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Abstract: The innate immune system facilitates defense mechanisms against pathogen invasion
and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system
by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades
including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing
viral components. Viruses can modulate the innate immune response with the help of proteins and
RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19,
molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells,
leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune
signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic
agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are
TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and
the TLRs involved in COVID-19 infection.
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1. Introduction

Toll-like receptors (TLRs) are central mediators of the innate and adaptive immune re-
sponses. The immune system exhibits a defense mechanism for the host against pathogenic
materials (exogenous and/or endogenous) at the cellular level [1]. Pattern recognition
receptors (PRRs) including DNA sensors, RIG-1-like receptors, and TLRs are part of the
innate immune system that protects against microbial infection. PRRs recognize conserved
pathogen-associated molecular patterns (PAMPs) from microbes and endogenous danger-
associated molecular patterns (DAMPs) produced by necrotic cells [2]. PAMPs are derived
from viral, bacterial, parasitic, and fungal pathogens. The chemical nature of PAMPs rec-
ognized by TLRs varies greatly among organisms. In phylogenetics, TLRs are considered
the most ancient class of PRRs. A large number of TLRs have been reported across a wide
range of vertebrate and invertebrate species. The signaling pathways and adaptor proteins
related to TLRs are evolutionary conserved, from Porifera to mammals. Moreover, similar
domain patterns can be observed in most TLR homologs [3,4].

Viruses are responsible for initiating innate immunity through TLRs. Viruses, via a
combination of small and unique proteins, not only escape the innate immune system but
also destabilize the paybacks of the virus [5]. Similar to other pathogens, viruses are sensed
by TLRs. Some viruses encode unique proteins that target TLR signaling. The hepatitis C
virus encodes proteins that inhibit TLR-mediated signaling such as NS5A and protease
NS3/4A [6,7], which inhibits MyD88 and cleaves TIR-domain-containing adapter-inducing
interferon-β (TRIF), respectively. Moreover, the two vaccinia virus proteins have been
reported as inhibitors of the TLR system; for example, A52R was observed to inhibit TLR-
mediated NF-κB activation by targeting IRAK2 [8], whereas A46R exhibited a connection
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with TLR signaling downregulation by employing Toll-interleukin-1 receptor (TIR) domain-
containing adaptors [9]. Intracellular TLRs not only sense viral and bacterial nucleic acids,
but also identify self-nucleic acids in cellular abnormalities such as autoimmunity [10].

A novel single-stranded RNA (ssRNA)-containing virus causes coronavirus disease
(COVID-19), also referred to as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which became a pandemic after the first case was identified in Wuhan, China in De-
cember 2019. With the spread of COVID-19, the pandemic poses a global challenge [11,12].
From a clinical point of view, the virus has various manifestations ranging from patients
becoming critically ill with acute respiratory distress syndrome to asymptomatic infection.
In the intensive care unit, multiorgan support therapy has been essential in almost every
case of COVID-19 (Figure 1). The critical disease stage is typically observed at 7–10 days
of clinical infection [11,13]. Hyperinflammatory outcomes (cytokine storm) are mainly
associated with clinical impediments and mortality [14]. A possible treatment methodology
in the form of vaccines is being employed for the prevention of SARS-CoV-2 infection,
but there is no operative therapeutic treatment option available. Consequently, exploring
new drug targets is necessary. One of the most important molecular targets is TLRs. The
interaction of the SARS-CoV-2 spike glycoprotein with TLR and the enhanced expression
of genes associated with TLR signaling could indicate the possible involvement of these
tiny molecular machines and their inflammatory cascades [14].

Figure 1. An overview of the SARS-CoV-2 infection pathway. During viral infection, immune cells
are activated and release several cytokines as required for the biological system. A high virus titer
is associated with a cytokine storm, and such dysregulation in the body of the patient may lead to
multi-organ dysfunction syndrome. GIT—gastrointestinal tract.

Structurally, TLRs are type I transmembrane (TM) proteins with three distinct domains
including an extracellular domain (ectodomain) that contains tandem copies of leucine-rich
repeats, a single-pass TM as well as a cytoplasmic TIR downstream-signaling domain. TLRs
experience either homodimerization or heterodimerization when encountering PAMPs
and/or DAMPs, and adaptor proteins are employed; subsequently, a complex cellular event
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of downstream signal transduction is initiated, leading to the expression of inflammatory
cytokines and interferons (IFN) that is observable at the molecular level [2]. The underlying
TLR signaling cascades have been elucidated using structural, genetic, biochemical, and in
silico methodologies [15].

Downstream signaling is made possible by the presence of cytosolic TIR domain-
adaptor proteins such as TRIF (also known as TICAM1), TRAM (TICAM2), MyD88, and
MAL [5,16]. The involvement of TLRs with TIR adaptors leads to the activation of cytosolic
signaling complexes including IRAK and TRAF proteins. These entities are responsible for
the activation of transcription factors such as IRF and NF-κB. This executes the synthesis
of type I IFNs and proinflammatory cytokines [16]. IRF7 is essential for IFN-α synthesis,
NF-κB is necessary for TNF and IL-6 induction, and IRF3 and NF-κB are required for IFN-β
production [17].

By neutralizing internal and/or external threats administered by TLRs, the innate
immune system makes defensive contributions to the survival of the host biological system.
However, dysregulation and/or overactivation of this system leads to various disorders
such as inflammation, cancer, and autoimmunity [18–20].

2. Structure of Coronavirus

SARS-CoV-2, a member of the β-coronavirus genus in the family Coronaviridae, has
an envelope and positive-sense ssRNA genome of 29,891 nucleotides, encoding circular
nucleocapsid proteins with 9860 amino acid residues [21]. The viral particle size ranges
from 80 to 220 nm. Overall, 10 open reading frames (ORFs) have been identified in its
genome to date (approximately 26–32 kb). The first ORF (almost 2/3 of the viral RNA)
encodes polyproteins 1a (ORF1a) and 1b (ORF1b) [22]. Furthermore, these ORFs are
cleaved by proteases into 16 nonstructural proteins (NSPs) that are responsible for genome
replication and transcription [23]. Structural proteins (SPs) are encoded by the remaining
ORFs [24,25]. The main SPs and NSPs of SARS-CoV-2 are summarized in Tables 1 and 2,
respectively. The name coronavirus is derived from the appearance under the electron
microscope, in which the presence of crown-like spikes on the envelope resembles the
corona of the sun [26]. SPs form the viral envelope that holds the RNA genome, while NSPs
are expressed in host-infected cells but are not incorporated into virion infectious particles.
These NSPs include various transcription factors and enzymes such as RNA-dependent
RNA polymerase (RdRp) and hemagglutinin esterase (HE). Moreover, the virion employs
enzymes such as RNA replicases and viral proteases to replicate itself [22,27–29].

Various SPs have been identified including the glycoprotein membrane (M), spike (S),
small envelope (E), and nucleoprotein (N), and other accessory proteins. M-glycoprotein is
the most abundant, spanning the membrane bilayer thrice [30]. S-glycoprotein (150 kDa) is
a type-I TM protein on the outer surface of the virus and is responsible for the binding of
the virus to host cell receptors (ACE2). The S protein amino acid sequence of SARS-CoV-2
exhibits 86% similarity to that of SARS-CoV [31]. The S protein consists of oligosaccharides
bound to serine amino acids through o-glycosides. The three major segments of S protein
are the ectodomain, TM, and intracellular regions. The intracellular domain comprises
the membrane fusion subunit S2 (trimeric stalk) as well as a short tail part known as the
receptor-binding S1 domain (RBD; three S1 heads) [32,33]. Protein–protein interaction (PPI)
between the human ACE2 and SARS-CoV-2 S protein facilitates viral attachment as well
as the cellular entry of coronaviruses; thus, small-molecule blockage of these PPIs is a
more inspiring therapeutic approach than inhibition via antibodies [34]. The S1 subunit of
the S protein enables ACE2-mediated virus attachment, whereas the S2 subunit facilitates
membrane fusion. Specifically, asparagine, glutamine, serine, phenylalanine, and leucine
residues present in the S protein boost ACE2 binding [35].

Moreover, N protein bound to nucleic acids is an important structural component of
the virus, which is responsible for viral replication and cellular response to infection in
the host cellular machinery [31] (Table 1). The N protein comprises a serine-rich linker
region sandwiched between the N-terminal domain (NTD) and the C-terminal domain
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(CTD). These termini are crucial for viral entry and processing in host cells. The CTD
regulates nucleocapsid formation and the NTD adheres to the viral genome in the form of
orthorhombic crystals. Phosphorylation sites are also present in the linker region, which
control its function [35]. In the case of SARS-CoV, the N protein enhances the activation of
cyclooxygenase-2 (COX-2), resulting in the inflammation of pulmonary cells [36]. Moreover,
the N protein interacts with the p42 proteasome subunit, which degrades the virion [37].
This also disables type-I IFN, which is responsible for suppressing the host immune re-
sponses produced by biological systems against viral infections [38]. The interaction of the
N protein with heterogeneous nuclear ribonucleoproteins leads to increased viral RNA
synthesis [39]. The N protein sequence of SARS-CoV-2 shows a 94.3% similarity to that of
the SARS-CoV [31].

The smallest TM structural protein in coronaviruses is the E protein (Table 1), which
comprises two different domains: the NTD (1–9 residues) as well as a hydrophobic domain
(10–37 residues), with a chain at the terminal (38–76 residues) [40–42]. The E protein plays
a crucial biological role, not only in the structural integrity of the virus, but also in host
virulence [43]. The E protein sequence of SARS-CoV-2 shows a 96.1% similarity to that of
SARS-CoV [31].

The M protein plays a crucial role in maintaining the shape of the viral envelope
(Table 1). This function can be achieved by interacting with other viral proteins that exhibit
PPIs [44]. The M protein is also known as the central organization of coronavirus proteins.
The binding of E to M produces the virus envelope, and this interaction is sufficient for the
synthesis and release of viruses [45,46]. The binding of M with S is an important event for
the retention of the S protein in the endoplasmic reticulum–Golgi complex as well as its
integration into new viruses [46,47]. Moreover, the interaction of N with M stabilizes the
nucleocapsid (RNA–N protein complex) and the internal core of viruses, resulting in the
completion of viral assembly [47,48]. The M protein amino acid sequence of SARS-CoV-2
exhibits a 96.4% similarity with that of SARS-CoV [31].

Table 1. The structural proteins (SPs) of coronaviruses and their physiological significance.

Sr. No. SPs PDB ID Residues Physiological Significance Reference

1 E 7K3G 76–109 Virus assembly, morphogenesis, viral–host
interaction, membrane permeability [49]

2 M 8CTK 220–260 Virus assembly, protein interactions (M–M,
M–S, M–N) [50]

3 N 6VY0, 6YUN 422 Abundant RNA-binding protein, virion
genome packaging [51]

4 S 6VYB 1273 Main antigen component, triggers the host
immune response [52]

Table 2. The non-structural proteins (NSPs) of coronaviruses and their physiological significance.

Sr. No. NSPs PDB ID Residues Physiological Significance Reference

1 NSP1 7K3N 180 Protein synthesis, prevents antiviral
activity of host cells, degrades host mRNA [53–55]

2 NSP2 7MSW 638 Genome replication, disruption of
intracellular host signaling [56–58]

3 NSP3 (Papain-like
protease, PLpro)

7KAG, 6WEY,
6WUU, 7LG0 1945

Integral to viral replication,
post-translational processing of the
two polyproteins, suppresses host

protein synthesis

[22,58,59]

4 NSP4 3GZF 500 Protects new replicated virions, replication
and assembly of viral structures in host cell [60,61]
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Table 2. Cont.

Sr. No. NSPs PDB ID Residues Physiological Significance Reference

5 NSP5 (3C-like
protease, 3CLpro) 6LU7 306 Protein cleavage capacity

(conserved feature) [62,63]

6 NSP6 - 290 Induction of autophagosomes, inhibition of
viral components to reach host lysosomes [64–66]

7 NSP7 7JLT 83
Primase complex (NSP7-NSP8),

hetero-oligomeric complex
(NSP7-NSP8-RdRp), viral replication

[67–69]

8 NSP8 7JLT 198
Primase complex (NSP7-NSP8),

hetero-oligomeric complex
(NSP7-NSP8-RdRp), viral replication

[67–69]

9 NSP9 6WXD 113 RNA synthesis, carries viral RNA to the
host cell, responsible for proliferation [70–72]

10 NSP10 6ZPE 139
Cofactor activation for replicative enzymes,

complex NSP10-NSP14, viral RNA
proofreading

[73–75]

11 NSP11 - 13 Cleavage product of PP1a by 3CLpro/MPro [21,76]

12 NSP12 (RNA
polymerase, RdRp) 6YYT 932 RNA polymerase activity [29,77–80]

13 NSP13 6JYT 601 Helicase activity [29,81]

14 NSP14 7R2V 527 Viral RNA methylation, viral RNA
proofreading, methyltransferase activity [73,82–84]

15 NSP15 6WXC 346 Endoribonuclease activity [81,85]

16 NSP16 6WVN 298
Viral replication, immune response evasion

Viral RNA methylation,
methyltransferase activity

[84,86,87]

3. Overview of TLR Signaling

Invading pathogens stimulate the release of proinflammatory mediators in response
to infection (Figures 1 and 2). Signaling networks are necessary for the protection of the
host against invading microorganisms. TLR signaling dysregulation plays a central role in
the development and progression of infection. Inflammatory secretory molecules including
chemokines, ILs, IFNs, and tumor necrosis factor-alpha (TNF-α) are part and parcel of
TLR signaling, resulting in the modulation of cellular characteristics such as apoptosis,
immune response, and proliferation [88–90]. Mitogen-activated protein kinases (MAPKs)
and NF-κB are activated by TLRs. TLR3 and TLR4 are involved in the stimulation of IRF3.
In contrast, IRF7 is triggered by TLR7–9 [91]. TLRs are stimulated by interactions with
ligands to initiate an intracellular downstream signaling cascade, leading to activation of
the host defense system [92].

The nature of the ligand and downstream adaptor molecules directs the TLR signaling
cascade (Table 3). Two distinct pathways play critical roles in TLR signaling: MyD88-
dependent and -independent pathways [93] (Figure 2). The former pathway employs all
TLRs (except for TLR3), resulting in the biosynthesis of inflammatory cytokines [94]. In
contrast, the latter pathway (also referred to as the TRIF-dependent pathway) involves TLR3
and TLR4, resulting in the expression of IFN-I [95]. In other words, the interaction of PAMP
and PRR leads to the biosynthesis of proinflammatory cytokines as well as IFN-1, which is
a cellular indication of the immune response [96]. Several negative regulators that enhance
the activation of the innate immune response are involved in TLR-dependent signaling
cascades. Hence, the overactivation of TLRs can lead to the interruption of immune cell
homeostasis, resulting in the risk of inflammatory disorders [97]. Consequently, inhibitors
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(antagonists) targeting these receptors and/or cascades can serve as novel therapeutics to
treat such disorders [98].

Figure 2. SARS-CoV-2 causes infection in the lungs mainly via DAMPs and PAMPs produced as
a result of the action of nearly all Toll-like receptors (TLRs). Only TLRs involved in virus sensing
and/or signaling are displayed here.

Table 3. Toll-like receptors (TLRs) and their physiological significance.

TLRs Ligand
Recognition Form Localization Adaptor

Molecules
Negative
Adaptors Response Reference

TLR1
Triacyl

lipopeptides,
soluble factors

Heterodimer Cell surface MyD88, Mal -
NF-κB activation and

proinflammatory
cytokines

[99,100]

TLR2

Hsp70, lipopeptide,
HCV,

Nonstructural
protein 3

Heterodimer Cell surface MyD88, Mal -
NF-κB activation and

proinflammatory
cytokines

[101,102]

TLR3 dsRNA Homodimers Endosomal
membrane TRIF

SARM
negatively

regulates TRIF

IRF activation,
production of type 1

IFNs and
proinflammatory

cytokines

[103,104]
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Table 3. Cont.

TLRs Ligand
Recognition Form Localization Adaptor

Molecules
Negative
Adaptors Response Reference

TLR4
Lipopolysaccharide,
Taxol, S protein of

SARS-CoV-2
Homodimers Cell surface MyD88, Mal,

TRIF, TRAM

SARM
negatively

regulates TRIF
and TRAM to
consequently

reduce
inflammation

Activation of NF-κB,
pro-inflammatory

cytokines, and
IFN-inducible genes

[105,106]

TLR5 Flagellin Homodimers Cell surface MyD88 -
Activation of NF-κB

and proinflammatory
cytokines

[107,108]

TLR6

Diacyl
lipopeptides,

lipoteichoic acid,
fungal zymosan

Heterodimer Cell surface MyD88,
Mal/TIRAP -

Activation of NF-κB
and proinflammatory

cytokines
[109,110]

TLR7
SARS-CoV-2

ssRNA,
imadozoquinoline

Homodimers Endosomal
membrane MyD88 -

IRF activation,
production of Type 1

IFNs and
proinflammatory

cytokines

[111,112]

TLR8 SARS-CoV-2
ssRNA

Endosomal
membrane MyD88 -

IRF activation,
production of type 1

IFNs and
proinflammatory

cytokines

[113,114]

TLR9

Unmethylated
CPG-containing

ssDNA, hemozoin
from the malaria

parasite

Homodimers Endosomal
membrane MyD88 -

IRF activation,
production of type 1

IFNs and
proinflammatory

cytokines

[115,116]

4. Role of Antiviral Drugs Employing TLRs

When a pathogen such as a virus invades, an antiviral immune response is evident
in the host cells. Various conserved molecular patterns of PAMPs have been identified.
As discussed above, TLRs are the key constituents of the innate immune system, and
multiple TLRs (TLR1–4, TLR6–9) identify viral ligands [17,117–119]. With respect to their
functional importance, TLRs might be potentially employed to treat not only inflammatory
disorders but also viral diseases. This can be explained by a deep insight into the positive
and negative mediators of TLRs [97,120]. TLR agonists lack accessory molecules but can
mimic natural ligands; hence, they exhibit a low molecular weight and have potential
for expanded pharmacokinetics and pharmacodynamics in comparison with the parent
molecule. Moreover, TLR antagonists help to deal with autoimmune and inflammatory
disorders by defeating unnecessary inflammation, resulting in an antibody- or cell-mediated
response that suppresses disease progression [97,121,122].

Different approaches are employed by viruses in which they weaken their recognition
by masking and/or increasing the dysregulation of mediators. Viruses disturb TLR sig-
naling through their own mechanisms. Thus, TLRs are largely involved in the molecular
interaction between viruses and host cells [5]. Various PRRs are engaged in the response to
viral infection, which is also the case for TLRs. A thorough understanding of this interac-
tion has facilitated the development of various strategies to limit viral infection including
antiviral immunity as well as therapeutics [5]. Moreover, viral infection activates TLRs to
increase cytokine levels, resulting in an antiviral innate immune response. The interaction
between viruses and TLRs at every step of the signaling pathway plays an important role
in developing effective antiviral therapies as well as in identifying novel molecular targets
for the advancement in antiviral drugs [123]. The regulation of invasion, replication, and
immune responses is a significant factor in viral pathogenesis [117]. Viral glycoproteins and
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NSPs released in the extracellular region are responsible for the stimulation of TLR2 and
TLR4 due to their presence on the cellular surface [117,124,125]. In contrast, TLR3, TLR7/8,
and TLR9, which are present in the endosomal compartment, contain viral double-stranded
RNA (dsRNA) [126], ssRNA [114], and CpG DNA (unmethylated) [116], respectively.

TLR agonists have a positive effect on antiviral immunity and exhibit significant
resistance against experimental infections [127–129]. The TLR–virus interaction involves
a complex mechanism that is associated with the type of TLR as well as the type of virus.
Moreover, multiple PRRs are required to initiate an immune response to various viral
infections. Moreover, significant differences in TLR signaling have been reported between
mice and humans. Therefore, therapeutic manipulation of TLRs requires an understanding
of human cellular immunity [130]. Some examples are presented below.

TLR2 activation enhances the innate immune response to viral infections and can be
used to treat viral respiratory diseases. Using the shock-and-kill strategy, immune cell
recognition is enhanced and latently infected cells are eliminated [112,131]. TLRs can be
used to reverse HIV-1 latency and trigger innate immune responses. In an evaluation of the
effectiveness of SMU-Z1 (a novel TLR1/2 agonist), in addition to enhancing latent HIV-1
transcription (ex vivo), the NF-κB and MAPK pathways were also targeted in cells [131].
Latency-reversing agents have been employed for HIV reactivation, resulting in enhanced
immune activation [112]. Dual TLR2/7 agonists were synthesized and characterized
based on their latency-reversing ability, which were found to effectively reactivate the
latency. TLR2 components reactivate HIV by NF-κB stimulation and the secretion of
IL-22 (thereby enhancing the antiviral state and inhibiting HIV infection), whereas TLR7
components induce the secretion of TNF-α [112]. The activation of TLR2 in vivo has been
assessed against rhinovirus infection [132]. Airway epithelial cells promote an extended
immune response characterized by IFN-λ expression, NF-κB activation, and lymphocyte
recruitment, resulting in a reduction in viral-induced inflammation and continued antiviral
innate immunity [132].

TLR3 (the first identified antiviral TLR) in humans confers protective immunity against
vaccinia virus (VACV) infection. In contrast, TLR3 is responsible for the detrimental
effects of VACV infection in mice and TLR4 has the same effect in humans [133,134]. The
recognition of dsRNA by TLR3 is further evidence of the role of TLRs in the antiviral
response [119,126,135]. TLR3 signaling can be activated by a synthetic dsRNA agonist
(a potent immune stimulant), resulting in protective immunity against multiple viruses
including coronaviruses [136–139]. Viral-origin ssRNA sequences (rich in GU- and AU-)
are detected by TLR7 and TLR8, which are functionally similar and only differ with respect
to their expression patterns [113,130]. TLR7/8 expression is evident in dendritic cells,
monocytes, and macrophages [140]. Additional examples are listed in Table 4.

Table 4. Reported antiviral agonists employing Toll-like receptors (TLRs).

Drugs TLRs Viruses Significance References

Pam2CSK4 TLR2 Parainfluenza Reduced virus
replication [141]

INNA-051 TLR2 SARS-CoV-2 Reduces viral
RNA load [142]

PIKA TLR3 Influenza A Reduces virus
load [143]

Poly ICLC TLR3 HIV Release of
IFN-α/β/γ [144]

NA6 TLR4 Norovirus Induction of
IFN-β [145]
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Table 4. Cont.

Drugs TLRs Viruses Significance References

MPL TLR4 VZV Stimulate
cytokines [146]

Flagellin TLR5 Influenza A Reduces virus
replication [147]

CBLB502 TLR5 ConA Activation of
NF-κB [148]

Pam2CSK4 TLR6 Parainfluenza Reduces virus
replication [141]

INNA-051 TLR6 SARS-CoV-2 Reduces viral
RNA load [142]

GS-9620 TLR7 HIV Reactivates
latency [112]

Vesatolimod TLR7 HIV Modest delay in
viral rebound [149]

R848 TLR7/8 Zika Activation of
NF-κB [150]

GS-9688 TLR8 HBV

Activation of
dendritic and
natural killer

cells

[151]

ODN2395 TLR9 Parainfluenza Reduces viral
replication [141]

CBLB502—Entolimod; ConA—Concanavalin A; GS-9688—Selgantolimod; R848—Resiquimod; NA6—
neoagarohexaose; VZV—Varicella-Zoster virus.

5. Possible Molecular Interactions of SARS-CoV-2 with TLRs

SARS-CoV-2 is not only associated with viral illness but also with disorders of im-
munopathology. DAMPs and viral components act as TLR ligands for their overactivation.
TLR4 (membrane-bound) and TLR3/7/8 (endosomal) play significant roles in the pro-
duction of cytokine storms. The ssRNA of SARS-CoV-2 is recognized by TLR7/8, and
after replication, the viral dsRNA is recognized by TLR3, which leads to TRIF-mediated
inflammatory signaling [152]. The MyD88-dependent pathway (leading to overactivation
of TLRs), related to the TRIF pathway, provides a possible link between SARS-CoV-2 and
TLRs [153]. The production of type I (IFN-α and IFN-β) and type III [IFN-λ (1/2/3)] IFNs
by TLRs is a significant antiviral feature that can be exploited for systematized viral control
as well as clearance [117,119,154]. Type I and III IFNs perform the same function (despite
their structural differences) in cellular signaling, although type III IFN receptors are primar-
ily localized to the epithelial surface (airway epithelial cells) [155]. Cytokines (type III IFN)
bind to their receptors, and the signal cascade is initiated by the JAK/STAT pathway, lead-
ing to the formation of IFN-stimulated genes [156]. Activation of the JAK/STAT pathway
induced by TLRs may lead to macrophage activation syndrome [157]. Virally infected cells
are killed by activated dendritic cells, natural killer cells, and macrophages stimulated by
IFN [158]. SARS-CoV-2 infection results in higher levels of chemokines and proinflamma-
tory cytokines in the blood [159,160]. These biological conditions lead to host cell death and
organ injury [161]. Hence, the synthesis of DAMPs amplifies inflammation by TLR binding
via the MyD88-dependent pathway. Elevated TLR stimulation, signaling cascades, and
NF-κB may influence the severity of COVID-19 [153]. The nutritional profile has a basic
influence on immunity. Compounds with immunomodulatory, anti-inflammatory as well
as antiviral characteristics can be helpful against SARS-CoV-2 infection [162]. Various stud-
ies have suggested encouraging results in the case of nutraceuticals [163,164]. Compounds
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including astaxanthin, curcumin, glycyrrhizin, hesperidin, lactoferrin, luteolin, quercetin
as well as resveratrol may inhibit and counteract the symptoms of COVID-19 [165–172].

Accordingly, IFN has been dynamically explored as a therapeutic target for COVID-19.
This is because the release of type III IFN in the lungs could be responsible for the observed
immunopathology of COVID-19 [173,174]. In contrast, type I IFN in combination with
antiviral drugs has exhibited the opposite results including reduced systemic inflammation
and viral clearance [173–175]. The synthesis of proinflammatory cytokines is associated
with MyD88-dependent pathways, whereas the activation of type I and III IFNs is linked
with the TRIF-dependent pathway [176,177] (Table 3). SARS-CoV-1 dsRNA and ssRNA are
not detected by TLR3 and TLR7 and show some protective dodging mechanisms; hence,
the same strategy could be used by SARS-CoV-2 [178,179]. The stimulation of TLRs by
SARS-CoV-2 is responsible for activation of the inflammasome and the subsequent release
of IL-1β and IL-6. Moreover, enhanced inflammasome activation is linked to non-promising
consequences in patients with COVID-19 [180]. TLR2 signaling is activated by SARS-CoV-2
infection (Table 5). Thus, blocking of the signaling has been proposed as a potential target
for the treatment of COVID-19 [181] because the strong effect of proinflammatory cytokines
leads to disease severity through the activation of TLR2 [182]. In the context of infection
with β-coronaviruses, MyD88, the TLR adaptor, has been reported to be a significant factor
in the release of a large number of inflammatory cytokines [183]. SARS-CoV-2 interacts
with various TLRs, directly or indirectly. Multiple interacting residues have been reported
in the literature considering PPI and the design of agonists/antagonists. The interacting
residues are based on experimental as well as computation studies. Only TLRs involved in
virus sensing and/or signaling are displayed (Table 5).

Multiple TLR (2, 4, 7, 9)-deficient macrophages were infected with the mouse hepatitis
virus. TLR2 deficiency resulted in the inhibition of TNF and IL6 expression as well as
inflammatory cytokine genes. In contrast, other TLR deficiencies had negligible effects on
these genes [182]. In the case of SARS-CoV-2, an inhibitor of TLR2 caused a noteworthy
reduction in cytokine and chemokine release. This study demonstrated the role of TLR2
in sensing viral invasion upstream of MyD88 [182]. The TRIF pathway activated by TLR3
showed a protective response against Middle East respiratory syndrome (MERS)-CoV and
SARS-CoV infections [184] (Tables 3 and 5). Mice lacking TLR3, TLR4, and TRIF adaptor
are exceedingly vulnerable to SARS-CoV and enhanced pulmonary infection, resulting in
a risk of mortality [185]. Moreover, a role of TLR4 has been identified in the pathology
of SARS-CoV-2, characterized by excessive inflammation in patients and activation of the
inflammasome [186,187]. TLR4 inhibition in animal models has been shown to decrease
lung injury by alleviating NF-κB pathway stimulation [188]. Viral infection and subsequent
inflammation results in the production of DAMPs that act as ligands for TLR4. Heat
shock proteins released from virus-infected cells act as TLR4 agonists [189]. TLR5 has been
proposed as a target against SARS-CoV-2 in the development of drugs and vaccines [190].

During cytokine storms, elevated levels of IL-6 in the serum have been observed
in patients with COVID-19 (Figure 1). TLR7 (activated by viral components) stimulates
the MyD88-dependent pathway, resulting in the release of ILs and TNF-α, particularly
IL-6 [191,192]. Structurally and phylogenetically similar receptors but different TLR7/8
agonists synthesize different cytokines [193]. ssRNA fragments in SARS-CoV-2 induced by
TLR7/8 have been detected [194]. Whole-genome sequencing of SARS-CoV-2 in comparison
with other coronaviruses (MERS-CoV and SARS-CoV) has revealed that TLR7 could be
significantly involved in COVID-19 as the viral genome contains more ssRNA motifs that
can bind to TLR7 [195]. Moreover, the TLR7 agonists imiquimod and imidazoquinolinone
(with a role in TLR7activation) are under investigation as potential therapeutics against
COVID-19. These drugs have been observed to decrease systemic inflammation and
innate immune activation due to their antiviral effects [196,197]. RNA and DNA rich in
unmethylated CpG islands can be recognized by TLR9. Both viral and mitochondrial
DNA enriched in the same sequence are associated with inflammatory responses involving
TLR9-mediated signaling. Moreover, the activation of p53 [198] and mammalian target of
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rapamycin (mTOR) is being considered as a therapeutic target against SARS-CoV-2. mTOR
blockers are also associated with the MyD88 and TLR9 pathways [199].

Table 5. The interaction of Toll-like receptors (TLRs) with SARS-CoV-2 and other coronaviruses.

Coronaviruses TLRs Interacting Residues of TLRs References

SARS-CoV-2

TLR2 Tyr323, Phe325, Val 348, Phe349 [182,200,201]

TLR3 His39, His60, His108, Asn515, Asn517, His539,
Asn541, Arg544, Ser571 [111,202,203]

TLR4 Arg264, Glu266, Asp294, Tyr295, Tyr296, Thr319,
Glu321, Lys341, Lys362, Gly363, Gly364, Arg382 [188,204,205]

TLR7/8 Phe349, Tyr356, Gly379, Val381, Phe408, Asp555,
Leu557, Gly584, Thr586 [114,206–208]

SARS-CoV

TLR3 His39, His60, His108, Asn515, Asn517, His539,
Asn541, Arg544, Ser571 [136,185,203]

TLR4 Arg264, Glu266, Asp294, Tyr295, Tyr296, Thr319,
Glu321, Lys341, Lys362, Gly363, Gly364, Arg382 [185,205]

TLR7/8 Phe349, Tyr356, Gly379, Val381, Phe408, Asp555,
Leu557, Gly584, Thr586 [207–209]

MERS-CoV

TLR3 His39, His60, His108, Asn515, Asn517, His539,
Asn541, Arg544, Ser571 [203,209]

TLR4 Arg264, Glu266, Asp294, Tyr295, Tyr296, Thr319,
Glu321, Lys341, Lys362, Gly363, Gly364, Arg382 [205,210,211]

TLR7/8 Phe349, Tyr356, Gly379, Val381, Phe408, Asp555,
Leu557, Gly584, Thr586 [207–209,212,213]

6. Promising Drug Targets in SARS-CoV-2

Possible and effective drug targets as well as therapeutic agents against SARS-CoV-2
have been suggested by various researchers worldwide [214]. For example, virulence
factors, enzymes, host-specific receptors, and glycosylated-structural proteins have been
identified in pathological conditions caused by the coronavirus [215]. Activators of tran-
scription signaling pathways, proinflammatory cytokines, Janus kinase/signal transducers,
and NSPs also play a crucial role in the pathology. Antiviral therapeutic strategies such
as drug repurposing depend on chemical and molecular interactions between the host
machinery and viral small molecules [215].

Low-molecular-weight molecules from plants (phytochemicals) have been tested for
their antiviral activity. Compounds extracted from plants have been shown to exhibit
antiviral activity against SARS-CoV in Vero cells. Lycorine was identified as the active
ingredient of Lindera aggregata, and it has been suggested that the plant extract and ly-
corine can be a good option for the development of novel antiviral drugs [7]. In plants,
secondary metabolites are produced by metabolic pathways, which are also referred to
as phytochemicals [216]. These metabolites have been screened for their efficacy against
microbes and viruses. Various phytochemicals have been shown to inhibit viral infec-
tion and replication [217]. Bioactive phytochemicals can improve and strengthen host
immunity. For example, less vulnerability to infections and assistance in the stoppage of
viral infections through host immune function have been observed with the treatment of
vitamins A and C [218]. Various in vitro, in vivo, and in silico models using marine-derived
natural compounds exhibiting promising anti-SARS-CoV-2 efficacy have been previously
summarized [219].

Various proteins including ACE-2, RdRp, 3CLpro, PLpro, RBD, and cathepsin L
could be operative therapeutic targets [67,198,220–223]. Although several molecules have
been suggested as drug candidates, currently, there are no accessible operative anti-CoV
mediators. Molecular interactions between ACE2 and SARS viruses are determinants
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of the initial infection. Hence, renin–angiotensin–aldosterone system (RAAS) inhibitors
may modify ACE2 expression, resulting in reduced SARS-CoV-2 virulence. ACE2 (type I
transmembrane-metallocarboxypeptidase enzyme) controls the effects of RAAS and is a
key receptor for both SARS-CoV-1 and SARS-CoV-2, which facilitates entry into human
lung cells through the S protein of the coronavirus [224–228]. Considering the complexity of
the pathogenesis of SARS-CoV-2, clinically approved drugs that stimulate ACE2 may serve
as operative anti-SARS-CoV-2 therapeutics [229]. ACE inhibitors (captopril) stimulate the
ACE2/angiotensin (1–7)/receptor axis [230]. In animal models, treatment with angiotensin
receptor blockers was shown to enhance ACE2 expression [231,232]. The ACE2–RBD
complex is proteolytically regulated by type-2 transmembrane cellular serine protease
(TMPRSS2), which leads to ACE2 cleavage and S protein activation [233]. The RBD (S
protein) of SARS-CoV-2 contains more ACE2-interacting residues (Tyr473, Gln474, Cys488,
Tyr489, Val524, and Cys525) than that of SARS-CoV, and is involved in loop formation.
These mutations are evident in the sequence (RBD) of SARS-CoV-2 [234–236]. Moreover,
two binding hotspot residues (Lys31 and Lys353) have been reported to be more sensitive
to S protein binding. Lys31 and Lys353 formed salt-bridge(s) with Glu35 and Asp38,
respectively, surrounded by a hydrophobic region [237]. Additionally, other studies support
the development of promising ACE2 inhibitors for SARS-CoV-2 [220,238,239].

In the case of glycosylated S protein, membrane fusion inhibitors for the S2 subunit and
antibodies (monoclonal) targeting the S1 subunit could be operative therapeutic mediators
to treat coronavirus infection. Vaccine development has also been promoted against
coronaviruses. Small-molecule inhibitors (SMIs) might be suitable for inhaled and/or oral
administration, exhibit less mutation and strain sensitivity, are less immunogenic, and
convenient. Novel drug-like SMIs (DRI-C23041 and DRI-C91005) have been identified.
These SMIs inhibit the interaction between S protein and human ACE2 [34]. Moreover,
griffithsin, a compound derived from red algae, adheres to the SARS-CoV-2 glycosylated S
protein as well as to HIV [240]. Furin, a serine endoprotease, cleaves S1–S2 and may be
suitable as an anti-SARS-CoV-2 agent [241]. Emodin, a Rheum tangutica-derived compound,
not only inhibits the interaction between the ACE2 receptor and SARS-CoV-2 but also blocks
SARS-CoV ORF3a [242,243]. Moreover, the host protease is employed by SARS-CoV-2 for
the priming of the S protein. Camostat mesylate, an inhibitor of proteases, helps in the
infection of lung cell lines [244]. Similar to the S protein, other structural proteins as
well as NSPs have been highlighted as potential targets for the development of antiviral
drugs. In the RBD, 14 different potent residues of the S protein have been identified that
interact significantly with ACE2, resulting in the stability of the complex [245], while
15 significant residues in the RBD of the S protein have been reported in the case of the
Omicron SARS-CoV-2 variant [246]. Both of these studies analyzed (in silico) natural
compounds for their anti-SARS-CoV-2 bioactivity [245,246]. Additionally, terpenes (natural
compounds) have been suggested as anti-SARS-CoV2 binding agents between the RBD
and ACE2 receptor. Terpenes showed a strong affinity for RBD and inhibited its interaction
with ACE2 [245].

Toremifene, a nonsteroidal selective estrogen receptor modulator, was found to block
the viral replication of coronaviruses such as MERS-CoV and SARS-CoV [247] and the Ebola
virus [248] by targeting viral membrane proteins. Hence, it has also become a potential
candidate inhibitor of SARS-CoV-2 replication [248]. Moreover, a team of researchers
proposed a region (residues) in the M protein for the development of novel drugs and/or
peptides to block dimer formation [249]. The interaction of the M protein (heterodimer)
with the S and E proteins (via PPIs) has been proposed by computational analysis, and key
amino acids for the M–E complex (W55, F96, F103) and M–S complex (Y71, Y75) have been
identified [250].

A high percentage of E protein is expressed inside the infected cells, which is re-
sponsible for viral assembly, maturation, budding, and proliferation [35,40,214]. The
percentage similarity of the SARS-CoV-2 E protein sequence with that of other coron-
aviruses (96.1%) [31] demonstrates the potential for repurposing and/or development of
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pan-anti-corona drug candidates. Small molecules (phytochemicals) such as belachinal,
vibsanol B, and macaflavanone E have been evaluated for the inhibition of E protein activity
by in silico analyses [251].

The N protein exhibits essential activities such as proliferation of the virus as another
important component, similar to other SPs. This provides a promising area for developing
effective therapeutics to inhibit viral proliferation. For example, glycogen synthase kinase-3
(GSK-3), also known as serine/threonine protein kinase, is an important component of N
protein phosphorylation. GSK-3 inhibitors inhibit N protein phosphorylation and result
in damaged proliferation (infected lung epithelial cells) in SARS-CoV-2 in a cell type-
dependent manner [252]. Candidate inhibitors of the N protein have been suggested by a
screening method on a biochip platform using a quantum-dot (QD) RNA oligonucleotide.
The novel anti-SARS potential of catechin gallate and gallocatechin has been identified.
These two molecules (0.05 µg/mL) presented more than 40% inhibition activity on a QD-
based RNA oligonucleotide system [253]. Computational analysis has suggested that
zidovudine triphosphate is a potent inhibitor of the N protein of SARS-CoV-2 [254]. Based
on an in silico approach, another repurposing study shed light on vanganciclovir, which is
approved for treating patients with HIV and shows activity against N protein as well as
the main protease [254].

SARS-CoV-2 depends on proteases of the Golgi apparatus to synthesize NSP1–16
in the host cell [27]. NSP3 [papain-like protease (PLpro)] is a multidomain protein and
the largest protein in the coronavirus genome. Several regions of the NSP3 gene are
involved in viral replication. NSP3 contains a SARS-unique domain that can attach to
G-quadruplexes, which are guanine-rich non-canonical nucleic acid structures that are
essential for SARS-CoV replication. SARS-CoV-2 NSP3 shows structural similarities [255].
By developing a protease assay and screening a custom compound library, two molecules
(dihydrotanshinone I and Ro 08-2750) were identified to significantly inhibit PLpro in
protease. Additionally, the inhibition of viral replication was evaluated by an isopeptidase
assay using cell culture [256]. Another protease, NSP5 (3CLpro), was identified as a primary
target (similar to PLpro) for coronavirus drug discovery. Both of these targets are crucial and
have conserved activity in the proteolytic processing of viral replicase polyproteins [257].

Coronaviruses encode two or three proteases that cleave replicase polyproteins. Many
NSPs assemble into the replicase–transcriptase complex, which generates a reasonable
environment for RNA synthesis and subsequent replication as well as the transcription of
sub-genomic RNAs [258]. Replicase polyproteins 1a and 1ab are comprised of NSPs11 and
16, respectively [259]. MPro (the main protease), commonly known as NSP5, is employed
for the cleavage of these polyproteins, exhibiting crucial events of viral assembly and
maturation [259]. MPro is a dimer (306 residues) with two identical monomers, and is a sig-
nificant target responsible for viral polyprotein cleavage 1ab at 11 (a major cleavage site), re-
quired for generating the NSP7–NSP8–NSP12 complex (viral replication complex) [260,261].
Residues interacting with two novel inhibitors against MPro have been identified: His41,
Met49, Met165, Val186, Asp187, Arg188 as well as Gln189, exhibiting hydrophobic and
H-bonding. Both inhibitors reside in the substrate-binding site and inhibit the enzymatic
activity of MPro in SARS-CoV-2 [261].

Targeting highly conserved genes and/or proteins including RdRp (NSP12), MPro,
and helicases is a promising antiviral drug development approach to inhibit the replication
and proliferation of SARS-CoV-2 [262]. Hence, inhibitors targeting these enzymes may
reduce the threat of mutation-mediated drug resistance and facilitate effective antiviral
protection [262]. A conserved motif (Ser-Aps-Asp) in the RdRp domain was identified
at the C-terminus. The binding and activity of RdRp were enhanced by the NSP7–NSP8
(cofactor) complex. This binding stabilizes the entire closed conformation, which is packed
beside the thumb–finger interface. The binding residues between the RdRp and RNA
complex and RdRp docking to develop inhibitors have been extensively studied [78–80].

The inhibition of RdRP is important as one of the key strategies for developing antiviral
therapeutics. The selective inhibition of RdRp may not cause noteworthy side effects
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or toxicity in host cells [263]. Natural compounds and their derivatives have exhibited
significant binding affinity to RdRp [264–266], with promising outcomes that require
further investigation.

NSPs 7–16 are responsible for coronavirus RNA synthesis and processing, which
generate two large replicase polyproteins by cleavage. SARS-CoV-2 possesses a large
number of enzymes that are responsible for RNA synthesis as well as RNA processing. The
genome that is expressed and replicated by enzymes is two to three times larger than that
of any other RNA viruses. RdRp is an important drug target because of its vital role in
generating viral RNA [77–80].

Coronaviruses possess three important virulence factors: NSP1, NSP3c, and ORF7a.
These factors help in the escape of viruses from host innate immunity and may be potential
drug targets [55,267]. NSP1 and NSP3c interact with the host 40S ribosomal subunit and
adenosine diphosphate-ribose, respectively. This leads to the degradation of mRNA and
the inhibition of type-I IFN synthesis by NSP1, while NSP3c assists viruses to counterattack
the immune response of the host [55,268]. ORF7a is directly attached to bone marrow
matrix antigen-2 (BST-2) and has the ability to stop its glycosylation. BST-2 plays a specific
role in regulating the release of newly synthesized viruses [267,269].

7. Conclusions

SARS-CoV-2 is recognized by various TLRs. Surface (TLR2 and 4) and intracellular
(TRL3, 7/8, and 9) factors have been reported to be involved in the perception of SARS-CoV-
2 infection by the immune system. Multiple adaptors such as MyD88 and TRIF are recruited
by TLRs to initiate downstream signaling pathways. Various protein targets from viruses
and the host machinery have been suggested as potential drug targets against SARS-CoV-2.
Protein targets from viruses include both structural and nonstructural proteins. Similarly,
TLRs are functional protein targets during SARS-CoV-2 infection.
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