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Abstract: The heart is a hierarchical dynamic system consisting of molecules, cells, and tissues, and
acts as a pump for blood circulation. The pumping function depends critically on the preceding
electrical activity, and disturbances in the pattern of excitation propagation lead to cardiac arrhythmia
and pump failure. Excitation phenomena in cardiomyocytes have been modeled as a nonlinear
dynamical system. Because of the nonlinearity of excitation phenomena, the system dynamics could
be complex, and various analyses have been performed to understand the complex dynamics. Under-
standing the mechanisms underlying proarrhythmic responses in the heart is crucial for developing
new ways to prevent and control cardiac arrhythmias and resulting contractile dysfunction. When
the heart changes to a pathological state over time, the action potential (AP) in cardiomyocytes
may also change to a different state in shape and duration, often undergoing a qualitative change
in behavior. Such a dynamic change is called bifurcation. In this review, we first summarize the
contribution of ion channels and transporters to AP formation and our knowledge of ion-transport
molecules, then briefly describe bifurcation theory for nonlinear dynamical systems, and finally detail
its recent progress, focusing on the research that attempts to understand the developing mechanisms
of abnormal excitations in cardiomyocytes from the perspective of bifurcation phenomena.

Keywords: action potential; nonlinear dynamical system; bifurcation theory; afterdepolarizations;
cardiac arrhythmias

1. Introduction

We can observe a wide variety of dynamics in life phenomena. Dynamics are the
changes in states of a system over time. The system is defined as a set of objects with
functions; if the states of the system change with time, then the system is called a dynamic
system. A mathematical model is a description of the rule for state changes in the system,
and such a model is called a dynamical system [1,2].

The heart is a highly hierarchical dynamic system consisting of molecules, cells, and
tissues [3–5]. It is well known that cardiac muscle cells cause an electrical excitation. To
reproduce the excitation phenomena observed in cardiac cells, many mathematical models
have been proposed. Excitation is a nonlinear phenomenon; the excitatory dynamics
of cardiomyocytes modeled as a nonlinear dynamical system could be complex. For
understanding complicated dynamics, various methods based on nonlinear dynamical
system theories have been utilized.

Electrical phenomena in the heart are initiated with the spontaneous excitation evoked
in pacemaking cells in the sinoatrial (SA) node, followed by the excitation conduction to
the atrium, atrioventricular (AV) node, His bundles, Purkinje fiber, and ventricle [6]. By
regularly repeating the precise and coordinated excitation propagation, the heart plays an
essential role as a circulating blood pump. Cardiac arrhythmias are disturbed heartbeats or
uncoordinated excitation propagations.

In the 1980s–1990s, the idea of dynamical diseases was proposed by some researchers
[7–9]. The idea assumes the existence of a certain kind of nonlinear dynamical system

Biomolecules 2022, 12, 459. https://doi.org/10.3390/biom12030459 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12030459
https://doi.org/10.3390/biom12030459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-7457-3125
https://doi.org/10.3390/biom12030459
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12030459?type=check_update&version=1


Biomolecules 2022, 12, 459 2 of 33

behind phenomena evoked in the heart and then links the normal function of the heart, i.e.,
normal heartbeat, to a stable state of the nonlinear dynamical system. This will allow us
to consider the regular and coordinated excitation propagation that underlies the normal
heartbeat as one of the desirable stable states for the cardiac system. Furthermore, the
phenomenon that cardiac excitations and/or propagations are disturbed by ischemia, stress,
drug action, etc., which is called arrhythmia, can be considered as the dynamical disease. In
other words, cardiac arrhythmias can be captured as state changes in the cardiac system,
with the desirable stable state being changed into another undesirable one by changing
system parameters in the heart related to many factors.

Understanding how the proarrhythmic response occurs in the heart is extremely im-
portant for developing new ways to prevent and control cardiac arrhythmia and contractile
dysfunction. Based on the concept of dynamical disease, a change in some of the system
components may cause a breakdown in the electrical excitation of cardiomyocytes; this
is a transition from a normal stable state to another stable state. Such a state change, a
qualitative change in system behaviors, or a sudden change of phenomenon, is called a
bifurcation (or bifurcation phenomenon) in nonlinear dynamical systems theory [10–13].
Bifurcation analysis is the search for system parameters whose changes abruptly alter sys-
tem behaviors. This review summarizes recent progress in understanding the mechanisms
of normal and abnormal excitations observed in cardiomyocytes from the perspective of
bifurcation phenomena.

2. Ionic Mechanisms of Excitations in Cardiomyocytes

Working cardiac muscles such as atrial and ventricular myocytes are excitable cells
(excitable membrane) and are quiescent at a constant potential called “resting membrane
potential” (−80 to−90 mV) in the absence of an external stimulus. The membrane potential
of atrial and ventricular myocytes changes transiently upon the input of an appropriate
external stimulus that depolarizes the membrane potential above a threshold level. This
membrane potential change is referred to as an action potential (AP). On the other hand,
specialized cardiac muscles such as sinoatrial node and atrioventricular node cells do not
have a constant resting membrane potential, but spontaneously and periodically generate
APs. In both cases, membrane potential changes are caused by the movement of ions into
and out of the cell through ion-transport molecules such as ion channels and transporters
embedded in the cell membrane.

To understand how the proarrhythmic behavior of cardiomyocytes occurs, it is nec-
essary to understand the mechanism of normal AP generation. To achieve this, the ionic
contribution to APs should also be understood. In the following, we first summarize ion
homeostasis in cardiomyocytes and the mechanisms of AP generation. The biophysical
mechanisms of abnormal APs related to arrhythmogenesis will then be summarized.

2.1. Mechanisms for Maintenance of Ion Homeostasis

The electrical activity of the heart, e.g., AP generation, is regulated by a variety of
ion-transport proteins such as ion channels and ion transporters/exchangers embedded
in the cell membrane. In cardiomyocytes, the intra- and extracellular environments are
separated by a lipid bilayer membrane, and there are differences in ion concentrations. The
major ions that contribute to AP generations in cardiomyocytes are Na+, K+, and Ca2+,
and the extracellular concentrations of Na+ and Ca2+ are higher than their intracellular
concentrations. For example, when Na+ or Ca2+ channels are opened within the range of
physiological membrane potentials, the ions move from the outside to inside the cell by
diffusion according to an electrochemical gradient, increasing their intracellular concentra-
tions. On the other hand, the intracellular K+ concentration is higher than the extracellular
K+ concentration. Thus, the opening of K+ channels results in the outflow of K+ ions from
inside to outside the cell. When only K+ channels remain open, the membrane potential
will reach the reversal potential of the K+ channel, i.e., the equilibrium potential for K+. If
all types of ion channels, Na+, K+, and Ca2+ channels, continue to open, then the concen-
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tration of each ion in the intracellular solution will reach that of the extracellular solution
because of the thermodynamic principle. However, the intracellular ion concentrations are
always maintained within certain ranges different from extracellular ones. In particular,
the intracellular Ca2+ regulation (or Ca2+ handling) in cardiomyocytes is not only crucial
for muscle contraction and relaxation but is also involved in the regulation of ion channel
function through Ca2+-dependent signaling as a second messenger [14–16]. Furthermore,
intracellular Ca2+ handling is also involved in ion channel remodeling via changes in the
activity of transcription factors. Ca2+-handling abnormalities due to disruption of intracel-
lular Ca2+ ion homeostasis, such as those in ischemia, hypertrophy, and heart failure, are a
major cause of the development of lethal arrhythmias (for details, see reviews in [17,18]). In
cardiomyocytes, three transporters, Na+/K+ ATPase (NKA) [19–23], Na+-Ca2+ exchanger
(NCX) [24–26], and Na+-H+ exchanger (NHE) [27], play a key role in maintaining ion
homeostasis. NKA and NCX are electrogenic because they generate ionic currents, while
NHE is electroneutral. Therefore, it is NKA and NCX that are directly involved in AP
generation in cardiomyocytes.

NKA hydrolyzes ATP to generate chemical energy. The generated energy is used
to exchange three intracellular Na+ ions and two extracellular K+ ions against each elec-
trochemical gradient. When NKA works once, one extra cation is released from inside
to outside the cell. Therefore, the NKA current (INKA) is an outward current, which can
shorten the AP and hyperpolarize the resting membrane potential. So far, four isoforms
of the α subunit, α1, α2, α3, and α4, are found to be expressed in mammals and three
isoforms of the β subunit, β1, β2, and β3, have been identified [28,29]. The α1, α2, α3, α4,
β1, β2, and β3-subunits are encoded by the genes ATP1A1, ATP1A2, ATP1A3, ATP1A4,
ATP1B1, ATP1B2, and ATP1B3, respectively [30]. In rodents, α1 and α2 were the two major
isoforms [31], while in dogs and macaques, α1 and α3 were mainly expressed [32]. In the
human heart, three α isoforms, α1, α2, and α3, have been detected [32], and their expres-
sions have been estimated to be 62%, 15%, and 23%, respectively [33,34]. In particular, the
α1-subunit is widely distributed in the surface sarcolemma [24] and plays a major role in
regulating Na+ ion concentrations in the cytoplasm. The α2-subunit is mainly expressed in
the dyadic cleft and may play a special role in regulating the transport of Ca2+ released from
the sarcoplasmic reticulum via interaction with NCX [22]. The β-subunit is also essential
for the pump function and plays a role in the α-subunit stabilization.

The main function of NCX is to exchange three extracellular Na+ and one intracellular
Ca2+ [35–37]. At this time, the electrochemical potential energy of Na+ that is lost during
its transport is used to transport Ca2+ against its electrochemical gradient. At the resting
membrane potential in ventricular or atrial myocytes (~−80 mV), the ion Ca2+ is pumped
out of myocytes by NCX. Furthermore, NCX generates an ionic current (INCX) inwardly for
most of the time during AP generation. Thus, INCX can contribute to AP prolongations and
depolarize the resting potential in working myocytes. Note that NCX can generate outward
currents in the late phase of rapid AP depolarization where the membrane potential
overshoots before an increase in the intracellular Ca2+ concentration. INCX turns outward in
the late depolarization phase because the membrane potential becomes more depolarized
than the reversal potential of NCX. This is called the “reverse mode” of NCX, causing Ca2+

influx into the cell. The reverse mode leads to increased intracellular Ca2+ concentrations,
playing a role in the augmentation of the muscle contraction via the excitation–contraction
coupling.

NCX is a member of the huge Ca2+/cation antiporter superfamily [26]. Mammalian
cells express three NCX isoforms, NCX1, NCX2, and NCX3, which are encoded by the
genes SLC8A1, SLC8A2, and SLC8A3, respectively [38,39]. The representative of the cardiac
NCX isoform is NCX1.1 [35].

2.2. Ionic Mechanisms of Cardiac Action Potentials

The transmembrane potential in cardiomyocytes changes by approximately 60 to
120 mV with AP generation. APs initiate from the resting membrane potential in working
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myocytes (~−80 mV) or the maximum diastolic potential in specialized cardiomyocytes
(~−40 mV) that constitute the conduction system and exhibit automaticity. In working
myocytes, the resting membrane potential is mainly influenced by the inwardly rectifying
K+ channel current (IK1), which is mediated by the inward-rectifier K+ channel (Kir channel)
consisting of the Kir2.1 subunit encoded by KCNJ2 [40,41]. The IK1 also functions to termi-
nate the AP and to indirectly determine the excitability of cardiomyocytes. Furthermore,
the NKA contributes to the maintenance of the resting membrane potential [23].

APs (time evolution of the membrane potential) of cardiomyocytes differ in shape in
different parts of the heart, and also vary greatly between species. Here, we consider the
AP of human ventricular myocytes (see Figure 1).

Biomolecules 2022, 12, x FOR PEER REVIEW 4 of 33 
 

genes SLC8A1, SLC8A2, and SLC8A3, respectively [38,39]. The representative of the car-
diac NCX isoform is NCX1.1 [35]. 

2.2. Ionic Mechanisms of Cardiac Action Potentials 
The transmembrane potential in cardiomyocytes changes by approximately 60 to 120 

mV with AP generation. APs initiate from the resting membrane potential in working 
myocytes (~−80 mV) or the maximum diastolic potential in specialized cardiomyocytes 
(~−40 mV) that constitute the conduction system and exhibit automaticity. In working my-
ocytes, the resting membrane potential is mainly influenced by the inwardly rectifying K+ 
channel current (IK1), which is mediated by the inward-rectifier K+ channel (Kir channel) 
consisting of the Kir2.1 subunit encoded by KCNJ2 [40,41]. The IK1 also functions to termi-
nate the AP and to indirectly determine the excitability of cardiomyocytes. Furthermore, 
the NKA contributes to the maintenance of the resting membrane potential [23]. 

APs (time evolution of the membrane potential) of cardiomyocytes differ in shape in 
different parts of the heart, and also vary greatly between species. Here, we consider the 
AP of human ventricular myocytes (see Figure 1). 

 
Figure 1. Schematic representation of a typical action potential (AP) in the ventricular myocyte and 
the respective ion channel currents that contribute to AP formation. It also indicates the major mol-
ecules that constitute ion channels and transporters (for the meanings of individual symbols, see 
text). 

By applying appropriate stimulation to ventricular myocytes in a resting state, the 
cell membrane is depolarized. Depolarization of the membrane potential first activates 
Na+ channels [42], which mainly consist of the NaV1.5α subunit [43] encoded by SCN5A, 
causing Na+ to flow into the cardiomyocyte. The influx of cations into the cell further de-

Figure 1. Schematic representation of a typical action potential (AP) in the ventricular myocyte
and the respective ion channel currents that contribute to AP formation. It also indicates the major
molecules that constitute ion channels and transporters (for the meanings of individual symbols,
see text).

By applying appropriate stimulation to ventricular myocytes in a resting state, the
cell membrane is depolarized. Depolarization of the membrane potential first activates
Na+ channels [42], which mainly consist of the NaV1.5α subunit [43] encoded by SCN5A,
causing Na+ to flow into the cardiomyocyte. The influx of cations into the cell further
depolarizes the membrane potential, leading to further activation of Na+ channels. As
a result, more Na+ ions flow into the cell, and depolarization is accelerated. The influx
of Na+ into the myocyte in a positive-feedback manner causes a very large inward Na+

channel current (INa) and rapidly depolarizes the membrane potential to form AP phase 0.
However, the inactivation of Na+ channels is also rapid, and INa will soon stop flowing.

Depolarization of the membrane potential also activates other ion channels such as
K+ and Ca2+ channels. Transient outward K+ channels, which are mainly composed of
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Kv4.3 and Kv4.2 α-subunits encoded by KCND3 and KCND2, respectively, in human and
canine ventricular myocytes [44,45], are activated following AP phase 0 and produce a large
transient outward K+ current (Ito) [46]. As a result, the membrane potential transiently
repolarizes to form AP phase 1. In human cardiomyocytes, the Kv1.4 α-subunit is also
expressed, making up 10–20% of the Ito density [47,48].

Following the AP overshoot, Ca2+ channels [49] and delayed rectifier K+ channels [50]
are activated to form AP phase 2. There are two major subtypes of Ca2+ channels expressed
in cardiomyocytes: L-type Ca2+ channels (LTCCs) and T-type Ca2+ channels [51,52]. The
most abundant type expressed in ventricular myocytes is the LTCC (CaV1.2), which carries
Ca2+ currents through a pore-forming α-subunit (α1) encoded by the CACNA1C gene [46].
T-type Ca2+ channels (CaV3.1 and CaV3.2), encoded by the CACNA1G and CACNA1H
genes, respectively [53,54], are believed to be involved in the automaticity of the sinoatrial
node cell. However, their functional role in ventricular myocytes is not clear. Delayed
rectifier K+ channel currents, carrying K+ out of the myocyte, can be separated into a rapid
component (IKr) and a slow component (IKs) [50]. The IKr channel α-subunit is encoded by
a human ether-à-go-go-related gene (hERG) and is also called the hERG channel and Kv11.1
pore-forming α-subunit [55–57]. In addition, IKs is thought to be carried by the Kv7.1
channel encoded by the KCNQ1 gene [58–61]. Activation of the LTCC is sustained for a
relatively long time and results in a slow inward current (ICaL). On the other hand, IKr
and IKs carry outward currents, though there is only a small current flow of IKr during AP
phase 2 as hERG channels rapidly enter into the inactive state [62,63]. There is a certain
balance between the inward Ca2+ and outward K+ currents during this phase. This balance
forms the plateau phase (AP phase 2) in AP of the ventricular myocyte.

Eventually, LTCCs also become inactive due to the two mechanisms, voltage- and
Ca2+-dependent inactivation, and ICaL (inward current) becomes smaller. In the subsequent
phase (AP phase 3), the outflow of cations by IKr and IKs causes the membrane potential
to rapidly repolarize. Particularly for IKr, as the membrane potential starts to repolarize,
hERG channels recover from inactivation and carry more IKr. These larger outward currents
(IKr and IKs) contribute to the increased rate of repolarization. With the large flow of IK1
in the latter half of AP phase 3, the AP undergoes a transition from the repolarization
phase to the resting state (AP phase 4). After that, IK1 channels continue to discharge
K+ out of the cardiomyocyte, consequently flowing the outward current and maintaining
a deep resting membrane potential; NKA counteracts IK1 channels, returning K+ to the
intracellular space. The IK1 channels consist of the Kir2.1, Kir2.2, Kir2.3, and Kir2.4 pore-
forming α-subunits, which are encoded by the KCNJ2, KCNJ12, KCNJ4, and KCNJ14 genes,
respectively [40,41,64,65].

2.3. Mechanisms of Abnormal Action Potentials (Afterdepolarization)

APD prolongation in ventricular myocytes increases the risk of the development of
lethal ventricular arrhythmias such as torsades des pointes (TdP), often leading to cardiac
sudden death in long QT syndrome (LQTS) [66–69]. At present, inherited LQTS, which is
characterized by a congenital prolongation of QT interval, is subdivided into 17 different
types depending on where genetic mutations occur (LQT1~LQT17) [66–69]. For instance,
in patients with LQT1 and LQT2, the function of the ion channel responsible for IKs (LQT1)
or IKr (LQT2) is reduced by loss-of-function mutations of the K+ channels. In both cases, a
decrease in repolarization currents delays AP repolarization and prolongs the QT interval.
A genetic abnormality of NaV1.5 (LQT3) that causes persistent inward Na+ currents due
to impaired Na+ channel inactivation has also been observed; this can be called a gain-of-
function mutation of the Na+ channel. In the different genotypes, TdP may be precipitated
by physical or emotional stress (LQT1), a startle (LQT2), or may occur at rest or during
sleep (LQT3). These three types of LQTS account for more than 70% of all inherited LQTS
(genetic abnormalities of LQT1, LQT2, and LQT3 account for 30~35%, 20~25%, and 5~10%,
respectively) [68].
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Normally, the AP of cardiomyocytes is completed by sufficient K+ current flow during
the repolarization phase (late AP phase 2 and phase 3) of the AP (Figure 1). The presence of
multiple K+ current components such as IKs, IKr, and INKA, all of which act to repolarize the
AP, appears redundant as a system. However, the redundancy forms an available reserve
for AP repolarization. This concept is referred to as the “repolarization reserve” [70,71].
If these outward K+ channel currents, e.g., IKr and/or IKs, attenuate due to genetic ab-
normalities, drug actions, aging, etc., or if INa and/or ICaL continue to flow during the
plateau phase, then the repolarization is delayed, leading to excessive AP prolongation. In
particular, the continuation of the plateau phase where the membrane potential is within
the range of the ICaL window current can lead to an excessive accumulation of Ca2+ in the
cytoplasm. In this situation, abnormal behaviors called afterdepolarizations are likely to
occur [70,72,73]. Afterdepolarizations include early afterdepolarization (EAD), which is
the transient depolarization during the late AP phase 2 and phase 3, and delayed after-
depolarization (DAD) [74–76], which is the transient depolarization after AP completion,
i.e., in AP phase 4. Many experimental studies have suggested that the reactivation of
the LTCC current (ICaL) during AP phase 2 and phase 3 in ventricular myocytes is a key
mechanism of EAD formation [77–82]. Ca2+ is taken up into the cardiomyocyte by the Ca2+

influx through the LTCC. The LTCC activates at the membrane potential of approximately
−30~+10 mV, resulting in a relatively large inward current. On the one hand, the LTCC ex-
hibits a voltage-dependent inactivation (VDI) at the membrane potential of approximately
−50~0 mV. The LTCC inactivates during AP phase 2 and Ca2+ influx terminates. Thus,
during AP repolarization, ICaL by LTCCs flows within a range of the membrane potential
where the steady-state activation and inactivation curve of the LTCC overlap (see Figure 2),
known as “the ICaL window current region” [83,84]. AP repolarization results in recovery
from the inactivation state of LTCCs. As a result, the LTCC slightly reactivates in the AP
repolarization process and causes a small inward current. The repolarization of a normal
AP proceeds rapidly, so the period of time during which the membrane potential is in the
ICaL window current range is short. The time for reactivation of LTCCs is very short, and
sufficient current to cause EAD does not occur. However, when the repolarization reserve
is reduced, i.e., IKr or IKs or both are reduced, the time at which the membrane potential
is in the ICaL window current range lengthens. For this reason, ICaL can be augmented
by LTCC reactivation. At this time, an increase in the inward current component during
the AP repolarization phase causes the inward/outward current imbalance in the net
membrane current (Inet). Since IK1 is not yet activated during the late AP phase 2 and
early phase 3, the membrane resistance remains relatively high during these phases. This
means that even a slight current causes a large change in the membrane potential. As
a result, the first EAD is triggered in the late AP phase 2 to phase 3. As modulators of
AP with EADs, at least, intracellular Ca2+-handling (or SR Ca2+-handling), intracellular
Na+-handling, and the heart rate can be considered [85] (Figure 3). For example, inhibition
of NCX (e.g., by SEA-0400 administration [81]) primarily suppresses the Ca2+ efflux. As
a result, the increase in Ca2+ concentrations in the intracellular subspace ([Ca2+]ss) and
the cytoplasm ([Ca2+]i) promotes the Ca2+-dependent inactivation(CDI) of LTCCs and
secondarily decreases ICaL, consequently suppressing EAD formation [86,87]. Conversely,
enhanced NCX (e.g., by overexpression [82]) increases Ca2+ extrusion from the intracel-
lular to extracellular space, resulting in a decrease in [Ca2+]i (or [Ca2+]ss). The decrease
in [Ca2+]i (or [Ca2+]ss) suppresses the CDI of LTCCs and leads to an increase in the ICaL
window current, resulting in the promotion of EAD formation [88]. As exemplified by the
administration of digitalis, NKA inhibition results in a decrease in outward current, i.e.,
repolarization reserve attenuation, and thus contributes to facilitating EAD generation. As
suggested by Xie et al. [89], the membrane potential change via ICaL, INCX, and INKA, and
the interactions between intracellular Ca2+- and Na+-handling, influence the development
of EADs. Another possible mechanism of EAD formation is spontaneous Ca2+ release from
the sarcoplasmic reticulum (SR) [90], which will increase the Ca2+ concentration in the
cytoplasm. The spontaneous SR Ca2+ release is also the recognized mechanism of DADs;
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it has been reported that DADs are often accompanied by EADs [91–93]. As a result, the
outflow of Ca2+ by NCX and inward INCX are enhanced and may cause transient depolar-
ization of the membrane potential. For instance, the decrease in Na+ efflux due to chronic
inhibition of NKA causes an increase in the intracellular Na+ concentration ([Na+]i). This
adversely affects the activity of NCX, which operates by a loss of electrochemical energy
during the transfer of Na+ from outside to inside the cell. Consequently, increased [Ca2+]i
and [Ca2+]ss, and excessive Ca2+ accumulation in the SR ([Ca2+]SR) cause spontaneous
Ca2+ release from the SR to the cytoplasm, which in turn facilitates EAD generation via
NCX activation. Spontaneous SR Ca2+ releases have been suggested to induce EADs under
certain conditions such as β-adrenergic stimulation via enhancing inward INCX [94,95].
This mechanism for EAD formation may be applicable to the EAD in the late AP phase 3
observed under β-adrenergic stimulation in an LQTS patient [92].
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Figure 2. Relationships between membrane potential changes in response to depolarization and
repolarization in a normal AP without EAD (A) and an abnormal AP with EADs (B) and voltage-
dependent activation/inactivation of the L-type Ca2+ channel. Excessive APD prolongation due to
slow repolarization leads to a long-lasting stay of the membrane potential in the L-type Ca2+ channel
current (ICaL) window current region (blue areas), resulting in large reactivation of ICaL. SS-act:
steady-state activation curve (black lines); SS-inact: steady-state inactivation curve (red lines); Depo:
depolarization; Repo: repolarization.
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by Hodgkin and Huxley in the 1950s [96]. Since a cardiac cell model in mammalian 
Purkinje fiber, employing this Hodgkin–Huxley (H–H) formalism, was first developed by 
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Figure 3. Schematic diagram showing how the dynamics of individual ion channels, transporters,
[Ca2+]I, and [Na+]i contribute to EAD generation and regulation. The diagram depicts the major
functional components (IKs, IKr, ICaL, INCX, and INKA), factors involved in Ca2+- and Na+-handling,
heart rate (HR), and their interactions related to EAD generation and regulation. The upward
and downward arrows represent an increase (or enhancements) and decrease (or attenuations) in
each factor, respectively. A decrease in HR (bradycardia) decreases Na+ influx via the Na+ channel
activation, resulting in a decrease in [Na+]i. This reduction in [Na+]i facilitates EAD generation
through a decrease in outward INKA during AP phase 2. On the other hand, a decrease in HR
prolongs AP phase 4, i.e., diastolic interval (DI), and the prolongation of DI increases the amount of
Na+ influx through NCX and thus causes [Na+]i elevation. This [Na+]i elevation increases Na+ efflux
through NAK and outward INAK during AP phase 2. This may counteract the decrease in [Na+]i due
to reduced INa and the resulting reduction in INKA (modified from Figure 11 in [85]). For details of
other depicted interactions that affect EAD formation, see text.

3. Mathematical Cardiomyocyte Models and Bifurcation Phenomena

Mathematical modeling of the electrophysiological properties of cardiac cells origi-
nated from the first AP model of squid giant axon based on experimental measurements by
Hodgkin and Huxley in the 1950s [96]. Since a cardiac cell model in mammalian Purkinje
fiber, employing this Hodgkin–Huxley (H–H) formalism, was first developed by Noble [97],
mathematical models of heart muscle cells have been refined by incorporating diverse elec-
trophysiological data. At present, cardiomyocyte models have reflected not only differences
in cell types but also differences in experimental animal species, e.g., guinea pigs [98–101],
rabbits [102,103], mice [104–108], dogs [109–111], and humans [112–118]. However, there
are no substantial differences in the basic structures of mathematical models that reproduce
electrophysiological properties of cardiomyocytes (see Figure 4A). For details on electro-
physiological and mathematical models of heart muscle cells, refer to the original articles.
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Furthermore, review articles written by Noble [119] and Amuzescu et al. [120] detail the
history of changes in their models.
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Figure 4. Schematic diagram of the structure and electrical properties of a ventricular myocyte. (A):
Ion channel and transporter molecules embedded in the cell membrane, sarcoplasmic reticulum
(Ca2+ cycling), and Ca2+-binding molecules related to excitation and contraction. (B): An equivalent
circuit model of the cell membrane, composed of the ion channel conductance (g), membrane
capacitance (Cm), and electromotive force (E) representing ion concentration gradients. The current (I)
flowing through each voltage-gated ion channel is represented by the product of the time-dependent
variable conductance and driving force as the difference between the membrane potential (Vm) and
individual reversal potential. gx: maximum conductance of ion channels x, for x = Na+, Ca2+, K+,
etc.; INa: fast sodium channel current; Ito: transient outward K+ channel current; IKr and IKs: fast and
slow components, respectively, of delayed rectifier K+ channel currents; ICaL: L-type Ca2+ channel
current; ICaT: T-type Ca2+ channel current; IK1: inward rectifier K+ channel current; INKA: Na+/K+

ATPase current; INCX: Na+/Ca2+ exchanger current; Ip(Ca): Ca2+ pump current in the sarcolemmal
membrane; Jrel: SR Ca2+ release flux by Ca2+-induced Ca2+-release; Jup: Ca2+ uptake flux via Ca2+

pump (SERCA) in the SR; Jleak: Ca2+ leakage flux from the SR; JSR: junctional SR; NSR: network SR;
CMDN: calmodulin; TRPN: troponin; SS: a subspace of the myoplasm. For details of other symbols,
refer to references [99,114–117].
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3.1. Mathematical Models of Action Potential in Cardiomyocytes

The basic idea of the H–H formalism is just to consider the cell membrane as a simple
electric circuit (Figure 4B). The capacitive property of the cell membrane is represented as
the capacitor with a certain capacitance in the electric circuit. Na+, K+, and Ca2+ channels are
modeled as the conductors that have conductances denoted as gNa, gK, and gCa, respectively,
and batteries with the electromotive forces ENa, EK, and ECa, respectively. The electromotive
forces of these batteries correspond to reversal potentials of each ion channel, representing
ionic movements depending on ion concentration gradients across the cell membrane.
In addition to these ion channels, ATP-driven ion pumps that carry ions against the
concentration gradients, ion exchangers that exchange ions inside and outside the cell
membrane, and other ion transporters also exist on the cell membrane of cardiomyocytes
and generate currents. So, the membrane potential dynamics of cardiac cells are simply
expressed by differential equations of the electric circuit shown in Figure 4B, generally
described as a nonlinear ordinary differential equation as follows:

dVm/dt = −(Iion + Isitm)/Cm, (1)

where Vm is the membrane potential, Cm is the membrane capacitance, and Istim is the
external stimulation current that can be a constant, a time-dependent function, or a single
short pulse. Iion is the net ionic current through the ion channels, transporters, and pumps,
i.e., the sum of individual currents mediated by Na+, K+, and Ca2+ channels, NKA, NCX,
the Ca2+ pump, etc., and it is denoted as follows:

Iion = INa + IK + ICa + INKA + INCX + · · · . (2)

For example, the fast Na+ channel current INa in Equation (2) is denoted by the
equation INa = gNa × m3 × h × j × (Vm − ENa), which takes the form of (current) =
(conductance) × (voltage), i.e., Ohm’s law [99]. The voltage ENa is the Nernst potential or
the equilibrium potential of Na+. The Nernst potential is the potential where the tendency
of ions to move down their concentration gradient is exactly balanced with the force by the
electric potential difference; no Na+ current flows through the Na+ channel when Vm = ENa.
Furthermore, the term gNa × m3 × h × j denotes the conductance of Na+ channels, where
the constant gNa is the maximum conductance of the channel and m3 × h × j denotes the
temporal change of the conductance, that is, the channel open probability. The gating (state)
variables m, h, and j take (dimensionless) values between zero and unity and represent
the open probabilities of the activation (m), fast inactivation (h), and slow inactivation
(j) gates, respectively. Since the variable m is an increasing function of Vm and h (or j) is
the decreasing one, m and h (or j) are also called the activation and inactivation variables,
respectively, of the fast Na+ channel. The dynamic opening and closing of the gates are
described by the following equations:

dz/dt = αz(Vm)·(1 − z) − βz(Vm)·z, or dz/dt = (z∞(Vm) − z)/τz(Vm), (3)

z∞(Vm) = αz(Vm)·{αz(Vm) +βz(Vm)}−1, and τz(Vm) = {αz(Vm) +βz(Vm)}−1 (4)

for z = m, h, and j, where αz(Vm) is the rate constant for changing from a closed state to an
open state, and βz(Vm) represents the rate constant for the transition from the open state
to the closed state. In addition, z∞(Vm) is the steady-state open probability to which the
gating variable z asymptotically approaches at a given Vm, and τz(Vm) is the time constant
of relaxation to a steady state. Note that the rate constants αz(Vm) and βz(Vm), and the time
constant τz(Vm) are not constant but dependent on Vm.

It is known that the specialized cells in the conduction system of the heart, repre-
sented by SA node cells, spontaneously produce APs, which is the behavior referred to as
automaticity. This implies that AP dynamics can be repetitively produced without Istim
in Equation (1). On the other hand, atrial and ventricular myocytes known as working
myocardium are driven by a sinus rhythm originating from the SA node, that is, Istim
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represents a periodic current input that repetitively stimulates the working myocardium
at the sinus rhythm (regular rhythm). For instance, we assume that AP responses in a
working myocardium model, such as that shown in Equation (1), are evoked by periodic
external current stimuli (Istim). The temporal variations in Istim of the rectangular current
pulse are expressed as follows:

Istim(t) = Istim,max (0 ≤ t < T1),
Istim(t) = 0 (T1 ≤ t < T),

(5)

where T is the pacing cycle length (i.e., period of the current stimuli) and T1 is the duration
for which the stimulus current is sustained at the maximum value (Istim,max).

Mathematical models for cardiomyocytes, even now, continue to be refined by incorpo-
rating biophysical and biochemical processes. Elucidating the mechanism of proarrhythmic
behavior in cardiomyocytes using mathematical models does not necessarily mean reveal-
ing unknown proarrhythmic factors. Instead, we aim to understand the time evolution of
states, i.e., the dynamic phenomena of the cardiomyocyte. The AP evoked in cardiomy-
ocytes is dynamic, and bifurcation analysis has been utilized to understand its dynamical
behavior. Again, the purpose of such in silico studies is not only to model new molecular
components involved in the development of proarrhythmic responses in cardiomyocytes.
For that matter, such new components are often not the cause to be revealed through
modeling. For example, ventricular myocytes may exhibit an AP with multiple transient
depolarizations (EADs) during repolarization. The cause of EAD development is an ex-
cessive prolongation of the APD due to a decrease in repolarizing currents (or persistence
of depolarizing currents). However, how much prolongation of the AP causes EAD and
how many EADs occur during repolarization would not be able to be determined without
analyzing the dynamics of model equations describing temporal changes of membrane
potentials in the cardiomyocyte. This is also another motivation for such in silico studies.

Next, the bifurcation theory for nonlinear dynamical systems (bifurcation phenomena)
will be briefly explained. One of the characteristics of nonlinear dynamical systems is that
a slight change in a system parameter can cause a drastic change in system behavior. Such
bifurcation phenomena observed in the cardiomyocyte and the heart will be summarized.

3.2. Bifurcations in Nonlinear Dynamical Systems
3.2.1. Definitions of Dynamical Systems

There are various models of dynamical systems. Here, we consider a system with time
as an independent variable and with continuous state variables. Mathematical models that
describe the system behavior are different depending on whether the time is continuous or
discrete. In the former, the system is represented by a set of ordinary differential equations
(ODEs). In the latter, it is a set of ordinary difference equations (i.e., recurrence formulas).
Even if a mathematical model that we consider is continuous in terms of both states and
time and is described by ODEs, it may be treated as a discrete-time system by sampling
states at appropriate time intervals to analyze the behaviors of the system.

Now, we suppose that the nonlinear dynamical systems of interest are described by
the following equations:

dx/dt = f (x, λ), (6)

dx/dt = f (t, x, λ), (7)

where t is the time, x = (x1, x2, . . . , xn)Tr, λ = (λ1, λ2, . . . , λm)Tr, and f = (f 1, f 2, . . . , f n)Tr

are a state vector, parameter vector, and the vector field, respectively, and Tr represents
transposition. As shown in Equation (7), a system that explicitly includes time is called
a “non-autonomous system”. On the other hand, the system of Equation (6), which does
not explicitly include time, is called an “autonomous system”. Behaviors of the system
are different depending on whether it is an autonomous or a non-autonomous system,
and thus, the methods for analyses are also different. The specialized cardiomyocytes that
compose the conduction system in the heart possess automaticity (i.e., exhibit spontaneous
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and repetitive excitation), and do not require external stimuli for excitation. Therefore,
specialized cardiomyocytes such as sinoatrial node and atrioventricular node cells can be
modeled as autonomous systems. On the other hand, working myocytes such as atrial
and ventricular muscles are typical examples of excitable systems and can be modeled as
non-autonomous systems.

One of the characteristics of autonomous systems is that there can exist states where
the right-hand-side vector of Equation (6), which defines the state velocity, becomes zero.
The state where the velocity becomes zero, i.e., f (x, λ) = 0, is called the “equilibrium point”.
The resting membrane potential corresponds to the equilibrium point in the myocardium
system.

On the other hand, the non-autonomous system defined by Equation (7) includes time
t in the state velocity, i.e., the right-hand side of Equation (7). Formally, let us consider the
following autonomous system by considering time t as a new state variable τ (t = τ) and
rewriting Equation (7):

dx/dτ = f (u, λ), (8)

dt/dτ = 1, (9)

where u = (t, x)Tr. In this case, since the right-hand side of Equation (9) is unity, then the
right-hand side of the autonomous system of Equations (8) and (9) never becomes zero. In
other words, there is no equilibrium point in the non-autonomous system of Equation (7).
The states of a non-autonomous system flow at a constant speed in the direction of the time
axis. For this reason, it is necessary to devise methods of analysis for non-autonomous
systems, different from those for autonomous systems.

In this review, we will only consider the case where the vector field of a non-autonomous
system is periodic with respect to time, i.e., f (t + CL, x, λ) = f (t, x, λ), where CL is the period
of external stimulus applied to the working myocardium, i.e., the pacing cycle length. Such
a system is called a periodic non-autonomous system. Furthermore, states in such a system
possess a periodic nature: x(t + k × CL) = x(t), where k = 1, 2, . . . , m, which is also referred
to as a k-periodic solution. The periodic solution corresponds to the periodic oscillation
observed in the original system.

Suppose that a cardiomyocyte is repeatedly stimulated at a given CL (Figure 5A). The
CL has the following relationship: CL = APD + DI, where DI is the diastolic interval. Now,
let us write a relationship between the APD of AP evoked by the nth stimulus and that of
AP evoked by the next (n + 1)th stimulus as

APDn+1 = P(APDn), (10)

for n = 0, 1, 2, . . . , where P is a mapping, which is also referred to as the “Poincaré
map” [1,121–123]. This formula indicates that the APD of AP evoked by the (n + 1)th
stimulus (APDn+1) can be represented as a function of that of AP evoked by the nth
stimulus (Figure 5B). In other words, APDn is mapped to APDn+1 by the mapping P. If
an AP train behavior evoked in the original non-autonomous system of Equation (7) is
periodic and APDs of APs are equal for every stimulus, then APDn satisfies the following
relationship: APDn+1 − P(APDn) = 0. This situation is exemplified in Figure 5B. Such a
point in the (APDn, APDn+1)-plane as shown in Figure 5B is called a “fixed point”. Thus,
the periodic response observed in Equation (7) can be in one-to-one correspondence with
the fixed point of the Poincaré map P. Furthermore, if for some ` 6= 1, APDn = P`(APDn),
and if all Pk(APDn), k = 1, 2, . . . , ` − 1, are different each other, the periodic behavior
evoked in Equation (7) corresponds to an `-periodic point. This case can also be studied
simply by replacing P with P` or as the `th iterate of P. Usually, however, the explicit form
of P cannot be obtained. Therefore, the Poincaré map, in general, must be obtained by
acquiring the values of state variables for every CL in the numerical simulation.

In the following, we will briefly explain the bifurcation phenomena of equilibrium
points and fixed (periodic) points.
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of a parameter, an oscillatory response (or rhythmic dynamics), called the “limit cycle”, 
emerges, as illustrated by the thick circle with arrowheads in Figure 6A,B. For instance, 
cells in the myocardial sleeve of the pulmonary vein do not normally exhibit automaticity 
[126,127]. However, for some reason, they suddenly acquire spontaneous excitations (au-
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Figure 5. Examples of a dynamical system with continuous time and with discrete time. (A): An
action potential (AP) train evoked in a cardiomyocyte with stimuli (Istim) applied at a cycle length
of CL, which is a typical example of the response of a dynamical system with continuous time. AP
duration of the AP evoked by the ith stimulus is denoted as APDi for i = 0, 1, 2, . . . , n, . . . , k − 1,
k, . . . . (B): A point sequence consisting of APD values determined for the AP train and plotted on
the (APDn, APDn+1)-plane. If a mapping P (Poincaré map) is obtained to represent the relationship
between a point (APDn) and the next point (APDn+1), i.e., the dynamics of the point sequence, then
the differential system with continuous time is transformed into a difference system with discrete
time. The dynamics of such the difference system with discrete time can then be studied by projecting
the point sequence dynamics into the state space, e.g., (APDn, APDn+1)-plane. Thereby, it is possible
to examine the dynamics of the original differential system with continuous time more efficiently. In
general, the Poincaré map is difficult to obtain analytically and is mostly obtained numerically. For
examples of experimental and numerical methods for obtaining Poincaré maps, see [124,125].

3.2.2. Hopf Bifurcation

In autonomous systems, when the Hopf bifurcation is caused by changing the value
of a parameter, an oscillatory response (or rhythmic dynamics), called the “limit cycle”,
emerges, as illustrated by the thick circle with arrowheads in Figure 6A,B. For instance,
cells in the myocardial sleeve of the pulmonary vein do not normally exhibit automatic-
ity [126,127]. However, for some reason, they suddenly acquire spontaneous excitations
(automaticity), triggering paroxysmal atrial fibrillation [128]. The phenomenon such that
the convergence behavior to a stationary state (an equilibrium point) suddenly switches to
oscillatory motion (Figure 6C) is a typical example of the Hopf bifurcation [129].
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Figure 6. Hopf bifurcation. Examples of the dynamic responses to changes in the parameter λ in
the 2-dimensional (x, y)-state space (A) and 3-dimensional (x, y, λ)-space (B). Schematic examples of
membrane potential changes at the parameter λ0, λ1, λ2 in the 3-dimensional (x, y, λ)-space of panel
(A,C). Changing the system parameter λ, the stability of an equilibrium point (EP) changes via a
Hopf bifurcation. Before and after the occurrence of a Hopf bifurcation (λ*), a stable EP becomes
unstable with the emergence of a limit-cycle (LC) oscillation.

3.2.3. Saddle-Node Bifurcation

In the saddle-node bifurcation (or fold Bifurcation [123]) of equilibrium points, changes
in parameters cause stable and unstable equilibrium points to coalesce and disappear. Thus,
the number of equilibrium points can change (see Figure 7A). On the other hand, there are
also saddle-node bifurcation phenomena of periodic solutions in non-autonomous systems
(or of limit cycles in autonomous systems). As in the case of equilibrium points, this
bifurcation causes a pair of stable and unstable points to disappear or emerge (Figure 7B).
In numerical simulations, the states of equilibrium points and/or fixed (periodic) points
may jump significantly when the parameter infinitesimally changes from this bifurcation
point (this is referred to as a “jump phenomenon”). Moreover, a system that has reached a
new state via the saddle-node bifurcation cannot be returned to its original state, even if the
value of system parameters is returned to the bifurcation point (this phenomenon is called
“hysteresis”). The hysteresis and jump phenomena are associated with the development of a
bi- or multi-stable phenomenon of equilibrium points or periodically evoked APs [130,131].
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Figure 7. Saddle-node (SN) bifurcation. Schematic diagrams of the SN bifurcations of equilibrium
(A) and fixed (B) points. As simple examples, in the dynamical systems dx/dt = f (x, λ) (A) and
xn+1 = P(xn, λ) (B), the functions f (x) and P(xn) are varied up and/or down by changing system
parameter λ. The SN bifurcation of equilibrium points occurs when the curve of f (x) touches the
x-axis (dx/dt = 0 axis). On the other hand, the SN bifurcation of fixed points occurs when the curve of
P(xn) touches the diagonal line (xn+1 = xn) at a value λ* of parameters. After that, a node and a saddle
point emerge or disappear. A schematic diagram of Arnold’s tongue structure is also shown for a
non-autonomous system with stimuli of various amplitudes and frequencies (C). Colored regions
indicate parameter regions in which a periodic oscillation observed in an autonomous system can
be entrained by external periodic stimuli, e.g., the orange region represents harmonic synchronized
oscillation observed in the non-autonomous system. In general, the harmonic synchronized region
and even the sub-harmonic synchronous region (e.g., blue and green regions) are divided in the
parameter space by SN bifurcation sets. Oscillations that are asynchronous to the periodic stimuli,
such as quasi-periodic oscillations, appear when set to parameters outside the synchronization region.
f 0: an intrinsic frequency of the limit-cycle oscillation in the autonomous system.

Gadsby and Cranfield illustrated that there exist two stable resting (equilibrium)
states in the cardiac Purkinje fiber cell and that the application of a stimulus causes the
membrane potential to converge to different resting membrane potentials [132,133]. Jalife
and Antzelevitch demonstrated that when a brief depolarizing pulse was applied during
SA node pacemaking, spontaneous repetitive APs were annihilated and the membrane
potential converged to another stable state; that is, the resting state [134]. These are
typical examples that exhibited the bi-stability of two equilibrium states or a periodic
response and an equilibrium state. To list other examples of the hysteretic phenomenon,
previous experimental studies have investigated AP responses to changes in CL, i.e., rate-
dependence and restitution properties of APD, using cardiomyocytes of guinea pigs, rabbits,
and canines [124,135–137], and found hysteretic responses of APD to CL changes.
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Finally, this bifurcation phenomenon is also involved in an entrainment phenomenon.
The specialized cells in the conduction system of the heart, represented by SA node cells,
spontaneously and periodically produce APs, being typical examples of self-excited os-
cillatory systems. When such a self-excited system is perturbed by an external periodic
stimulus, if the ratio of the oscillation frequency (frequency of the limit cycle) of the self-
excited system and the frequency of the external stimulus is close to a simple rational
number, the self-excited oscillation may be entrained by the external periodic stimulus.
This is a kind of synchronization phenomenon and is also called “entrainment”. For exam-
ple, a periodic AP generated in the SA node periodically stimulates the atrioventricular
(AV) node (of a self-excited system) when it conducts from the atria to the ventricles. At this
time, the self-excited oscillation in the AV node is entrained by the excitation frequency of
the SA node cells, resulting in a synchronized periodic state. This frequency mismatch that
allows the AV node cell to be entrained is limited to a certain frequency range, depending
on the stimulus strength. The relationship between the frequency mismatch range, the
so-called “phase lock range”, and the stimulus strength is known to show a characteristic
structure (called “Arnold’s tongue structure” [123,138]), see Figure 7C. Then, the phase-
locked state may disappear with a saddle-node bifurcation when the stimulus frequency
or intensity changes. After that, asynchronous (quasi-periodic) rhythms may occur in
which two rhythms with different frequencies proceed with each other without much
interaction [9,131].

3.2.4. Homoclinic Bifurcation

The aforementioned saddle-node and Hopf bifurcations of the equilibrium point are
classified as “local bifurcations” because they are attributed to the stability change of
the dynamics near an equilibrium point. On the other hand, there also exist bifurcation
phenomena such that the behavior of the solution is developed over a large region within
the state space. These bifurcations are called “global bifurcations” because they are related
to the global behavior of the solution [123].

Stable (resp. unstable) manifolds are hypersurfaces within the state space formed
by sets of initial values approaching (resp. moving away from) an equilibrium point
or a limit cycle over time (Figure 8A). When system parameters change, the stable and
unstable manifolds of a given saddle equilibrium point may be connected and a closed orbit
(also called a “homoclinic orbit”) may emerge. This phenomenon is called “homoclinic
bifurcation”, see Figure 8B.

Miake et al. reported that in guinea pigs, the dominant-negative suppression of
Kir channels by viral gene transfer could convert ventricular myocytes that exhibit a
quiescent state into pacemaker-like cells that generate spontaneous and repetitive APs [139].
The study of mathematical modeling and bifurcation analyses on biological pacemaker
activity of ventricular myocytes by Kurata et al. [112] illustrated that the disappearance
of a resting state via a saddle-node bifurcation by suppressing IK1 evoked automaticity in
the ventricular myocyte. This change in dynamics seems to involve the occurrence of a
saddle-node homoclinic bifurcation [123] or a saddle-node on an invariant cycle (SNIC)
bifurcation [140], in which a saddle-node bifurcation and a homoclinic bifurcation at an
equilibrium point occur simultaneously (see Figure 8C, and Refs. [123,140] for details and
complete definitions).
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occur simultaneously.

3.2.5. Period-Doubling Bifurcation

The stability of a fixed point on the Poincaré section changes on the occurrence of this
bifurcation and a periodic orbit with a double period emerges or disappears (see Figure 9A).
The period-doubling bifurcation is also called a flip Bifurcation [123]. Typical examples of
this bifurcation are the development of AP alternans [141–144]. When a cardiomyocyte is
periodically stimulated at a given CL, the relation of APD and DI to CL is expressed as
CL = APD + DI. In general, if the CL is shortened, then both APD and DI are also shortened.
As the DI shortens, repolarization currents, especially IKs with relatively slow deactivation
kinetics, accumulate with each stimulus; IKs does not have an inactivation mechanism.
This implies that shortened DI causes IKs activation by the next AP generation before IKs
completely returns to its original state by deactivation. As a result of the accumulation of
activated IKs channels, the increased repolarization current accelerates AP repolarization,
leading to APD shortening and DI prolongation. The DI prolongation leads to more
progress in IKs deactivation and returns more IKs channels to a closed state. Thus, in
the AP generated by the next stimulus, the repolarization current decreases, resulting
in APD prolongation, i.e., DI shortening. This alternating change in APD, i.e., repeated
prolongation and shortening of APD during stimuli, can also be described as follows:

APDn = P2(APDn). (11)
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This is the phenomenon called “APD alternans”. APD alternans associated with
recovery from inactivation of Na+ channels has also been reported, albeit in in silico
studies [145,146]. Furthermore, the period-doubling bifurcation is known to successively
occur, resulting in a chaotic response [142,147]. This implies that SA node pacemaking
becomes irregular or arrhythmic [125], i.e., sinus arrhythmias occur via the sequence of
period-doubling bifurcations.
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Figure 9. Schematic diagrams of period-doubling and Neimark–Sacker bifurcations. (A): A typical
example of the period-doubling (PD) bifurcation in non-autonomous systems is AP alternans (i).
As the cycle length (CL) becomes shorter, the stable fixed point on the (APDn, APDn+1)-plane
becomes unstable at the period-doubling bifurcation point (λ*), and a pair of periodic points is
generated (ii). (B): The change in a limit-cycle (LC) oscillation through the Neimark–Sacker (NS)
bifurcation in autonomous systems. The NS bifurcation occurs at λ* as the parameter λ changes.
Then, the LC oscillation becomes unstable and a torus-like oscillatory response, so-called “quasi-
periodic oscillation”, occurs around the unstable LC oscillation. When the quasi-periodic oscillation
is discretized as a point sequence via the Poincaré mapping, a closed curve, which is referred to as an
“invariant closed curve (ICC)”, appears around the unstable fixed point that reflects the unstable LC
oscillation.
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3.2.6. Neimark–Sacker Bifurcation

If this bifurcation occurs, quasi-periodic oscillations may emerge or disappear (see
Figure 9B). In the state space, the stability of a fixed (or periodic) point on a Poincaré section
changes, and a certain point sequence emerges around the fixed (periodic) points. The point
sequence in a mapping constitutes a closed-loop such as a limit cycle in an autonomous
system. Because of this, it is called an “invariant closed curve (ICC)”. The ICC corresponds
to a doubly periodic (quasi-periodic) oscillation of the original periodic non-autonomous
system. The Neimark–Sacker bifurcation is also known as a torus bifurcation, or the Hopf
bifurcation in discrete systems [123].

To our knowledge, there exists no experimental evidence that changes in dynamics
via the Neimark–Sacker bifurcation were observed at a cellular level. On the other hand, an
experimental study demonstrated that the reentrant wave became unstable with fluctuating
circulatory time and APD, exhibiting a quasi-periodic pattern [148]. The excellent studies
by Qu et al. [149,150] reported that the meandering reentrant excitation wave exhibits quasi-
periodic dynamics. They focused on tip dynamics of spiral wave reentry. The reentrant
excitation wave was periodically sampled and a return mapping of its tip dynamics was
constructed; as the conductance of LTCCs was increased, point sequences generated by the
return mapping changed from fixed point-like sequences to a closed-loop shape. In the
context of bifurcation theory, this closed-loop is a certain type of ICC, and the emergence of
ICC implies a dynamics change via the Neimark–Sacker bifurcation.

3.2.7. Bifurcation Analysis

Bifurcation analysis involves the investigation of bifurcation phenomena by obtaining
a set of parameter values that cause bifurcation (bifurcation set) and a graph of these sets
(bifurcation diagram). Even now, many researchers manually track their bifurcation sets
by trial and error. These days, however, we can use powerful computational tools, for
instance, AUTO [151,152], XPP-AUT [153], MATCONT [154], etc., to perform bifurcation
analyses. Furthermore, a unique bifurcation analysis tool was developed by Kawakami
in 1984 [155]. Since then, this tool has continued to be improved by him and his co-
workers [156]. Parker and Chua showed a concrete procedure for the numerical calculation
of bifurcation sets [157]. We will leave the details on the bifurcation phenomena of equilib-
rium points and their analyses to other references [2,10,13,152], and recommend relevant
literature [1,10,158] as a good source for these topics. For readers who are interested in
the bifurcation analysis of dynamical systems, we recommend an excellent monograph
by Kuznetsov [123], which summarizes bifurcation phenomena from the standpoint of
applications and would clarify the points that could not be explained in this review.

4. Bifurcation Analyses of Proarrhythmic Behaviors

Bifurcation analysis examines a sudden change in dynamic behaviors depending on
changes in system parameters and enables us to determine the parameter ranges over
which the AP response is stable and the transition mechanisms of the AP responses. One
expectation for bifurcation analysis may be to know how to control dynamic responses
such as APs from the viewpoint of prediction and/or prevention. When abnormal APs
in cardiomyocytes occur, we will hope to control their dynamics and restore them to
normal APs. However, in general, we have no way of knowing when, where, and how
the parameters of a system should be modified to attain the best control and restoration.
Bifurcation analysis is a way to gain insight into the fundamental properties of dynamical
systems, and thus, may be able to provide helpful clues for controlling the AP response in
cardiomyocytes.

4.1. Bifurcation Analyses of Cardiac Cell Models

In early studies, primitive mathematical models that assume only myocardial excitabil-
ity and its refractoriness have been utilized to understand the complex dynamics of APs
evoked in cardiomyocytes. Analyses of the AP dynamics evoked in these simple models
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helped to understand the dynamical mechanisms of the AV conduction block [144,159,160]
and the modulation of the SA node pacemaker by the sympathetic and parasympathetic
nervous systems [161–164]. Furthermore, the arrhythmia models of parasystole, in which
the ventricle (or atria) is doubly governed by an ectopic pacemaker in addition to the
pacemaker rhythm of the SA node, have been analyzed and the generative conditions for
complex proarrhythmic dynamics of cardiac excitations, such as bigeminy and trigeminy,
have been theoretically clarified [165,166].

As the electrophysiological refinement of cardiomyocyte models has progressed, stud-
ies targeting cardiac excitation dynamics of a higher degree of freedom have become
mainstream. SA node cell models described as the autonomous system are compatible with
existing computational tools such as AUTO, XPP-AUT, and MATCONT for bifurcation
analysis [151–154]. Therefore, SA node cell models have been suitable for bifurcation
analyses and have been utilized to elucidate how individual components consisting of
ion-transport molecules contribute to normal pacemaking in SA node cells [167–176]. Bifur-
cation analyses were also utilized to examine the generation of abnormal oscillations or
biological pacemaker activity in ventricular myocytes [177–180]. On the other hand, bifur-
cation analyses of periodic non-autonomous systems such as paced atrial and ventricular
myocytes [181–183] require some kind of ingenuity because it is difficult to apply existing
analysis tools to non-autonomous systems without modification. By artificially generating
periodic stimuli corresponding to the SA node pacemaking and applying the periodic
stimuli to atrial/ventricular myocytes while adjusting the pacing cycle length (PCL), the
corresponding APD of the AP train evoked in the cardiomyocyte at every set PCL can be
measured experimentally. From the experimentally obtained data, it is possible to derive
a one-dimensional discrete dynamical system (e.g., Equation (10)) describing the time
evolution of periodic AP trains based on the relationship between the PCL and APD. By
investigating bifurcations in the one-dimensional discrete dynamical system, the dynamical
mechanisms of abnormal APs observed in the original non-autonomous system (cardiomy-
ocyte with periodic stimuli) have been elucidated. Furthermore, the guinea pig ventricular
myocyte model developed by Luo and Rudy (LRd1 model) [184] has often been used for
bifurcation analyses of AP dynamics observed in ventricular myocytes [141,185–189]. Al-
though the LRd1 model is classified into a periodic non-autonomous system, investigations
of bifurcation phenomena observed in the LRd1 model were first started from a perspec-
tive of an autonomous system, that is, analyzing bifurcations of equilibrium points when
the amplitude of constant depolarized current stimuli was changed. As a result, various
bifurcation phenomena, such as abnormal spontaneous oscillations evoked in ventricular
myocytes, have been studied. As will be shown in the next section, the pioneering work
of Tran et al., who explained the mechanism of EAD development in terms of bifurcation
theory, has also used the LRd1 model [190].

Since the LRd1 model was published in 1991 [184], cardiomyocyte models have become
more sophisticated and complex in the past 30 years [101,114–118,191–193]. Although
intracellular ion concentration changes were not taken into account in the LRd1 model,
by integrating intracellular and extracellular ion concentrations into some cardiomyocyte
models as state variables, it is currently possible to examine the effects of intracellular Ca2+-
handling and Na+-handling on AP dynamics [194–196]. Bifurcation analyses using such
cardiomyocyte models with a higher degree of freedom were previously difficult due to
low computational power and computing performance, but have recently become possible
with improved computer performance [85,130,131,197–199]. In the following section, we
summarize bifurcation analyses of the AP with EADs observed in more sophisticated
cardiomyocyte models.

4.2. Bifurcation Analyses of Early Afterdepolarizations

To understand dynamic mechanisms underlying repolarization abnormality, i.e., the
development of EAD, the effects of changes in the maximum conductance of various ion
channels on APs with EAD observed in aforementioned various ventricular myocyte mod-
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els have been investigated [81,112,114,117,184,200]. So far, many experimental [201–204]
and theoretical [81,205–209] studies have shown that excessive AP prolongation results in
the occurrence of EAD. Assuming decreases in IKs for LQT1 and IKr for LQT2, the LQT1 and
LQT2 versions of human ventricular myocyte models, which can reproduce EADs during
β-adrenergic stimulation and bradycardia, respectively, have been constructed [85,130,198].
Relationships between EAD occurrence and changes in parameters that are related to factors
involved in the genesis and modulation of EAD such as repolarization currents (IKr and/or
IKs), ICaL, INCX, SR Ca2+ pump current (Iup), and heart rate have been comprehensively
examined [85,130,198].

How will EAD emergence caused by the LTCC reactivation be explained from the per-
spective of dynamical system theory? As a strategy to elucidate the generative mechanisms
of EADs [85,198], bifurcation analyses and AP simulations were combined (Figure 9a). First,
the model of human ventricular myocytes was regarded as an autonomous system, and
bifurcation phenomena of equilibrium points and limit cycles that occur in the system were
investigated using MATCONT [154] (see Figure 10A, top). Next, AP simulations of the
ventricular myocyte model, which is a periodic non-autonomous system, were performed
with a fixed set of parameters, and then a phase diagram was constructed by mapping the
information of steady-state AP responses (whether an EAD occurred or not) into a parame-
ter plane (or space) (see Figure 10A, bottom). After that, the bifurcation diagram obtained
by analyses of the autonomous system and the phase diagram for the non-autonomous
system were merged to examine the relationship of bifurcations and dynamic changes in
APs that occurred in the original system (Figure 10B). The moderately complex human
ventricular myocyte model proposed by Kurata et al. [85,112] (K05) and the more complex
models proposed by ten Tusscher et al. [114,115,198] (TP06) and O’Hara et al. [85,117]
(ORd) had a common mechanism for EAD development, namely the reactivation of LTCC.
Furthermore, EADs distinct in generation mechanism from LTCC reactivation-dependent
ones, i.e., those caused by spontaneous Ca2+ releases from the SR were identified in the
TP06 model [198]. In our previous study [130], whether the dynamic change of APs that
causes EAD can be explained as the occurrence of local bifurcations was directly investi-
gated for APs observed in the K05 model as a periodic non-autonomous system without
modification (Figure 10C,D). Consequently, it was found that there were parameter regions
in which multiple stable AP responses coexisted, and that hysteresis phenomena occurred
for the change in the maximum conductance of IKr. However, EAD developments could
not be simply explained as resulting from an occurrence of the local bifurcation.

A series of analyses advanced the understanding of the dynamical mechanisms of
transitions between the different AP responses (APs with and without EAD) of ventricular
myocytes due to functional changes in individual ion-transport molecules such as ion
channels and transporters.
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Figure 10. Bifurcation phenomena and action potential behaviors observed in the Kurata model [112]
of a human ventricular myocyte. (A) A two-parameter bifurcation diagram on the (GKr, GKs)-
parameter plane (top) obtained using MATCONT [154] and a phase diagram (bottom) obtained
by AP simulations. The maximum conductances of the rapid (GKr) and slow (GKs) components of
delayed rectifier K+ channel currents are expressed as normalized values, i.e., ratios to the control
values. In the two-parameter bifurcation diagram (top), the symbols H and PD represent the loci
of parameter sets that cause the Hopf bifurcation of an equilibrium point and period-doubling
bifurcation of a limit cycle (LC), respectively. The gray region indicates the area of parameters in
which a stable LC can be observed. On the other hand, in the phase diagram (bottom), the orange and
white regions represent parameter regions in which an AP with and without EAD, respectively, can
be observed in the Kurata model. The gray point with the symbol N indicates the control condition
with the normal GKr and GKs. (B) A merged phase diagram. (C) A one-parameter bifurcation diagram
of APD at 90% repolarization (APD90) in each AP response as a function of GKr; see the blue arrow in
panel (B), which indicates the change in GKr with the fixed normal GKs (1). The solid and dashed
lines in (C) represent stable and unstable AP responses, respectively. SN: saddle-node bifurcation;
EAD1–3: AP with 1–3 EAD(s); PD: period-doubling bifurcation. NS: Neimark–Sacker bifurcation.
(D) An example of tetra-stable AP dynamics in the Kurata model at 0.39 × GKr with 0.70 × GKs.
Colored and grey lines indicate the steady-state and transient responses, respectively. Dots indicate
the application of current pulses. Pacing cycle length = 2 s. Each panel was modified from [85,130].

4.3. Slow–Fast Decomposition Analyses of Dynamic AP Responses with EADs

APs observed in ventricular myocytes are representative relaxation oscillations. The
ventricular AP is composed of rapid and slow membrane potential changes. This means
that the dynamical system describing the electrical behavior of ventricular myocytes is
composed of a fast subsystem contributing to the rapid membrane potential changes and
a slow subsystem contributing to the slow membrane potential changes [210]. Tran and
co-workers examined the AP and EAD behavior observed in the LRd1 model [184] by
decomposing the original (full) system into the fast and slow subsystems [190]. In their and
many other theoretical studies [211–215], the activation gating variable of IKs was regarded
as the slow subsystem or a parameter for the fast subsystem of the ventricular myocyte
model. Kurata and co-workers [197] also employed the activation gating variable of IKs in
the K05 model [112] for the slow subsystem, and in our study [198], the state variable of
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the intra-SR Ca2+ concentration was employed for the slow subsystem. As an example, IKs
in [85,112,130,197] was formulated by the following equations:

IKs = gKs·n2·(Vm − EKs), (12)

dn/dt = (n∞ − n)/τn, (13)

where gKs and EKs are the IKs channel maximum conductance and reversal potential of
IKs, respectively. n denotes a state variable representing the activation gate of IKs and n2

corresponds to the open probability of IKs channels. In human ventricular myocyte models,
when APs are generated, state variables such as Vm change rapidly, while n (n2) changes
slowly (Figure 11A,B, left). Considering the difference in response speed in the fast and
slow subsystems, the slow dynamics of the state variable n can be regarded as a parameter
change. Thus, bifurcations of dynamical responses observed in the fast subsystem were
investigated as a function of the slow variable n (see Figure 11A,B, middle). Such a method
is known as “slow-fast decomposition analysis” in the field of nonlinear dynamical system
theory [140,210,216]. The slow–fast decomposition analysis can provide a definition of
EAD and a clear reason why EADs occur in LQTS.

To explain the dynamical mechanism for the occurrence of EAD [190,197,198], dynamic
behaviors (orbits) of the full system are superimposed on the bifurcation diagram of the fast
subsystem (see Figure 11A,B, middle). The dynamical mechanism of EAD development
in the K05 model was explained as follows [85,112,130,197]: The stimulus current (Istim)
input rapidly depolarized Vm in the full system and Vm overshot 0 mV. After that, the IKs
channel open probability, n2, which was the slow subsystem, slowly increased, consequently
increasing IKs and repolarizing Vm (Figure 11A,B, right). With increasing n2 as a parameter
for the fast subsystem, an equilibrium point at depolarized Vm (qEQ3) was destabilized
via the Hopf bifurcation (see center panels in Figure 11A,B). When the IKr conductance
decreased (as in LQT2; Figure 11B), the Hopf bifurcation point of qEQ3 in the fast subsystem
shifted significantly toward higher n2 values (compare center panels in Figure 11A,B). This
means that the region of stable qEQ3 broadened in the direction of higher n2, shifting the
stable limit sets of the limit-cycle qLC to the right. Then, the trajectory of the full system
was attracted to the stable limit sets for qEQ3 and qLC in the fast subsystem during delayed
repolarization. Such trapping constrained the orbit of the full system to move along the
stable manifolds of the qEQ3 and the qLC. Therefore, the full system showed oscillation-like
behavior during late AP phase 2 to phase 3. Since the stable/unstable limit sets of qLCs
were lost by crossing the SN bifurcation point, the increase in n2 above the SN bifurcation
point led to the release of the orbit in the full system trapped in the stable manifold of
the qLC. Then, Vm quickly converged to a stationary state (resting state). This suggests
that transient depolarization during AP repolarization, i.e., EAD can be explained as limit
cycle-like oscillations occurring in the fast subsystem [197,198]. Thus, EADs can be defined
as transient oscillations of a full system trajectory around the stable and unstable qEQ3
close to Hopf bifurcation points or in the vicinity of the stable qLC during changes of the
slow variable. The occurrence of EADs in LQTS can be attributable to the shift in a Hopf
bifurcation point on qEQ3 in bifurcation diagrams of the fast subsystem. In recent studies,
slow–fast decomposition analyses have been performed by selecting various slow state
variables, and attempts have been made to explain the dynamical mechanism underlying
EADs [82,217–219]. We also recently reported another type of EAD formation distinct from
the membrane-dependent mechanism described above, e.g., the development of EAD due
to spontaneous Ca2+ releases from the SR [198].
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in the full system. (Center) One-parameter bifurcation diagrams of the fast subsystem, depicting
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5. Future Directions

This review outlined fundamental points of dynamical systems and bifurcation phe-
nomena and applications of bifurcation analyses to cardiac systems. The AP response of
cardiomyocytes changes dynamically due to various factors. We employed bifurcation
theory of the dynamical system to elucidate the mechanism of EAD, motivated by our
expectation that the occurrence of EAD, which triggers the onset of fatal arrhythmias, can
be associated with changes in the dynamical stability of APs (i.e., bifurcation phenomena).

We could analyze the bifurcation phenomena of AP responses observed in the cardiac
cellular system without any approximation. Although the bifurcation analyses were able to
make clear the dynamic transition mechanisms of AP responses depending on parameter
changes, it was difficult to explain the mechanism of EAD development by local bifurcation
alone. In this respect, slow–fast decomposition analysis was effective.

There will be no doubt that a theoretical approach based on bifurcation theory is
effective in understanding the mechanisms of dynamic behaviors seen in cardiac systems.
Although this review focused on understanding the EAD mechanism, the bifurcation
analysis may be useful in understanding the developmental mechanism of DADs, which
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has been believed to be another triggering mechanism for lethal arrhythmias. However,
current mathematical models of cardiac cells are still immature, and it cannot be said that
actual complex dynamic responses seen in cardiomyocytes can be sufficiently reproduced
by the model cells. In addition, cardiac arrhythmias do not denote abnormal excitation
that occurs at the cellular level, but rather indicate abnormal electrical phenomena that
occur in multicellular systems at the tissue and organ levels. Thus, we must consider
bifurcations of excitation propagation (not AP responses). We previously reported several
in silico studies [145,146] investigating the effects of system parameter changes on excitation
propagations observed in simple models of myocardial fiber or strand using a brute force
method, which is a kind of parameter study, and by constructing phase diagrams such as
bifurcation diagrams. However, the existing bifurcation theory alone may be insufficient
for analyzing the bifurcation phenomena with high degrees of freedom, such as changes
of excitation propagation before and after the development of lethal arrhythmias. It will
be important not only to improve model cells by further experimental studies but also to
develop new analysis methods that can be applied to multicellular models. In the future,
we would like to develop the control theory of cardiac arrhythmias and establish strategies
for their treatments.
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