

through sensing of the phosphate concentration in the surrounding

environment, including intracellular survival of Salmonella ssp.,

Enterococcus faecalis and Listeria monocytogenes in macrophages [34–

39]. qRT-PCR analyses demonstrated a temporal expression of

TCSs, evident by a down-regulation of the ihk/irr genes as the

infection proceeds, while the TCS covR/covS genes are up-

regulated at 6h compared to 2h pi. In contrast, gene expression of

ihk/irr at 1h pi was lower than at 2h pi. This is likely a consequence

of the fact that our infection model does not employ centrifugation

but allows a more physiologic prolonged bacterial uptake process.

As a result, samples from the 1h time point represent a diverse

bacterial population as the cells are likely to contain bacteria that

have been intracellular for various periods of time ranging from 10

Figure 2. Two component system and transporter up-regulation confirmed with qRT-PCR. A) Expression of ihk, irr, and ABC transporters
in intracellular 2h pi and extracellular bacteria determined by qRT-PCR analysis. Normalized mean value of 4 biological replicates shown as fold
change in intra- versus extracellular bacteria. B) Expression of selected genes at 2h pi determined by qRT-PCR or microarray. RNA from 3 - 4 biological
replicates per method was analyzed. The normalized mean value for each gene is found in the table.
doi:10.1371/journal.pone.0035218.g002
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minutes to 1h. Taken together, our findings suggest that there is

a fine-tuned gene regulation during the different phases of

infection with activation of Ihk/Irr during the early adaptation

phase. At later phases of infection the bacteria egress out of the

cells and prepare to infect new cells. This in turn requires another

gene expression profile, potentially influenced by CovR/S.

Regulation of gene expression by CovR/S is complex. Whereas

it is considered a negative response regulator that turns off

expression of virulence genes, certain mutations in CovS have

been associated with up-regulation of certain CovR regulated

genes. A major target of the CovR repressor is the anti-phagocytic

hyaluronic acid capsule. Acapsular variants have previously been

shown to be more efficient in adherence to and entry into cells

[40,41]. In line with this reasoning, analyses of expression of the

hasA gene indicated a down-regulation at the 6h time point. Also

the M-protein, which is not directly regulated by CovR/S but has

been strongly implicated as a key factor for survival in phagocytic

cells, showed an upregulated gene expression at 6h pi. To test

whether these noted differences in gene expression translate into

differential infectivity, bacteria recovered at early (2h) and later

(6h) stages of infection were used in a re-infection assay. Indeed,

bacteria from the 6h cultures (associated with low capsule and

higher emm1 expression) were found to be more infectious than

those recovered during early stages (2h pi).

Further support for a role of Ihk/Irr for intracellular S. pyogenes in

macrophages was sought by generating an isogenic ihk/irr deficient

mutant and comparing its survival to that of the wt strain. A slight

but significant reduction in intracellular bacterial counts, %

infected cells, as well as lower bacterial counts recovered in

antibiotic-free media after infection were observed following

infection with the mutant when compared to the wt strain. Ihk/

Irr has previously been reported to be involved in S. pyogenes

resistance to phagocytic killing in human neutrophils by conferring

resistance to reactive oxygen species and antimicrobial peptides

[22,25]. Other investigations involving in vivo studies of S. pyogenes in

a mouse model [42] and an in vitro system with human whole blood

[29] or saliva (14) have reported an activation of this system during

infection. In contrast to the noted association between Ihk/Irr and

Table 1. Comparison of previously identified Ihk/Irr regulated genes [25] with differentially expressed genes of intracellular
wildtype bacteria at 2h pi.

Spy no Encoded protein This study, fold changea
Voyich et al [25], fold change
& growth phaseb

Nucleotide biosynthesis (5)

0901 Orotate phosphoriosyltransferase + 11,11 21,7 EE

2105 Anaerobic ribonucleoside triphosphate reductase activating protein 25,71 +1,6 LE

0808 Metyl transferase +2.00 +1,9 EE

1984 Nrdl protein, ribonucleotide reductase 24,49 21,5 LE

0024 Phosphoribosylaminoimidazole succicarboxamide synthase 25,14 22,1 EE

General metabolism (4)

0341 GTP-binding protein 23,40 +1,5 LE

1811 Fructokinase 4 23,48 21,6 EE

1754 3-oxoacyl-synthase III 21,92 21,8 EE

1849 Formate acteyltransferase 23,07 +1,5 EE

Protein synthesis (2)

0069 Ribosomal protein S5 +4,46 +1,9 EE

0067 Ribosoaml protein L18 +4,80 +1,6 EE + 1,6 LE

Transporters (3)

1828 Putative transporter 29,27 21,7 EE

0287 ABC transporter 22,40 +1,6 LE

0831 Uracil permease +1,52 21,7 EE

Cell wall synthesis (1)

0390 Low temperature requirement B protein 22,60 +1,8 LE

Hypothetical protein (7)

1146 +1,86 +1,8 LE

0407 +1,25 +1,9 EE + 1,6 LE

1455 Prophage encoded –2,65 +1,5 LE

1686 –2,51 +1,8 EE + 2,2 LE

1516 Integral membrane –2,08 + 2,2 LE

M18-1508 +61,81 +1,6 LE

0914 –6,63 +1,7 EE + 1,8 LE

aMicroarray array data.
bGene expression in wildtype and irr-deficient S. pyogenes strains was determined at both early and late exponential growth phase, indicated by EE and LE resp.
Genes that show the same regulatory pattern in this study and in Voyich et al. [25] are indicated in bold.
doi:10.1371/journal.pone.0035218.t001
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resistance to reactive oxygen species in neutrophils [22], we found

that oxidative stress response genes were down-regulated at 2h pi in

macrophages. One plausible explanation to our results is that S.

pyogenes survival in macrophages is critically associated with an

arrest in phagolysosomal maturation [6], which likely limits

exposure to reactive oxygen species and thereby, the induction of

oxidative stress responses. Another contributing factor could be

differences between serotypes, as the functional studies in

neutrophils were done using an M6 S. pyogenes strain in contrast

to M1 used in this study. Thus, the exact function of Ihk/Irr

intracellularly and in different serotypes remains to be defined in

future studies.

Figure 3. Shift in gene regulatory systems as the infection proceeds influence infectivity. RNA from intracellular and extracellular S.
pyogenes was isolated at 2h and 6h pi. A) shows qRT-PCR data from ihk/irr, B) covR/S, and C) emm1. 6 biological replicates were analyzed with each
sample in triplicate per gene. Statistical significant differences were determined by Wilcoxon signed rank test, and p values are indicated in the figure.
Additional experiments included one additional time point at 1h pi and was analyzed for two donors showing ihk/irr D), covR/S E) and emm1 F).
Monocyte-derived macrophages were infected for 2h and 6h, respectively, after which the cells were lysed and the lysate added to new
macrophages. Two hours post infection the cells were lysed and intracellular bacterial counts determined. G) shows a schematic illustration of this
reinfection as well as data on intracellular bacteria 2h post infection as determined by plating of cell lysates.
doi:10.1371/journal.pone.0035218.g003

Intracellular S. pyogenes Gene Expression Profile

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35218



Materials and Methods

Ethics Statement
This study includes blood samples from healthy volunteers or

buffy coats of blood provided by the blood bank at the Karolinska

University Hospital. The buffy coats were provided anonymously;

hence informed consent was not required. In case of healthy

volunteers, donors were individuals well acquainted with the

research conducted; thus, verbal informed consent was deemed

sufficient and was documented in laboratory journals. The ethical

research committee at Huddinge University Hospital (Forsknings-

kommitté Syd) approved the study including this consent procedure.

Primary Human Cell Preparation and Culture Conditions
Human monocyte-derived macrophages were prepared from

healthy blood donors essentially as described [6]. Briefly,

monocytes were isolated from buffy coats using RosetteSep

(Stemcell Technologies) separation followed by a Lymphoprep

(Axis-Shield) centrifugation step. Monocytes were then seeded in

6-well low-adherence cell culture plates (Corning) in RPMI

containing 10% FCS and 50 ng/ml macrophage colony-

stimulating factor (Immunotools), and cultured for 5–7 days to

obtain macrophages.

Bacterial Strains
A clinical M1T1 isolate of S. pyogenes (strain 5448) (36) and the

isogenic mutant 5448Dihk-irr were grown at 37uC to stationary

phase in Todd-Hewitt broth supplemented with 1.5% yeast extract

and diluted to the required inoculum depending on experimental

assay. The two strains had equal growth rates.

Generation of ihk-irr Allelic Replacement Mutant
The isogenic mutant 5448Dihk-irr was constructed by an allelic

exchange mutagenesis procedure developed for S. pyogenes [43].

Figure 4. Reduced bacterial counts of an ihk/irr-deficient mutant, as compared to wildtype S. pyogenes.Monocyte-derived macrophages
were infected for various time points with either 5448 WT strain or an isogenic deletion mutant (Dihk/irr). The cells were infected with equal
infectious doses and the infection was allowed to proceed for 1-2h depending on assay after which extracellular bacteria were eradicated by
antibiotics. A) Colony forming units plated from macrophage lysates at 2h pi according to material and methods. Data from 7 donors, B) shows the
mean % 6 SEM of cells harboring viable cocci as determined by bacterial viability stain at 4 h pi (n = 7 donors), C) Percent dead cell marker positive
cells at various time points after infection as analyzed by flow cytometry (n = 2 donors). The bars show mean 6 SEM of duplicate samples from one
representative donor. D) At 4h pi, antibiotic-free media was added and bacterial load as monitored by plating cell culture media at defined time
points shows the results of infection of cells from one representative donor, and (E) compiled data from 5 experiments using cells from different
donors (indicated by separate symbols). Note that due to the log scale, some symbols overlap. Statistically significant differences were determined by
use of paired Wilcoxon signed rank test and p values are indicated in the graphs.
doi:10.1371/journal.pone.0035218.g004

Intracellular S. pyogenes Gene Expression Profile

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35218



Briefly, DNA sequences encoding ,1 kb upstream and ,1 kb

downstream of the target genes were amplified from the M1T1

GAS 5448 chromosome using PfuUltraH II (Stratagene) and the

following primer pairs: (a) Ihk-Irr-UpFwd (59-Cgactcgaggaagt-

gatgggaaatcccttcaggg-39) + Ihk-Irr- UpRev (59-cca gtgatttttttctcca-

Taacttccctttctagattggcg -39 with 20 bp 59 extension matching the

59 end of cat gene); (b) Ihk-Irr-DownF (59-tggcagggcggggcgtaatc-

catactagtaggacgacaaaagtc-39 with 19 bp 59 extension matching 39

end of cat gene) + Ihk-Irr-DownR (59-cgagaattccccataacggcgtga-

caacaggttg-39). The chloramphenicol acetyltransferase gene (cat)

was amplified from plasmid pACYC184 using primers Cat-For

(59-atggagaaaaaaatcactggatatacc-39) and Cat-Rev (59-

ttacgccccgccctgccactcatcgca-39). Fusion PCR was performed with

the Failsafe enzyme (Epicenter), the Ihk-Irr-Up-Fwd and Ihk-Irr-

Down-Rev primers, and the three above-mentioned amplicons, to

generate a PCR product in which cat precisely replaced Ihk-Irr in

the GAS chromosomal context. The fusion construct was

subcloned into temperature-sensitive plasmid pHY304 that carries

an erythromycin-resistance (EmR) marker. The knockout plasmid

was transformed into 5448 WT with selection for EmR (2mg/ml) at

the permissive temperature (30uC), then single-crossover events

identified after shifting the culture to the non-permissive

temperature (37uC) maintaining Em selection. The culture was

relaxed by serial passage at 30uC without antibiotics, and the

double-crossover event identified by screening for colonies with

a CmR + EmS phenotype at 37uC. The precise in-frame allelic

replacement of ihk-irr with cat in the S. pyogenes 5448 chromosome

was confirmed by PCR and sequence analyses.

Infection Assay
Briefly, S. pyogenes were co-cultured with macrophages at 37uC

and 5% CO2 for different time points. A multiplicity of infection

(MOI) of 5–20 CFU/cell was used depending on the assay. At 1 h

after infection, extracellular and adherent bacteria were killed by

addition of 125 mg/ml gentamicin and 2.5 mg/ml penicillin G for 1

h, followed by washing in PBS twice, and addition of RPMI 1640

supplemented with 1 mg/ml penicillin G throughout the rest of the

experiment.

Expression Microarray Analysis
For comprehensive transcriptome analysis, oligonucleotides

were spotted on glass microarrays (Microarrays, Inc.), representing

all 2,346 open reading frames of the M1T1, strain SF370 of

S. pyogenes [24] (GenBank accession #NC_002737), using oligo

sets designed and provided by Drs. J. Scott and K. McIver, with

additional open reading frames (mainly phage encoded) from

strains MGAS8232 (GenBank accession# NC_003485) and

MGAS315 (GenBank accession # NC_004070) [13,14]. Each

open reading frame was spotted in triplicates. RNA was extracted

from intracellular bacteria (2h pi) using the Ribopure Bacteria kit

(Ambion). Extracellular control bacteria were grown under

identical settings, i.e. 6 well low-adherence plates, 37oC, 5%

CO2, in cell culture media lacking cells and RNA was isolated as

described above. Purified RNA was reversely transcribed into

complementary DNA using SuperScript III reverse transcriptase

(Invitrogen) and labeled with Alexa Fluor 546/647 by using

a 3DNA Array 900 MPX kit (Genisphere). RNA was isolated from

3 biological replicas. The microarrays were scanned using

a GenePix 4000B scanner and primary analyses were performed

using GenePixPro software (version 4.0; Axon Instruments). The

analyses included spot finding, alignment and adjustment,

fluorescence normalization, flagging of poorly hybridized spots

and background subtraction. Subsequent analyses were done using

GeneSpring GX software (version7.3; Agilent technologies). To

compare gene expression profiles of the two groups, GeneSpring’s

parametric test was used and unequal variance was assumed.

Microarray data validation was conducted using qRT-PCR. All

raw microarray data was submitted to NCBI Gene Expression

Omnibus (GEO) in accordance with MIAME standards (GEO

accession numbers: GEO platform GPL14578 and samples

GSM796440–41).

Reverse-transcription (RT)-PCR
Real-time qRT-PCR analyses were conducted to validate

microarray data and to obtain data on gene expression at 1h,

2h and 6h pi. RNA from intracellular and extracellular bacteria

was extracted as described above, including a DNase step to secure

removement of contaminating genomic DNA. RNA was then

reversely transcribed using Quantitech reverse transcription kit

(Qiagen) including control reactions without the RT enzyme to

control for gDNA traces. Primers and TaqMan probes were

designed using the PrimerExpress software (Applied Biosystems),

shown in table S1. qPCR reaction was performed in the 7500 Fast

system using 2x Gene Expression Master Mix (both from Applied

Biosystems) and in accordance with provided protocols. Control

experiments were performed with host cell cDNA to ensure no

cross-reactivity of contaminating eukaryotic RNA with the

prokaryotic target genes. The experiment was done with 3–6

biological replicates. Results from well triplicates were pooled and

analyzed using the DDCt method with extracellular S. pyogenes

samples as calibrator and gyrase as endogenous control in MS

Excel.

Re-infection Assay
16106 macrophages were seeded/well in 6-well plates and

infected for 1 hour with a MOI of 20 CFU/cell followed by

antibiotic killing of extracellular bacteria for 1 hour as described

above. After 2 hours and 6 hours, cells were washed twice with

PBS where after cells were lysed with ddH2O (pH 11). The lysate

was added to 56104 macrophages in a 48 well plate (duplicates).

The lysate was also plated on blood agar plates to confirm an

equal MOI between the two strains. After 2 hours of infection cells

were lysed as previously described and bacterial content was

quantified by plating lysates on blood agar plates.

Lysis Assay
16105 macrophages were seeded in 24-well plates and infected

for 1 hours with a MOI of 4–8 CFU/cell followed by antibiotic

killing of extracellular bacteria for 1 hour. Cells were then washed

3 three times with PBS and lysed with ddH2O (pH 11). The lysate

was plated on blood agar plates and bacterial content was

quantified by counting colony-forming units.

Quantification of Infected Cells with LIVE/DEAD Bacterial
Viability Kit
16105 macrophages were seeded/well on cover slips in a 24-

well plate. Cells were infected with S. pyogenes with a MOI of 10

CFU/cell for 2 hours after which antibiotics was added as

described above. To detect intracellular bacteria, cells were

incubated with LIVE/DEAD Backlight Bacterial viability kit

(Invitrogen, Molecular Probes), which enables discrimination

between viable and dead bacteria, in accordance with provided

protocol. The number of cells harbouring . 2 viable bacteria was

enumerated by microscopy analysis.
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Flow Cytometry
S. pyogenes were co-cultured with macrophages at 37uC and 5%

CO2 for different time points. A multiplicity of infection (MOI) of

10 CFU/cell was used. At 1h post infection, extracellular and

adherent bacteria were killed by addition of 1 mg/ml penicillin G

into the supernating medium. At 2h, 6h and 8h post-infection,

macrophages were harvested and stained with LIVE/DEAD

Fixable Near-IR Dead Cell Stain (Molecular Probes) according to

the manufacturer’s specifications. A positive control was included

consisting of cells treated with 50% DMSO. 16105 cells were

acquired using an LSRFortessa (BD) cell analyzer and analyzed

using FlowJo (Tree Star) software.

Exit-assay
16105 macrophages were seeded/well in a 24-well plate. Cells

were infected with a MOI of 5 CFU/cell for 2 hours. Extracellular

bacteria were eradicated by adding antibiotics as described for the

infection assay above. After 4 hours of infection, cells were washed

three times to remove antibiotics and antibiotic-free media was

added. Cells were further incubated and at specific time points the

amount of egressed bacteria was enumerated by plating samples of

media.

Statistical Evaluation
Data were analyzed by GraphPad Prism version 4.0 for

Windows (GraphPad software, San Diego, CA). Statistical

significant differences between groups were determined by paired

Wilcoxon signed rank test.

Supporting Information

Table S1 Sequences of primers and TaqMan probes designed

and used in this study.

(TIF)
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