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Nonribosomal peptides are a class of secondary metabolites synthesized by multimodular enzymes
named nonribosomal peptide synthetases and mainly produced by bacteria and fungi. NMR, LC-MS/MS
and other analytical methods allow to determine a peptide structure precisely, but it is often not a trivial
task to find natural producers of them. There are cases when potential producers should be found among
hundreds of strains, for instance, when analyzing metagenomic data. We have developed BioCAT, a tool
designed for finding biosynthetic gene clusters which may produce a given nonribosomal peptide when
the structure of an interesting nonribosomal peptide has already been found. BioCAT unites the
antiSMASH software and the rBAN retrosynthesis tool but some improvements were added to both gene
cluster and peptide structure analysis. The main feature of the method is an implementation of a
position-specific score matrix to store specificities of nonribosomal peptide synthetase modules, which
has increased the alignment sensitivity in comparison with more strict approaches developed earlier.
We tested the method on a manually curated nonribosomal peptide producers database and compared
it with competing tools GARLIC and Nerpa. Finally, we showed the method’s applicability on several
external examples.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nonribosomal peptides (NRPs) are secondary metabolites pro-
duced by a wide range of taxa, such as bacteria, fungi [26], plants,
and even animals [31]. Biosynthesis of NRPs in cells is provided by
multidomain enzymes named nonribosomal peptide synthetases
(NRPS) in an iterative way (Fig. 1). Each functional module of NRPS
generally consists of three domains: the adenylation domain (A-
domain) providing the activation of the substrate using ATP, the
peptidyl-carrier domain (PCP-domain) binding the substrate via
the 4’-phosphopantethine group, and the condensation domain
(C-domain) catalyzing the amide bond or, in some cases, the ester
bond [3] formation between substrates from the current and previ-
ous modules (Fig. 1). Additionally, the last module of NRPS should
contain the thioesterase domain (TE-domain) which hydrolyzes
the thioester bond realizing the biosynthesis product. It was shown
that modules’ substrate specificities were mostly provided by A-
domains [35] but some reports describing C-domain specificity
also were published [4,12].

The unique biosynthesis scheme has led to the tremendous
diversity in the molecular structure of NRPs in comparison with
ribosome-synthesized peptides, firstly, due to the possibility to
combine both proteinogenic and non-proteinogenic substrates as
well as to modify monomers by hydroxylation, halogenation,
epimerization, and other ways simultaneously with the biosynthe-
sis process. Moreover, joint work of different enzymes allows to
build more complex structures such as NRP-polyketide hybrids
[37], NRPs containing b-lactam ring [9], cyclic depsipeptides [33]
and others. Generally, NMR and LC-MS/MS methods are used for
the determination of NRPs chemical structure, but a number of
additional technologies to analyze the structure of NRP exist. Thus,
to adjust the stereochemistry of the monomers Marfey’s method is
often used [20]. In addition, in some cases, chirality can be deter-
mined using computational approaches [36].

An accurate prediction of potential producers of a given NRP is
not a trivial task even when the NRP structure is known because of
two main reasons. On the one hand, A-domains specificity predic-
tion is based on a slightly small NRP producers dataset available
these days. Thus, existing tools such as SVM-based NRPSPredictor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.02.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.02.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:konanovdmitriy@gmail.com
https://doi.org/10.1016/j.csbj.2022.02.013
http://www.elsevier.com/locate/csbj


Fig. 1. Typical NRP biosynthesis scheme. The adenylation domain (A-domain) from Module 1 activates the first amino acid using ATP. Next, the neighboring peptidyl-carrier
protein domain (PCP-domain) forms the thioester bond with the activated amino acid. Simultaneously, the same process occurs in Module 2. After amino acids have been
connected to corresponding PCPs, the condensation domain (C-domain) from Module 2 catalyzes peptide bond formation between them. The process is iteratively repeated
until the thioesterase domain (TE-domain) from the last module realizes the biosynthesis product.
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2 [30] and an ensemble method called SANDPUMA [5] have been
trained on less than one hundred manually annotated A-domains
which seems insufficient for accurate specificity prediction, mainly
because of the high monomers variety. The second problem is
related to the complexity of accurate NRP retrosynthesis. In addi-
tion, a number of NRP structures are synthesized in non-iterative
schemes including dimerization of peptide fragments (Type B
biosynthesis pathway [32]) or use of one NRPS module more than
one time during the biosynthesis (Type C biosynthesis pathway
[32]).

Here, we present BioCAT (Biosynthesis Cluster Analysis Tool), a
new tool that allows finding producers of a given NRP, using as the
input a SMILES-formatted chemical structure and the genome of
the potential producer in the FASTA format. Formally, the method
unites antiSMASH [2] biosynthetic gene cluster (BGC) predictions
and the rBAN [29] retrosynthesis tool, but there are some improve-
ments added to both gene cluster and chemical structure analyses.
Firstly, we developed a position-specific score matrix (PSSM) based
approach to align NRP and BGC. Secondly, we implemented the ret-
rosynthesis model which generates not just monomers but proba-
ble pathways of synthesis which we named core peptide chains. It
should be noted, that the tool is designed to analyze only prokary-
otic genomes because of the insufficient size of fungal NRP produc-
ers data.

To validate our model, we checked the quality of the full pipe-
line on the manually curated dataset of all known NRP/producer
pairs using shuffle-split cross-validation. In addition, we showed
the applicability of BioCAT on several external data, including com-
plete genomes as well as draft ones. Finally, we compared the Bio-
CAT pipeline with the GARLIC tool [6] and Nerpa [18] which have a
similar functionality.
2. Materials and methods

2.1. Database collection

BGC annotations and corresponding chemical structures for 426
known NRPs were collected from the MIBiG database [15]. To
ensure consistency of annotations all BGCs were re-annotated
using antiSMASH 6 [2]. 1675 A-domain sequences with known
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specificity were extracted (full list of used sequences is available
in Supplementary Data, A-domains table). To check genome-level
applicability and train the model, 164 prokaryotic genomes con-
taining known BGCs were collected from NCBI and corresponding
structures in SMILES format were downloaded fromMIBiG (the full
list of collected NRP-genome pairs is available in Supplementary
Data, AllProducers table). All NRPs and their producers used for
external validation were collected such that they were not
recorded in common NRP databases and corresponding BGCs were
checked to be valid manually.

2.2. NRP retrosynthesis

In BioCAT, the NRP structure processing consists of two main
parts: the monomers identification by rBAN [29] and the extracting
of peptide fragments which we named core peptide chains. Addi-
tionally, there are a number of features improving the parsing of
NRP chemical structures such as cycle solving and searching of
inner fragments which are probably synthesized in non-classic
ways (e.g. Type B or Type C biosynthesis pathways). The entire ret-
rosynthesis stage and generation of linear peptide fragments used
in the next analysis are automated. During the analysis, the molec-
ular graph is stored as an RDKit [19] object. All processing manip-
ulations such as bond hydrolysis and decyclization are
implemented using Python 3.

2.2.1. Core peptide chain(s) prediction
Firstly, the SMILES-formatted NRP structure is processed by the

rBAN software [29] (discovery mode is enabled). Next, each bond
in the resulting monomeric graph (Fig. 2, A) is checked to be the
peptide bond by comparing it with the peptide bond template
implemented using RDKit. If some bond is not peptide, it will be
removed from the graph. Thereafter, we have a number of distinct
peptide fragments which are supposed to be synthesized in a linear
way during the biosynthesis process. Next, each monomer is
checked to be an a-amino acid strictly by comparing with a-
amino acid template, and all non-amino acid monomers are
removed from the fragments. If some fragments remain to be cyc-
lic, the algorithm will hydrolyze these fragments in all possible
ways to get all possible linear monomeric sequences. Simultane-



Fig. 2. Combinatorial approach to align NRP structure against BGC. Firstly, the monomeric graph generated by rBAN (A) is cut along all bonds which were recognized as non-
peptide. Simultaneously, all monomers which were not recognized as a-amino acids are removed from the graph. The resulting peptide fragments (B) can be combined in
different ways which depend on the size of BGC with which the current alignment is performed. If the number of modules in the BGC is the same as the sum number of
monomers in the peptide fragments, these fragments will be just rearranged in all possible ways to generate core peptide chains (CPCs) (C-I). If the number of modules in the
BGC is more than the sum number of monomers in the peptide fragments, gaps assigned as nan will be added to core peptide chains to all possible positions (C-II).
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ously, the algorithm checks if the considered product can be syn-
thesized in the Type B or Type C ways (if this option is enabled)
and generates additional monomeric sequences modified accord-
ing to these biosynthesis types. Thus, at this stage, we have a num-
ber of linear peptide fragments consisting only of a-amino acids
connected only by peptide bonds (Fig. 2, B). To generate the pro-
duct sequences which will be aligned against a given PSSM, these
fragments are concatenated in all possible ways. If the length of
concatenates is less than the size of the PSSM, a required number
of gaps will be added between concatenated fragments. Gaps in
the concatenates are assigned as nan (Fig. 2, C-I and C-II). In the
further sections, we will call these concatenates core peptide
chains (CPCs).
2.3. BGC analysis

2.3.1. Profile hidden markov models construction
The most common substrates were chosen such that for each of

them there were at least 10 A-domain sequences in the database.
Only these sequences were used in the further analysis. Profile
HMMs construction was carried out as follows. Suppose that we
have a number of A-domain sequences for i-th substrate. Firstly,
we use these sequences as the base to build a profile HMM for i-
th substrate using HMMER3 [25]. Next, we take all A-domains
sequences which are known not to have the specificity to i-th sub-
strate and align them against this profile HMM for i-th substrate.
Therefore, we have a number of alignment scores which we have
named the negative background for i-th substrate (NBi). In this
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pipeline, E-values given by HMMER3 were used as the alignment
scores. see Fig. 3.
2.3.2. PSSM construction
Suppose that X ¼ ðx1; x2; . . . ; xNÞ is an NRPS modules sequence

with unknown specificity and there are N distinct A-domains
already annotated. Consider i-th A-domain sequence xi and profile
HMM for j-th substrate. Raw specificity score for this pair is E-
value of the sequence to HMM alignment. Let’s assume that it
equals starget. We defined the relative specificity score gji as:

gji ¼
js#NBj : s > stargetj

jNBjj ; gji # ½0;1� ð1Þ

where NBi is the negative background for j-th substrate. In simple
words, the closer this number is to one, the greater the chance that
i-th A-domain has a specificity to j-th substrate.

After this procedure is carried out for all N A-domains and S
substrates, we get the following matrix:

G ¼

g11 g12 . . . g1N

g21 g22 . . . g2N

..

. ..
. . .

. ..
.

gS1 gS2 . . . gSN

0
BBBB@

1
CCCCA

ð2Þ

where S is the number of possible substrates, N is the number of
modules in the BGC, gji is the chance that i-th A-domain has a speci-
ficity to j-th substrate.



Fig. 3. Principal scheme of the BioCAT pipeline. First, the input genome is processed by antiSMASH and the NRP structure is processed by rBAN. Next, all potential
biosynthesis gene clusters (BGCs) are aligned against all possible core peptide chains (CPCs) built from the monomeric graph generated by rBAN. Alignment is performed
using eight different variants of the alignment score definition (Sln, Mln, Sdn, etc). Finally, for each successful matching, these scores are processed by the Random Forest
Classifier, which generates the final matching score distributed from 0 to 1 and the binary matching score.
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In bioinformatics, G is a classic example of a position-specific
score matrix (PSSM) that can be used as an alignment template.

2.4. Alignment process

As the input for the alignment we should take one core peptide
chain vector P ¼ ðp1; p2; . . . ; pNÞ and one PSSM matrix G with
dimension ðS;NÞ.

2.4.1. Alignment score definition
An ensemble model has been developed for an efficient NRP to

BGC alignment. First, we implemented two ways to compute raw
alignment scores:

RawScoreðP;GÞ ¼
XN
i

gji : Sj ¼ pi ð3Þ

LogRawScoreðP;GÞ ¼
XN
i

log gji : Sj ¼ pi ð4Þ

In both cases, if pi equals nan, zero score will be added for i-th
module.

The linear sum (Eq. 3) was the most intuitive and had a satisfac-
tory prediction quality (F1-score = 0.596) but returned a lot of
false positive matches. The logarithmic sum (Eq. 4) turned out to
be more specific due to the higher influence of too small values
in the PSSM on the final score. However, it had less general quality
(F1-score = 0.574) compared with the linear approach.

Secondly, we build the monomers sequence
MaxSeq ¼ ½ms1;ms2; . . . ;msN� by the following way:

msi ¼ Sj : gij ¼ maxðgiÞ; ð5Þ
where gij are elements of the aligned PSSM. There also were two
options, how MaxSeq is built. The first is insertion of nan to the
1221
positions which contain nan in the core peptide chain sequence
(replaced MaxSeq). Such operation significantly increases the
method sensitivity but, again, leads to the increase in the false
positive rate. If nan are not inserted to the MaxSeq (native MaxSeq)
an absolute value of the raw alignment score tends to be much
lower.

The absolute value of RawScore or LogRawScore depends on the
core peptide chain length, the count of nan in the sequence and the
nature of monomers included in the core peptide chain. To esti-
mate the quality of an alignment, I randomly shuffled PSSM matri-
ces are generated. The shuffling is performed in two different
ways: by rows (intermodular shuffling) or by columns (intersub-
strate shuffling). I was chosen to be 500 by default.

Next, after two MaxSeq-s and two types of shuffled matrices
were formed, both native and replaced MaxSeq are aligned
against each shuffled PSSM using both linear and logarithmic
raw score calculation ways. Combining all possible computing
options, we have eight arrays Fkðk ¼ 1;2; ::;8Þ each of which con-
tains I shuffled raw scores. Suppose that the observed core pep-
tide chain was aligned to the non-shuffled PSSM with raw score
equals target. We defined the relative alignment score for k-th
method as:

RelScorek ¼ js# Fk : s < targetj
jFkj ;RelScorek # ½0;1� ð6Þ

In other words, the relative alignment score shows the fraction
of shuffled scores which are less than the non-shuffled score.
Distributions of relative score for all individual models obtained
on the positive dataset and negative control are shown on Supple-
mentary Fig. 1.

Finally, these eight relative scores are processed by the Random
Forest model which generates the final score also distributed
between 0 to 1. Values close to 1 can be considered as successful
matches.
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2.4.2. Best match logic
As it was mentioned in the previous sections, a core peptide

chain cannot be unambiguously determined in most cases. Due
to this, the combinatorial approach was implemented to generate
all possible peptide chains which can be matched to a current
PSSM. The Random Forest model score is computed for each pep-
tide chain variant independently and the highest score is chosen
as the alignment result.

2.5. Output explanation

Despite only the highest alignment score influences the final
alignment report, all combinatorial chain alignments are saved
into the resulting file. Generally, the resulting file is a table consist-
ing of the following columns:

� Chromosome name (column 1)
� Coordinates of BGC (column 2)
� Strand (column 3)
� Substance name (column 4)
� Cluster ID (column 5)
� Core peptide chain (column 6)
� Supposed biosynthesis type (e.g. Type A, B or C) (column 7)
� Sln, Mln, Sdn, Mdn, Sdt, Mdt, Slt, Mlt scores (columns 8–15)
� Probability of successful match for current alignment (column
16)

� Random Forest binary prediction (column 17)

Columns 8-15 of the resulting file contain scores returned by eight
different individual models. Names of individual models describe
their parameters as following:

� First letter means PSSM shuffling type (’S’ is intersubstrate, ’M’
is intermodular)

� Second letter means raw score calculation type (’l’ is logarith-
mic, ’d’ is linear)

� Third letter means MaxSeq processing option (’n’ is with nan
insertion, ’t’ is without insertion)

2.6. Method validation

First, we generated 820 incorrect genome/NRP pairs to estimate
the false-positive rate of the considered methods. The number of
incorrect pairs was chosen to be 5 times more than the number
of correct pairs to check the specificity and selectivity of the
method more accurately. To validate the Random Forest classifica-
tion model implemented in BioCAT, the database of 984 genome/
NRP pairs (164 correct + 820 incorrect) was divided in 80:20 ratio
on train and test sample respectively. The accuracy of matching
was estimated using precision, recall, F1-score, and MCC metrics.
Additionally, a receiver operating curve (ROC) and a precision-
recall (PR) curves were built using scores returned by the model.
To estimate the stability of the model, the train/test splitting was
performed randomly in 1000 iterations. Parameters used for the
Random Forest model construction are available in the Supplemen-
tary Data, RFParameters table. OOB error curves and feature
weights are shown in Supplementary Figs. 2 and 3.

The method was compared with the GARLIC pipeline [6] which
has a similar functionality. The latest versions of GRAPE (1.0.2) and
PRISM (2.1.5) tools for which command-line versions were avail-
able were used. 164 genome sequences containing BGCs with a
known product were analyzed by PRISM to locate BGCs. Retrosyn-
thesis of chemical structures was performed by GRAPE. The same
list of 984 correct and incorrect genome/NRP pairs was processed
by GARLIC. Because GARLIC does not return a binary matching
value, the relative scores returned by GARLIC were additionally
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processed by a linear classifier to provide the best threshold value
which was found to be 0.49. The same classification accuracy met-
rics as for BioCAT were calculated.

Additionally, the method was compared with the Nerpa tool
published recently [18]. The same dataset of 984 genome/BGC
pairs was analyzed with Nerpa. The score threshold of 6.0 recom-
mended by the authors was used.

In the analysis, if any method did not return any possible align-
ments for a pair, the alignment score was assumed to be zero.
2.7. Used software and tools

MUSCLE 3.8.1551 [7] was used for multiple alignment.
HMMER3 3.1b2 [25] was used to build profile HMMs. rBAN 1.0
[29] and RDKit 2021.03.4 [19] were used in the NRP retrosynthesis
stage. To locate biosynthesis gene clusters antiSMASH 6.0.0 [2] was
used, with Prodigal 2.6.3 [11] as a gene finding tool. The random
forest model was implemented using the Scikit-learn python
library (v0.24.2) [27].
3. Results

3.1. Software description and availability

We have developed a tool that estimates the likelihood that a
given non-ribosomal peptide synthetase, or more generally a given
organism, is capable of producing a given NRP. The tool is available
as a command-line program named BioCAT (Biosynthesis Cluster
Analysis Tool) on GitHub (https://github.com/DanilKrivonos/Bio
CAT) or can be installed via pip. The required input files necessary
for the analysis are a FASTA-formatted genome and SMILES-
formatted NRP-structure. In the BioCAT pipeline, the genome
sequence is analyzed by antiSMASH and the structure is character-
ized by rBAN, so, these programs are required to be installed. Addi-
tionally, it is possible to use pre-calculated antiSMASH or rBAN
results in JSON format.

Biosynthesis of NRPs can be carried out not only in the strict
iterative way shown in Fig. 1. We will use the NRP biosynthesis
type notation proposed in [32], where the most common canonical
iterative pathway is called Type A, and two additional variants of
the NRP building called Type B and Type C are defined. The Type
B pathway includes a formation of two or more identical NRP frag-
ments catalyzed by the same NRPS or the same part of NRPS which
will be condensed in further biosynthesis stages. NRPs such as acti-
nomycin D are shown to be synthesized in the Type B pathway
[28]. The Type C biosynthesis variant shown for such NRPs as lug-
dunin [39] includes a sequential binding of two or more identical
monomers activated by a single adenylation domain. In BioCAT,
we implemented the support of both non-linear biosynthesis
types.

We have found that the best producers’ prediction quality can
be reached using ensemble approaches. We have implemented
the random forest classifier model which computes the final align-
ment score using eight pre-scores generated by slightly different
algorithms, which are described in detail in the Materials and
Methods section.

The result of BioCAT analysis is information about all possible
NRP to BGC alignments generated in a combinatorial way. For each
alignment, the final alignment score is computed independently.
Final scores returned by BioCAT are distributed from 0 to 1, where
values close to one show that the given BGC is likely to code the
NRP synthetase providing the biosynthesis of the given NRP and
vice versa.

We compared BioCAT with two competing tools called GARLIC
and Nerpa which have a similar functionality. It should be men-
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tioned here that all metrics for BioCAT presented in the Table 1
were calculated on the test samples when both Nerpa and GARLIC
were used as is, i.e. the Nerpa and the GARLIC models were trained
on full NRP datasets collected by the authors. We estimated the
accuracy of the methods using recall, precision, F1-score, and
MCC metrics (Table 1). After 1000 iterations of random 80:20
train/test splitting, BioCAT had a higher mean recall but GARLIC
and Nerpa were shown to be more precise (Table 1). According
to F1-score and MCC metrics, Nerpa and BioCAT were close to each
other, and both overperformed GARLIC. ROC-AUCs and PR-AUCs
additionally showed high specificity but a high false-negative rate
on the Nerpa predictions, and high sensitivity and a high false-
positive rate on the BioCAT results (Fig. 4).

3.2. Method benchmarking

During the analysis, the time consumption (including BGC
detection and retrosynthesis stages) of considered methods was
measured. We found that in all three methods used BGC detection
was the limiting stage. The total time taken by the BioCAT pipeline
was 338 s per NRP to genome alignment, which was faster than the
full GARLIC pipeline, which averaged 527 s to run. Nerpa turned
out to be faster and averaged 292 s to a full run and was shown
to be significantly faster in the NRP to BGC matching stage.

Additionally, we have tested how the alignment score depends
on the number of shuffling iterations. Satisfactory convergence of
the results was achieved at 500 iterations (Pearson’s correlation
coefficient = 0.945), so this value was chosen by default (Supple-
mentary Fig. 4).

3.3. Method application

3.3.1. Search for potential producers of a given NRP
After the model was trained and validated, a few external gen-

ome/NRP pairs were processed to show the applicability of the
method. Laterocidin [21], thanamycin [13,16] and mutanobactin
[14] which were not included in the curated dataset were aligned
against their producers and a number of related genomes from the
same genera. Laterocidin (Fig. 5A) was successfully aligned against
its producer Brevibacillus laterosporus LMG 15441 with a relative
score of 0.81. At the same time, all alignments against other Bre-
vibacillus strains returned relative alignment scores less than 0.5
(Supplementary data, Laterocidine_test). Interestingly, thanamycin
(Fig. 5B) had the successful matching score not only with its own
producer Pseudomonas fluorescens DSM 11579, but with three
other strains of Pseudomonas (Supplementary data, Thanamycin_t-
est). One of them, Pseudomonas sp. 11K1, has been shown to pro-
duce brasmicin, an NRP related to thanamicin [38] (the
monomeric structures of tanamycin and brasmycin are shown in
Supplementary Fig. 8.). Thus, others can also be considered as
potential producers of NRPs with a similar monomeric structure.

At the same time, laterocidine and thanamycin were aligned
against potential producers with Nerpa and GARLIC. Nerpa has suc-
cessfully predicted both laterocidine and thanamycin natural pro-
ducers with Nerpa score greater than 6.0 while GARLIC has
successfully detected only laterocidine producer with a score of
0.764. GARLIC score for thanamycin aligned against the natural
producer was 0.185. In this analysis, for Nepra, we used a threshold
of 6.0 recommended by the authors. For GARLIC we used a thresh-
old optimized on the training dataset because the raw GARLIC
score is not normalized.

3.3.2. Exploratory analysis of potential mutanobactin producers
Mutanobactin is one of the NRPs produced by Streptococcus

mutans. In a recent work [22], the authors described in detail
biosynthetic gene clusters in 17 strains of Streptococcus mutans iso-
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lated from dental plaque. BGC responsible for the biosynthesis of
mutanobactin was found in three strains (SA41, T4, 21). Using Bio-
CAT, we found the same three strains as potential producers of
mutanobactin with relative scores higher than 0.97, when all other
strains did not have any successful matches (Supplementary
Fig. 5). Additionally, we collected 21 Streptococcus mutans com-
plete genomes available in the RefSeq database and aligned them
against the mutanobactin structure. Streptococcus mutans UA159
strain which had been described earlier as a producer of mutano-
bactin [14] had a relative score of 0.97. Moreover, 8 additional
strains were shown to have similar biosynthesis clusters. Manual
observation of these genomes with antiSMASH showed the pres-
ence of similar biosynthetic gene clusters (Supplementary Fig. 6;
Supplementary data, Mutanobactin_test).17 genomes of Strepto-
coccus mutans published by Li et al. [22] were assembled at the
contig level, further showing that BioCAT is useful for performing
NRP and BGC matching regardless of the assembly level when
the average contig size is sufficient to successfully detect BGCs.
3.3.3. NRP producers community analysis
For a more comprehensive validation, we collected 10 NRPs of a

different chemical structure and their producers described in
recent works not included in common databases, e.g. MIBiG or
Norine [8] (the full list of NRPs used is available in Supplementary
data, Interspecies_assay_report, chemical structures are available
in NRP.docx Supplementary file). Corresponding genomes down-
loaded from the NCBI database were used for the construction of
synthetic NRP producers community and each NRP structure was
aligned against the total community using three considered meth-
ods. In accordance with the results obtained on the MIBiG dataset,
Nerpa showed an outstanding prediction specificity (0 false-
positive matches) but producers of 5 out of 10 NRPs were not
found (Table 2). BioCAT successfully discovered 9 out of 10 produc-
ers. The zelkovamycin producer [34] which was the only false-
negative match obtained with BioCAT was not successfully aligned
due to the occasional ambiguity of the antiSMASH BGC prediction
results.

Being high-sensitive, BioCAT returned 12 false-positive results.
We suppose that the presence of false matches might be partially
caused by the structural homology of other NRPs produced by
the analyzed strains and such cases should be considered by the
user manually in further data analysis. All BioCAT results are avail-
able in Supplementary_data2.

GARLIC showed the worst result predicting only one natural
producer with a score greater than the optimized threshold. Unlike
BioCAT, GARLIC is based on a number of individual match bonuses
and mismatch penalties optimized on the NRP dataset collected by
the authors, so, such low accuracy on external data compared with
the results obtained on the NRPs collected from the MIBiG data-
base (Table 1) might be a consequence of some overfitting on the
MIBiG dataset.
4. Discussion

We have developed a new high-sensitive PSSM-based approach
to align an NRP structure to a biosynthesis gene cluster and imple-
mented it as a command line tool called BioCAT (Biosynthesis Clus-
ter Analysis Tool). In general, this tool is designed for the search of
potential producers of a given non-ribosomal peptide among a
number of genomes, but also can be applied for solving the
reversed task when a user is interested in searching for the most
likely products which can be synthesized by a given organism. In
the BioCAT pipeline, antiSMASH [2] and rBAN [29] functionalities
were united. To our knowledge, these tools are most commonly



Table 1
BioCAT performance compared with competing tools.

Method recall precision F1-score MCC Mean time consupmtion, s

BioCAT 0.735 0.515 0.600 0.519 338
GARLIC 0.363 0.766 0.487 0.468 527
Nerpa 0.419 0.948 0.577 0.589 292

Fig. 4. Performance of BioCAT compared with GARLIC and Nerpa. The graphs show receiver operating characteristic curves (left) and recall-precision curves (right) obtained
using BioCAT (blue), Nerpa (orange) and GARLIC (green) tools.
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used for BGC annotation and NRP retrosynthesis respectively,
which is why they were chosen to be implemented in the pipeline.

During the BioCAT development, we were trying to avoid com-
plex machine learning methods to keep the transparency of the
interpretation of the results. We tested several different
approaches to calculate the alignment score without machine
learning usage, but their accuracies did not seem satisfactory for
us. Observing individual scores’ results, we supposed that an
ensemble model is capable of providing higher accuracy than indi-
vidual ones. We implemented a simple Random Forest Classifier
combining eight slightly different methods to calculate the relative
alignment score and showed its efficiency using common classifi-
cation quality metrics.

We compared our method with the GARLIC pipeline [6] based
on other BGC detecting and structure retrosynthesis tools.
Although GARLIC had a higher specificity, in general, NRP to BGC
matching quality obtained on the BioCAT results turned out to be
higher than the GARLIC quality. The Nerpa tool [18] recently pub-
lished and based on the same external software has shown similar
general matching quality and as well as BioCAT overperformed
GARLIC. However, it should be noted here that BioCAT was
designed to be more sensitive than specific, unlike Nerpa which
has shown high matching specificity but moderate sensitivity.
Thus, when analyzing hundreds of genomes, BioCAT can be used
as an additional filtering stage to narrow down the list of potential
producers with a low chance of rejecting the real producer. At the
same time, the main scope of Nerpa usage is to search for the most
likely producer among a huge number of candidates even if a part
of native producers might be rejected. An additional advantage of
BioCAT compared with the Nerpa tool is the native support of type
B and type C biosynthetic pathways. Thus, we found that natural
1224
producers of NRPs such as actinomycin [28] and valinomycin
[24] (the Type B biosynthesis pathway) or lugdunin [39] (the Type
C biosynthesis pathway) are not predicted by Nerpa but can be
detected with BioCAT. Moreover, we have shown that due to high
sensitivity BioCAT is capable of detecting not only producers of the
target NRP structure but producers of close chemical homologs too
such as brasmycin and thanamycin.

The method we developed has a number of limitations, mainly
related to the quality of NRP chemical structures retrosynthesis.
The rBAN tool is able to determine a wide range of substrates
but some unusual chemical modifications such as acylation of pro-
line lead to the appearance of excessive unrecognized elements in
a molecular graph. Moreover, some chemical features such as fatty
acid residues or poly-ketide fragments are not used in the PSSM
construction and are not taken into account during the processing.
Also, in NRP biosynthesis, some condensation domains are known
to be able to form not peptide bonds but ester ones [3]. In these
cases, peptide chains will be restricted at the ester bond and result-
ing fragments will be combined more aggressively which can
increase the chance of false-positive results. Generally, if peptide
chains generated by the model include too many substrates
assigned as nan, we recommend users to try simplifying the chem-
ical structure of the interesting NRP manually before the analysis,
e.g. to remove modifications from the substrates. For instance, we
have found that echinomycin which is formally synthesized in the
type B biosynthesis pathway but containing cysteine modified by
methylation [17] can be successfully matched to its producers only
after manual removal of this modification from the SMILES string.

The BGC prediction stage also has some drawbacks. The main is
the lack of formal rules to define edges of biosynthetic gene clus-
ters. For example, some gene clusters such as nunamycin/-



Fig. 5. Applicability of BioCAT for the identification of potential producers of a given NRP. A) Laterocidine chemical structure (A1) was aligned against its natural producer
Brevibacillus laterosporus LMG 15441 and 10 close Brevibacillus strains. Only the producer (A2, orange bar) had an alignment score higher than 0.5. B) Thanamycin (B1) was
aligned against its producer Pseudomonas fluorencens DSM 11579 (B2, orange bar) and 10 other Pseudomonas strains. The producer was successfully aligned with the resulting
score of 0.86. In addition, there were three Pseudomonas strains that were assigned as potential producers of thanamycin (B2, light orange bars). Pseudomonas sp. 11K1 strain
which had the highest alignment score was described earlier as a producer of brasmycin, NRP related to thanamycin.

Table 2
Interspecies testing of NRP to BGC matching tools. In this test, there were 100
genome/NRP pairs, with 10 a priori correct and 90 incorrect.

Method True positives False positives

BioCAT 9/10 12/90
GARLIC 1/10 0/90
Nerpa 5/10 0/90
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nunapeptin BGC from Pseudomanas sp. Ln5 encode two different
NRPSs located close to each other because of regulatory reasons
[10]. Fortunately, these NRPSs are encoded in different DNA
strands, so, in BioCAT we have implemented additional fragmenta-
tion of clusters based on the strand direction. However, there are
cases, for example, himastatine biosynthesis cluster from Strepto-
myces himastatinicus ATCC 53653, when genes located in both
DNA strands are responsible for the biosynthesis of only one NRP
product [23].

Despite the drawbacks described above, BioCAT showed a satis-
factory matching accuracy and can be useful for high-throughput
exploratory analysis of genomic data to identify possible producers
of an NRP of interest or structures homologous to it. Going forward,
the method can be improved in several ways. First, we are planning
to include to the model information about additional gene cluster
domains such as halogenation and hydroxylation which may
increase the specificity of the alignment algorithm. Secondly, core
peptide chains generated during the BioCAT analysis often contain
non-recognized substrates assigned as nan, so, these unrecognized
peptide chain positions can be represented in the same PSSM way,
using special metrics such as Tanimoto chemical similarity coeffi-
cient [1]. However, it can significantly increase the model com-
1225
plexity, so, we decided not to implement it in this BioCAT
version due to the insufficient size of the NRP library available
nowadays.

Simplification and unification of genomic data processing are
becoming more important with the intensive development of
sequencing technologies. Thus, the more massive genomes are
sequenced, the more time is consumed to perform an accurate pre-
diction of NRP producers among them manually using antiSMASH
or Prism software. The authors do not declare that the BioCAT tool
can completely replace manual BGC annotation but hope that it
will help to automatize the preliminary genomic data observation
to narrow down a list of possible producers of a given NRP.
5. Conclusion

We have developed a novel tool, called BioCAT, which has uni-
ted the antiSMASH and the rBAN pipelines and allows to find
potential producers of a given NRP. BioCAT was shown to be
slightly faster and more accurate in comparison with the GARLIC
tool published earlier. The second competing tool Nerpa has been
shown to be more specific rather than sensitive, unlike BioCAT
which was first designed as a tool useful for preliminary filtering
of a huge number of potential producers with a minimal chance
of rejecting a real producer. The applicability of the method was
additionally shown on several external data.
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