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Abstract

Dupuytren's disease is a common inherited tissue‐specific fibrotic disorder,

characterized by progressive and irreversible fibroblastic proliferation affecting the

palmar fascia of the hand. Although genome‐wide association study (GWAS) have

identified 24 genomic regions associated with Dupuytrens risk, the biological

mechanisms driving signal at these regions remain elusive. We identify potential

biological mechanisms for Dupuytren's disease by integrating the most recent, largest

GWAS (3,871 cases and 4,686 controls) with eQTLs (47 tissue panels from five

consortia, total n=3,975) to perform a transcriptome‐wide association study. We

identify 43 tissue‐specific gene associations with Dupuytren's risk, including one in a

novel risk region. We also estimate the genome‐wide genetic correlation between

Dupuytren's disease and 45 complex traits and find significant genetic correlations

between Dupuytren's disease and body mass index (BMI), type II diabetes,

triglycerides, and high‐density lipoprotein (HDL), suggesting a shared genetic

etiology between these traits. We further examine local genetic correlation to identify

8 and 3 novel regions significantly correlated with BMI and HDL respectively. Our

results are consistent with previous epidemiological findings showing that lower BMI

increases risk for Dupuytren's disease. These 12 novel risk regions provide new

insight into the biological mechanisms of Dupuytren's disease and serve as a starting

point for functional validation.
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1 | INTRODUCTION

Dupuytren's disease (DD [MIM: 126900]) is a common
and disabling connective tissue disorder affecting 5–25% of
individuals of European ancestry, characterized by pro-
gressive and irreversible fibroblastic proliferation affecting
the palmar fascia of the hand (Dupuytren, 1834; Gud-
mundsson, Arngrıḿsson, Sigfússon, Björnsson, & Jónsson,
2000). DD initially manifests as nodules in the palm of the
hand, resulting in contraction and ultimately flexion
contractures of the digits in a proportion of individuals
affected with DD. Recent twin studies estimate the
heritability (i.e., the proportion of phenotypic variation
explained by genetics) of DD to be ~80% (Larsen et al.,
2015). The largest previous genome‐wide association study
(GWAS) of DD in individuals of European ancestry
identified 26 genome‐wide significant single‐nucleotide
polymorphism (SNP) associations in 24 independent risk
regions (Ng et al., 2017), and estimated the proportion of
phenotypic variance attributable to additive effects of
common variants (i.e., SNP‐heritability) to be 0.53
(Ng et al., 2017; Yang, Lee, Goddard, & Visscher, 2011).
The vast majority (23 of 24) of DD associations lie in
noncoding genomic regions with only one located in an
intron (Ng et al., 2017), thus the biological implications of
these associations are not immediately clear. Investiga-
tions into the mechanisms behind the strongest GWAS
association, rs16879765 (P =7.2×10GWAS

−41), located in the
intron of EPDR1, revealed an effect on expression and
protein secretion of the nearby gene SFRP4 (Ng et al.,
2017) but implicated EPDR1 functionally (Staats, Wu, Gan,
O’Gorman, & Ophoff, 2016). Overall, the regulatory
mechanisms driving signal at the GWAS associations on
DD remains unknown.

In this study, we aimed to explore genetic mechanisms
at known risk regions for DD, identify complex traits
with possible shared genetic etiologies, and find novel
risk regions for DD. Recently, transcriptome‐wide asso-
ciation studies (TWAS; Gamazon et al., 2015; Gusev et al.,
2016) have emerged as a way to identify associations
between gene expression and a trait. We performed a
multi‐tissue TWAS by combining a recent DD GWAS
(Ng et al., 2017) with expression quantitative trait loci
(eQTL; Fromer et al., 2016; GTEx Consortium, 2013;
Laakso et al., 2017; Nuotio et al., 2014; Raitakari et al.,
2008; Wright et al., 2014), integrating gene expression
from five consortia in 43 unique tissues, to test for
association between expression and DD in 15,198 genes.
We identified 43 associations between tissue‐specific
gene expression and DD, including one novel risk region
on chromosome 17. Next, we aimed to understand the
genetic relationship between DD and 45 other complex
phenotypes by identifying traits that have genetic

correlation (i.e., the similarity in genetic effects across
two traits) providing etiological insights and plausible
causal relationships to investigate (B. Bulik‐Sullivan
et al., 2015; Johnson, Shi, Pasaniuc, & Sankararaman,
2018; Pickrell et al., 2016; Shi, Mancuso, Spendlove, &
Pasaniuc, 2017). We performed genetic correlation
analyses through cross‐trait linkage disequilibrium (LD)
score regression (LDSC; B. Bulik‐Sullivan et al., 2015),
and find that body mass index (BMI), type II diabetes
(T2D), triglycerides (TG), and high‐density lipoprotein
(HDL) levels are significantly genetically correlated with
DD. Additionally, we sought to further refine and
understand these relationships with DD and BMI, T2D,
TG, and HDL by exploring local regions with enrichment
of genetic correlation using ρ‐HESS (Shi et al., 2017), and
found 8 risk regions significantly correlated with BMI
and three risk regions significantly correlated with HDL.
Finally, we aimed to identify a tissue or cell type to
prioritize when studying DD.

2 | MATERIALS AND METHODS

2.1 | DD GWAS summary statistics

Results from a GWAS of DD in UK Europeans (3,871
cases and 4,686 controls) were previously reported (Ng
et al., 2017). This GWAS summary data contained
association statistics for 7,218,238 SNPs, with 6,991,033
SNPs that were imputed from individuals of European
ancestry in the Haplotype Reference Consortium
(McCarthy et al., 2016). We excluded multi‐allelic SNPs,
SNPs with ambiguous alleles (e.g., A to T or C to G), and
SNPs without an rsID defined by dbSNP144, resulting in
6,126,071 SNPs for downstream analyses.

We used PLINK (Purcell et al., 2007) to compute
independent risk regions (at least one SNP with

≤P 5 × 10GWAS
−8) in the DD GWAS data by clumping

SNPs into regions based on LD and distance, using R2

thresholds of 0.3 and 0.25 for between‐block LD and
within‐block LD, respectively. This resulted in 24
independent risk regions.

2.2 | TWAS reference panels and details

To find novel risk genes and biologically meaningful
associations, we performed a TWAS to test genes
expression levels for association with DD. We used
FUSION (Gusev et al., 2016) software (see Web
Resources) along with prepackaged gene expression
weights. Briefly, TWAS identifies candidate risk genes
for DD by integrating results from GWAS and reference
panels of gene expression measurements from eQTL
studies to associate cis‐regulated expression with DD,
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while accounting for LD. Weights for gene expression
were from the Genotype‐Tissue Expression Project v6
(GTEx; 43 tissues, n = 449), the Metabolic Syndrome in
Men study (METSIM; adipose, n = 563), the Young Finns
Study (YFS; blood, n = 1,264), the CommonMind Con-
sortium (CMC; dorsolateral prefrontal cortex, n = 452),
and the Netherlands Twin Registry (NTR; blood,
n = 1,247) reference panels (Fromer et al., 2016; GTEx
Consortium, 2013; Laakso et al., 2017; Nuotio et al., 2014;
Raitakari et al., 2008; Wright et al., 2014). This totaled to
47 different reference tissue panels that represent 43
unique tissues (see Table S1). Description of quality
control procedures for these expression data has been
previously described (Gusev et al., 2016; Mancuso et al.,
2017).

FUSION estimates the strength of association between
predicted expression of a gene and DD (ZTWAS) as a
function of the vector of GWAS summary Z‐scores at a
given cis‐region (ZGWAS) and the weights vector (wGE)
learned from one of the 47 gene expression panels
aforementioned. Specifically, the strength of association
between predicted expression of a gene in tissue and DD
is defined as

Z
w Z

w Vw
=

′

′
TWAS

GE GWAS

GE GE

where w′GE is the transpose weights vector and V is the
reference panel LD (European ancestry from the 1000
Genomes [1000G] Project (Genomes Project Consortium
et al., 1000, 2015)). A p‐value (PTWAS) is obtained using a
two‐tailed test under N (0,1). This process was repeated
for each reference tissue panel and gene, resulting in
98,147 tissue‐specific gene models involving 15,189 genes
(Table S1). We assessed significance with the Bonferroni‐
corrected threshold at ≤PTWAS

0.05

98,147
.

2.3 | Genome‐wide genetic correlation
with cross‐trait LDSC

We estimate the genome‐wide genetic correlation be-
tween DD and 45 complex traits to identify shared
genetic risk for DD with other complex traits. To this end,
we used cross‐trait LDSC (B. Bulik‐Sullivan et al., 2015), a
method for estimating genome‐wide genetic correlation
between two traits that requires only GWAS summary
statistics and reference panel LD (European ancestry
from the 1000G Project [Genomes Project Consortium
et al., 1000, 2015]). We defined the genetic correlation (r̂g)
between DD and another trait as significant if the
associated p‐value from cross‐trait LDSC passed the
Bonferroni‐corrected threshold of ≤PT T1, 2

0.05

45
.

2.4 | Local genetic correlation and
putative causality using ρ‐HESS

To understand the genome‐wide correlation from cross‐
trait LDSC at a local level we use ρ‐HESS (Shi et al.,
2017), a method to identify genomic regions that have
significant enrichment of genetic correlation between
two traits. Finding regions with enriched genetic‐
correlation can lead to finding more possible risk
regions for one trait by leveraging power from the other
trait. Exploration of such regions may also lead to more
insights into biological mechanisms that are affecting
both traits and their shared etiology. For each of the
traits with significant genome‐wide genetic correlation
with DD, we run ρ‐HESS to estimate the local
genetic correlation between each trait and DD within
1702 approximately independent regions genome‐wide.
We restricted our analyses to 1702 approximately‐
independent LD regions in Europeans (Berisa &
Pickrell, 2016). We filtered out one region because there
were no SNPs genotyped in the DD GWAS within that
region. For reference LD, we used European ancestry
from the 1000G Project (Genomes Project Consortium
et al., 1000, 2015). The local genetic correlation (r̂g local, )
between two traits at a given region was defined as
significant if the associated p‐value from ρ‐HESS passed
the Bonferroni‐corrected threshold of ≤Pregion

0.05

1,702
.

We also aimed to find evidence for putative causal
relationships between DD and other genetically corre-
lated traits. We used the implementation in ρ‐HESS
based on a previously described method (Pickrell et al.,
2016) to prioritize putative causal models between pairs
of complex traits. Essentially, for two complex traits, the
local genetic correlation is evaluated at regions harboring
genome‐wide significant GWAS SNPs from either trait,
rather than across 1702 independent regions. Trait 1
specific regions are regions harboring significant GWAS
SNPs for trait 1 but not trait 2; trait 2 specific regions are
regions harboring significant GWAS SNPs for trait 2 but
not trait 1. The local genetic correlation for all trait 1
specific regions are summed (r̂T1,regions) and the local
genetic correlation for all trait 2 specific regions are
summed (r̂T2,regions); these summed values are a good
representation of true genetic correlation at trait 1
specific regions or trait 2 specific regions. Confidence
intervals are determined by 1.96 times jackknife standard
error on each side; significance is determined if the
confidence intervals do not overlap. If trait 1 correlation
is significantly nonzero while trait 2 correlation is near
zero, then this is consistent with a model that trait 1
causally influences trait 2. The intuition behind this test
is that if trait 1 causally influences trait 2 then trait 1
specific regions would have a strong genetic correlation
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with trait 2 but trait 2 specific regions would not have a
strong genetic correlation with trait 1. To avoid spurious
claims, we only do this test if there are more than
10 regions harboring GWAS significant SNPs for each
trait. Thus, we can leverage the difference in correlations
for a trait‐specific signal at these regions to see if the
correlations are consistent with a suggestive causal model
(Pickrell et al., 2016; Shi et al., 2017).

2.5 | Tissue and cell type prioritization

To identify tissues and/or cell types that are biologically
relevant to DD, we used stratified LD score regression to
estimate the enrichment of DD SNP‐heritability in 205
publicly available specifically expressed gene (SEG)
annotations, each of which represents a set of genes that
are specifically expressed in a single tissue or cell type
(LDSC‐SEG; Finucane et al., 2018). Briefly, the 205
annotations were originally created from two datasets:
RNA‐seq gene expression measurements in 53 human
tissues from GTEx v6p (GTEx Consortium, 2013; average
of 161 samples per tissue), and a microarray gene
expression data set comprised of 152 tissues and cell
types from either human, mouse, or rat (the “Franke
Lab” data set; Fehrmann et al., 2015; Pers et al., 2015).
For each set of specifically expressed genes, an annota-
tion was created by adding 100‐kb windows upstream
and downstream from the transcribed region of each
gene. In addition, we tested for enrichment of DD SNP‐
heritability in a set of 489 publicly available tissue‐ or cell
type‐specific chromatin annotations (Finucane et al.,
2018). 396 of these annotations were originally created
from five activating histone marks (H3K27ac, H3K4me3,
H3K4me1, H3K9ac, and H3K36me3) and DNase I
hypersensitivity (DHS) regions that were present in a
subset of 88 tissues and cell types in the Roadmap
Epigenomics Consortium (Roadmap Epigenomics Con-
sortium et al., 2015). An additional 93 annotations were
created from a set of four activating histone marks
(H3K27ac, H3K4me3, H3K4me1, and H3K36me3) in 27
tissues from EN‐TEx (ENCODE Project Consortium,
2012) that were also present in GTEx. Details on the
construction of both the SEG annotations and chromatin‐
based annotations can be found in the original study
(Finucane et al., 2018). Each annotation was tested
individually for the enrichment of DD SNP‐heritability
on top of the baseline‐LD model (Gazal et al., 2017) by
assessing whether the expected additional per‐SNP
heritability contribution due to the annotation is
significantly nonzero (FDR< 0.1).

We also used the web application FUMA (Watanabe,
Taskesen, van Bochoven, & Posthuma, 2017) in the aim
of finding tissues or cell types with differentially

expressed genes relevant to DD. FUMA maps GWAS
results to create a gene set in three ways: (a) physical
proximity on the genome, (b) eQTL associations, and
(c) chromatin interaction. We used the gene property
analyses (implemented from MAGMA (de Leeuw, Mooij,
Heskes, & Posthuma, 2015)) and differentially expressed
gene (DEG) analysis to prioritize different tissues or cell
types. For the gene property analysis, FUMA tests if the
expression of the GWAS gene set in a single tissue or cell
type is statistically different than the average expression
of the GWAS gene set across all tissues or cell types. We
perform this gene property analysis in 53 GTEx (GTEx
Consortium, 2013) tissues ( ≤PGP T,

0.05

53
) as well as in 5115

study‐defined cell types ( ≤PGP CT,
0.05

5,115
) using single cell

RNA‐seq data from 28 studies (Alles et al., 2017; Breton
et al., 2016; Campbell et al., 2017; Chen, Wu, Jiang, &
Zhang, 2017; Darmanis et al., 2015; Enge et al., 2017;
Furlan et al., 2016; Gokce et al., 2016; Haber et al., 2017;
Habib et al., 2017; Han et al., 2018; Häring et al., 2018;
Hochgerner et al., 2017; Hochgerner, Zeisel, Lönnerberg,
& Linnarsson, 2018; Hu et al., 2017; Joost et al., 2016;
La Manno et al., 2016; Mohammed et al., 2017; Romanov
et al., 2017; Saunders et al., 2018; Tasic et al., 2016;
Usoskin et al., 2015; Vanlandewijck et al., 2018; Zeisel
et al., 2018, 2015; Zhong et al., 2018; Zhou et al., 2017) as
described on the FUMA website (see Web Resources).
For the DEG analysis, FUMA defines differentially
expressed genes in each tissue by performing a two‐sided
t test for that one tissue against all other tissues. Each of
the 53 GTEx (GTEx Consortium, 2013) tissues are tested
for upregulation, downregulation, and both‐sided DEG
sets. We removed tissues where DEG sets had less than
30 genes to avoid underpowered correlations; signifi-
cance was defined by Bonferroni correction for the
number of tests ( ≤PDEG

0.05

153
).

3 | RESULTS

3.1 | TWAS identifies 18 risk genes for
DD

To explore putative biological mechanisms at known DD
risk regions, we performed a multi‐tissue TWAS to
identify genes (specifically, cis‐regulated gene expres-
sion), associated with DD (see section 2). Briefly, TWAS
identifies candidate risk genes for DD by integrating
results from GWAS and reference panels of gene
expression measurements from eQTL studies to associate
cis‐regulated expression with DD, while accounting
for LD. We used tissue reference panels from GTEx
(GTEx Consortium, 2013), METSIM (Laakso et al., 2017),
YFS (Nuotio et al., 2014; Raitakari et al., 2008), CMC

632 | MAJOR ET AL.



(Fromer et al., 2016), and NTR (Wright et al., 2014)
resulting in 47 different reference tissue panels with a
combined sample size of 3,975 (see section 2; Table S1).
Using these reference panels, we tested 98,147 tissue‐
specific gene models and found 43 significant tissue‐specific
gene‐trait associations at a Bonferroni‐corrected threshold
of ≤PTWAS

0.05

98,147
(Table 1; Table S2). GWAS SNP associa-

tion strength and TWAS tissue‐specific gene model
association strength can be seen in Figure 1. These
43 significant models were composed of 18 genes among
23 tissue panels–7 genes were significant in multiple tissues
(Table 1). A total of 36 of the 43 significant tissue‐specific
gene models were within 0.5Mb of any of the previously
identified 24 risk regions.

One region of interest is on chromosome 7, where
EPDR1 was found to be significant in 10 different
tissue panels (most significant in lung tissue,
P = 6.4 × 10TWAS

−31). This region has been previously
investigated because of its strong association signal (Odds
Ratio 1.93 and P = 7.2 × 10GWAS

−41) with DD (Ng et al.,
2017). The variant with the strongest association in this
region, rs16879765, is in an intron of EPDR1. Although
the decreased secretion of the nearby WNT‐agonist
SFRP4 was correlated with the high‐risk genotype
(Ng et al., 2017), genetic and functional evidence point
toward EPDR1 being the disease‐relevant gene for
this region, which has been functionally validated as
contributing to myofibroblast contractility (Staats et al.,
2016). All three transcripts of EPDR1 are found in
affected DD tissue and knockdown of EPDR1 attenuates
contractility in fibroblast‐populated collagen lattice
assays (Staats et al., 2016).

3.2 | TWAS identifies novel risk region
on chromosome 17

To identify possible novel risk regions from TWAS
associations, we aimed to see if any tissue‐specific gene
models were independent of established GWAS associa-
tions. After grouping association signal into 1Mb regions,
we found 13 regions with only significant GWAS SNP(s),
1 region with only significant TWAS model(s), and 11
regions with both significant GWAS SNP(s) and TWAS
model(s). Here we define a region identified through
TWAS to be novel if (1) the strongest DD associated
SNP in the gene's region is not genome‐wide significant
(i.e., ≥P 5 × 10GWAS

−8) and (2) that the TSS of the
TWAS‐gene is not within 0.5Mb of the previously known
24 risk regions. With these constraints, we identified one
novel risk region for DD (Figure 2). To ensure our result
was robust to long‐range LD, we expanded our window
criteria to include 1Mb and 2Mb and found no
change. We found a single tissue‐specific gene model,

TMEM106A (P = 1.2 × 10TWAS
−7; GTEx breast mammary

tissue), was significantly associated with DD risk at this
region (Figure 2). To determine that the TMEM106A
association was robust to possible LD confounding, we
performed a permutation test using GWAS summary
statistics and found similar results (P = 8.91 × 10perm

−3).
There were 12 tissue panels that expression for TME-
M106A was modeled from (Table S3).

3.3 | Estimates of SNP‐heritability in
DD are higher than previously proposed

We obtained an SNP‐heritability estimate of 0.67 (SE= 0.08),
using LDSC (B. K. Bulik‐Sullivan et al., 2015). We also
used Heritability Estimator from Summary Statistics
(HESS), a previously described method using similar
framework as ρ‐HESS that estimates local SNP‐heritability,
and found the total SNP‐heritability to be 0.532
(SE= 0.282), similar to the previous estimate of 0.533
using GCTA (Ng et al., 2017; Yang et al., 2011). Because
HESS is optimized for GWAS with sample sizes greater
than 50,000 (contributing the large standard error), we
included the LDSC regression estimate of SNP‐heritability
when running HESS to obtain more stable estimates of
local SNP‐heritability (B. K. Bulik‐Sullivan et al., 2015; Shi,
Kichaev, & Pasaniuc, 2016).

3.4 | Genetic correlation suggests
shared genetic etiology with DD

To identify traits that have a shared genetic etiology with
DD, we used cross‐trait LDSC (B. Bulik‐Sullivan et al.,
2015) which estimates the genetic correlation between
two traits using GWAS summary statistics (see section 2).
Results for the genetic correlation test between DD
and 45 other traits (average sample size 132,115) can be
found in Table 2. These 45 traits include a variety of
anthropometric, immune, hematological, neurological,
and cardiovascular‐related traits and disorders. Four
traits were found to have a significant genetic correlation
with DD ( ≤PT T1, 2

0.05

45
, identical results correcting for a

FDR < 0.1): body mass index (BMI), r̂ = −0.196g ; high
density lipoprotein (HDL), r̂ = 0.133g ; triglycerides (TG),
r̂ = −0.139g ; and type II diabetes (T2D), r̂ = −0.182g

(Table 2). These results are compatible with previous
observational studies (Chammas et al., 1995; Gudmunds-
son et al., 2000; Sanderson, Morris, Stanley, & Fahmy,
1992). Notably, the negative genetic correlation between
BMI and DD is consistent with a previous epidemiolo-
gical investigation showing that the risk of DD was
inversely proportional to BMI, after correcting for
age, race, and sex in 14,844 patients diagnosed with DD
(Hacquebord, Chiu, & Harness, 2017).
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3.5 | Local genetic correlation analysis
yields 11 regions to further study

Having found evidence for BMI, HDL, TG, and T2D
sharing genetic factors with DD at a genome‐wide scale,
we next aimed to locate possible shared genomic regions.
We did this by running ρ‐HESS (Shi et al., 2017) to
estimate the local genetic correlation between DD and
each of the four traits in 1702 approximately independent
LD blocks (Berisa & Pickrell, 2016) (see Materials and
Methods). The genome‐wide genetic correlation results
from cross‐trait LDSC and ρ‐HESS are fairly consistent
(Pearson's r= 0.94; Table S4); differences may have
resulted from using metabochip array (Voight et al.,
2012) GWAS statistics with LDSC (HDL and TG), which is
discouraged for cross‐trait LDSC (B. Bulik‐Sullivan et al.,
2015), as well as smaller sample size in the DD GWAS
adding noise to estimates from ρ‐HESS (Shi et al., 2016,

2017). We found eight regions significantly genetically
correlated (PT1,T2 ≤ 0.05/45) between DD and BMI, three
regions between DD and HDL, and no regions between
DD and TG or between DD and T2D (Table 3). Of these 11
regions, three contained a genome‐wide significant
association in the DD GWAS (Ng et al., 2017). Only one
of the 11 regions contained significant tissue‐specific gene
models from TWAS; the 10 models for EPDR1 were within
the DD and HDL genetically correlated 7:37555184‐
38966703 region (Table S2, Table 3).

3.6 | Genetic correlation patterns of
BMI/TG and DD consistent with putative
causality

To further elucidate the relationships of these traits with
DD, we used ρ‐HESS (Shi et al., 2017) to test for evidence

FIGURE 1 DD TWAS and GWAS associations. Shown here are Manhattan plots for TWAS associations (top) and GWAS associations
(bottom). For TWAS associations, each point corresponds to an association test between tissue‐specific predicted gene expression and DD,
with the orange line representing the threshold for significance in log‐scale ( ≤P 5.09 × 10TWAS

−7). The most significant tissue‐specific gene
model for each peak is labeled by gene. For GWAS associations, each point corresponds to an association test between a SNP and DD, with
the orange line representing the traditional genome‐wide significance threshold in log‐scale ( ≤P 5 × 10GWAS

−8). DD: Dupuytren's disease;
GWAS: genome‐wide association study; SNP: single nucleotide polymorphism; TWAS: transcriptome‐wide association studies
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of putative causality through GWAS estimated genetic
effects for BMI, HDL, TG, and T2D acting on DD or vice
versa (see Materials and Methods). Both BMI and TG
showed suggestive patterns that would be consistent with
a putative causal relationship with DD (Figure 3). HDL
and T2D did not show suggestive patterns with DD since
there is no clear direction of the trait‐specific genetic
correlation that would be consistent with a putative
causal relationship (Figure S1). We would expect that
trait 1 specific genetic correlation would be much more
extreme than trait 2 specific genetic correlation and trait
2 specific genetic correlation close to zero, or vice versa if
there were a causal relationship between trait 1 and trait
2 (Pickrell et al., 2016). For example, when considering
BMI and DD, the correlation at 399 BMI‐specific regions
(−0.27; SE = 0.044) is seemingly stronger than the
correlation at 19 DD‐specific regions (− 0.03; SE = 0.15),
indicating that regions that increase BMI tend to decrease
the risk of DD; this is consistent with a model where BMI
genetic effects decrease the risk of DD (Figure 3). The
same is true for TG and DD; the correlation at 65 TG‐
specific regions (−0.3; SE = 0.08) is seemingly stronger
than the correlation at 22 DD‐specific regions (0.018;
SE = 0.2; Figure 3). Both of these results are not
significant (assessed by the overlap of confidence
intervals, r̂ ± 1.96 × SETX regions, SE); this is most likely
because of the relatively reduced sample size in the DD
GWAS study. Nonetheless, there is evidence of a putative

causal relationship with BMI affecting TG (Pickrell et al.,
2016; Shi et al., 2017) and results from TG and DD may
be from a mediated causal relationship of BMI affecting
TG, which in turn affects DD (Figure 3).

3.7 | DD most relevant tissue or cell
type unidentifiable with current data

Finally, we aimed to identify relevant tissues or cell types
for DD. First, we used S‐LDSC (Finucane et al., 2015) to
estimate the enrichment of SNP‐heritability of DD
(controlling for the baseline‐LD model [Gazal et al.,
2017]) in two sets of publicly available annotations
(Finucane et al., 2018): annotations representing specifi-
cally expressed genes (SEG) in 205 tissues or cell types
(Fehrmann et al., 2015; GTEx Consortium, 2013;
Pers et al., 2015) and 489 annotations representing 6
chromatin features (DHS and five histone marks) in 91
tissues or cell types (ENCODE Project Consortium, 2012;
Roadmap Epigenomics Consortium et al., 2015). Among
the 205 SEG annotations, synovial membrane tissue was
the most enriched for DD SNP‐heritability on top of the
baseline‐LD model, but none of the 205 annotations were
statistically significant (FDR< 0.1; Table S5). Among the
489 chromatin annotations, we found that esophageal‐
mucosa tissue was the most enriched for DD SNP‐
heritability, however, none of 489 annotations were
statistically significant (FDR< 0.1; Table S6). Next, we

FIGURE 2 Novel risk region identified on chromosome 17. Shown here is the novel risk region identified through TWAS; the gray
points are GWAS SNPs association strength and the blue points are the GWAS SNPs association strength conditioned on the TMEM106A

expression model (green, significant in GTEx breast mammary tissue). This tissue‐specific model was still significant under 1,347
permutations (P = 8.9 × 10perm

−3). Gene annotations from hg19 coordinates are included for completeness. GTEx: Genotype‐Tissue
Expression Project v6GWAS: genome‐wide association study; SNP: single nucleotide polymorphism; TWAS: transcriptome‐wide association
studies
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‐ĥ

g2
(S
E
)

r̂ g
(S
E
)

P
T
1,
T
2

Sk
el
et
al

tr
ai
ts

B
ir
th

w
ei
gh

t
(H

or
ik
os
h
i
et

al
.,
20
16
)

15
37
81

0.
1
(0
.0
07
)

−
0.
05
1
(0
.0
5)

3.
0E

−
01

H
ei
gh

t
(W

oo
d
et

al
.,
20
14
)

25
32
88

0.
34

(0
.0
17
)

0.
06
3
(0
.0
3)

7.
3E

−
02

B
od

y
m
as
s
in
de
x
(B
yc
ro
ft
et

al
.,
20
18
)

33
61
07

0.
25

(0
.0
09
)

−
0.
19
6
(0
.0
4)

1.
6E

−
06

C
h
il
dh

oo
d
bo

dy
m
as
s
in
de

x
(F
el
ix

et
al
.,
20
16
)

35
66
8

0.
25

(0
.0
24
)

0.
00
5
(0
.0
6)

9.
3E

−
01

H
ee
l
bo

n
e
m
at
er
ia
l
de

n
si
ty

(B
yc
ro
ft
et

al
.,
20
18
)

19
43
98

0.
28

(0
.0
25
)

0.
05
7
(0
.0
5)

2.
1E

−
01

B
lo
od

an
d
di
ab

et
es

tr
ai
ts

F
as
ti
n
g
gl
u
co
se

(D
u
pu

is
et

al
.,
20
10
)

46
18
6

0.
08

(0
.0
14
)

0.
01
1
(0
.0
9)

9.
0E

−
01

F
as
ti
n
g
in
su
li
n
(D

u
pu

is
et

al
.,
20
10
)

46
18
6

0.
06

(0
.0
1)

−
0.
09
2
(0
.0
9)

2.
9E

−
01

T
yp
e
II

di
ab

et
es

(B
yc
ro
ft
et

al
.,
20
18
)

33
64
73

0.
04

(0
.0
03
)

−
0.
18
2
(0
.0
5)

1.
7E

−
04

H
em

og
lo
bi
n
(v
an

de
r
H
ar
st

et
al
.,
20
12
)

13
53
67

0.
09

(0
.0
13
)

0.
13
1
(0
.0
8)

1.
1E

−
01

H
em

og
lo
bi
n
A
1C

(S
or
an

zo
et

al
.,
20
10
)

46
36
8

0.
06

(0
.0
11
)

−
0.
10
1
(0
.0
9)

2.
8E

−
01

P
ac
ke

d
ce
ll
vo
lu
m
e
(v
an

de
r
H
ar
st

et
al
.,
20
12
)

13
53
67

0.
08

(0
.0
14
)

0.
17
1
(0
.0
9)

5.
2E

−
02

M
ea
n
ce
ll
h
em

og
lo
bi
n
(v
an

de
r
H
ar
st

et
al
.,
20
12
)

13
53
67

0.
22

(0
.0
26
)

−
0.
01
4
(0
.0
4)

7.
4E

−
01

M
ea
n
ce
ll
h
em

og
lo
bi
n
co
n
ce
n
tr
at
io
n
(v
an

de
r
H
ar
st

et
al
.,
20
12
)

17
24
33

0.
03

(0
.0
11
)

−
0.
04
7
(0
.1
1)

6.
8E

−
01

M
ea
n
co
rp
u
sc
u
la
r
vo
lu
m
e
(v
an

de
r
H
ar
st

et
al
.,
20
12
)

17
24
33

0.
24

(0
.0
25
)

−
0.
00
1
(0
.0
4)

9.
8E

−
01

R
ed

bl
oo

d
ce
ll
co
u
n
t
(v
an

de
r
H
ar
st

et
al
.,
20
12
)

35
60
4

0.
13

(0
.0
19
)

0.
13
9
(0
.0
8)

6.
8E

−
02

P
la
te
le
t
co
u
n
t
(G

ie
ge
r
et

al
.,
20
11
)

66
86
7

0.
11

(0
.0
11
)

−
0.
11
7
(0
.0
6)

4.
1E

−
02

R
en

al
tr
ai
ts

C
h
ro
n
ic

ki
dn

ey
di
se
as
e
(P
at
ta
ro

et
al
.,
20
16
;
T
eu

m
er

et
al
.,
20
16
)

11
71
65

0.
02

(0
.0
06
)

−
0.
13

(0
.1
2)

2.
7E

−
01

U
ri
n
e
al
bu

m
in
‐to

‐c
re
at
in
in
e
ra
ti
o
(T
eu

m
er

et
al
.,
20
16
)

51
88
6

0.
04

(0
.0
09
)

0.
07

(0
.1
1)

5.
3E

−
01

M
ic
ro
al
bu

m
in
u
ri
a
(T
eu

m
er

et
al
.,
20
16
)

51
88
6

0.
01

(0
.0
08
)

0.
04

(0
.1
7)

8.
2E

−
01

C
ar
di
ov
as
cu

la
r
tr
ai
ts

R
es
ti
n
g
h
ea
rt

ra
te

(E
pp

in
ga

et
al
.,
20
16
)

13
42
51

0.
14

(0
.0
12
)

0.
04
5
(0
.0
5)

3.
5E

−
01

C
or
on

ar
y
ar
te
ry

di
se
as
e
(N

ik
pa

y
et

al
.,
20
15
)

18
43
05

0.
07

(0
.0
05
)

−
0.
09
8
(0
.0
5)

6.
9E

−
02

T
ri
gl
yc
er
id
es

(W
il
le
r
et

al
.,
20
13
)

18
85
77

0.
26

(0
.0
57
)

−
0.
13
9
(0
.0
4)

3.
5E

−
04

H
ig
h
de
n
si
ty

lip
op

ro
te
in

( W
il
le
r
et

al
.,
20
13
)

18
85
77

0.
24

(0
.0
36
)

0.
13
3
(0
.0
4)

4.
1E

−
04

L
ow

de
n
si
ty

li
po

pr
ot
ei
n
(W

il
le
r
et

al
.,
20
13
)

18
85
77

0.
2
(0
.0
48
)

−
0.
04
3
(0
.0
4)

2.
8E

−
01

T
ot
al

ch
ol
es
te
ro
l
(W

il
le
r
et

al
.,
20
13
)

18
85
77

0.
21

(0
.0
46
)

−
0.
03
3
(0
.0
4)

3.
9E

−
01

A
u
to
im

m
u
n
e
tr
ai
ts

C
ro
h
n
's
di
se
as
e
(L
iu

et
al
.,
20
15
)

27
72
6

0.
38

(0
.0
47
)

0.
00
9
(0
.0
7)

9.
0E

−
01

In
fl
am

m
at
or
y
bo

w
el

di
se
as
e
(L
iu

et
al
.,
20
15
)

34
69
4

0.
32

(0
.0
35
)

0.
02
1
(0
.0
7)

7.
7E

−
01

U
lc
er
at
iv
e
co
li
ti
s
(L
iu

et
al
.,
20
15
)

28
73
8

0.
22

(0
.0
32
)

0.
07
3
(0
.0
8)

3.
5E

−
01

R
h
eu

m
at
oi
d
ar
th
ri
ti
s
(O

ka
da

et
al
.,
20
14
)

58
28
4

0.
15

(0
.0
28
)

0.
12
4
(0
.0
5)

2.
1E

−
02

N
eu

ro
lo
gi
ca
l
tr
ai
ts

A
n
xi
et
y
ca
se
‐c
on

tr
ol

(O
to
w
a
et

al
.,
20
16
)

18
00
0

0.
07

(0
.0
3)

0.
08
2
(0
.1
7)

6.
3E

−
01

M
aj
or

de
pr
es
si
ve

di
so
rd
er

(M
aj
or

D
ep

re
ss
iv
e
D
is
or
de

r
W
or
ki
n
g

G
ro
u
p
of

th
e
P
sy
ch

ia
tr
ic

G
W
A
S
C
on

so
rt
iu
m

et
al
.,
20
13
)

18
75
9

0.
15

(0
.0
3)

0.
01
2
(0
.1
1)

9.
2E

−
01

B
ip
ol
ar

di
so
rd
er

(P
sy
ch

ia
tr
ic

G
W
A
S
C
on

so
rt
iu
m

B
ip
ol
ar

D
is
or
de

r
W
or
ki
n
g
G
ro
u
p,

20
11
)

16
73
1

0.
45

(0
.0
42
)

0.
10
1
(0
.0
8)

2.
0E

−
01

Sc
h
iz
op

h
re
n
ia

(S
ch

iz
op

h
re
n
ia

W
or
ki
n
g
G
ro
u
p
of

th
e
P
sy
ch

ia
tr
ic

G
en

om
ic
s
C
on

so
rt
iu
m
,
20
14
)

15
00
64

0.
45

(0
.0
18
)

0.
06
4
(0
.0
4)

1.
2E

−
01

N
eu

ro
ti
ci
sm

(O
kb

ay
et

al
.,
20
16
)

17
09
11

0.
09

(0
.0
06
)

−
0.
06
7
(0
.0
5)

2.
1E

−
01

(C
on

ti
n
u
es
)

638 | MAJOR ET AL.



T
A
B
L
E

2
(C

on
ti
n
u
ed

)

T
yp

e
T
ra
it

Sa
m
p
le

Si
ze

SN
P
‐ĥ
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prioritized tissues and cell types using FUMA (Watanabe
et al., 2017), a platform to visualize and interpret GWAS
summary statistics (see Materials and Methods). After
using FUMA to create a gene set from the GWAS
statistics, we first performed a gene property analysis
(which tests if gene expression in a single tissue or cell
type is statistically different than the average gene
expression across all tissues or cell types) in 53 tissue
types (GTEx Consortium, 2013). Although none of the 53
tissues showed a significant effect (PGP,T ≤ 0.05/53), the

effect was strongest in cell transformed fibroblasts (Table
S7). We then assessed whether the GWAS gene set was
enriched in any of the differentially expressed gene
(DEG) sets for tissues. The upregulated DEG sets
for tibial artery and aorta tissues both demonstrated
significant (PDEG = 5.5 x 10‐5 and 7.8 x 10‐5, respectively)
overlap with the GWAS gene set (Table S8). We also
performed a gene property analysis using cell type
specific expression data for 5115 study‐defined cell types
from 28 scRNA‐seq studies (Alles et al., 2017; Breton

TABLE 3 Regions with significant genetic correlation between DD and other traits

Trait Chr Start End # SNPs Min. trait PGWAS Min. DD PGWAS rg SE Pregion

BMI 1 21736588 23086883 2566 9.6E−05 1.8E−12 −0.00082 0.00017 1.6E−06

BMI 1 189904130 191868930 3313 4.7E−14 5.0E−05 −0.00093 0.0002 2.3E−06

BMI 2 209941529 212379518 1668 1.2E−10 0.00129 −0.00099 0.00023 1.3E−05

BMI 3 49316972 51832015 1872 9.4E−40 0.00230 −0.00146 0.00027 5.6E−08

BMI 3 51832015 54081390 2225 2.6E−10 0.00061 −0.00105 0.00022 2.3E−06

BMI 4 43965045 45189157 2525 9.6E−33 9.2E−05 −0.00101 0.00023 1.5E−05

BMI 4 45189157 47411896 2781 3.2E−12 0.00026 −0.00079 0.00018 1.2E−05

BMI 6 28917608 29737971 60 5.3E−09 0.01434 0.00041 9.00E‐05 1.6E−05

HDL 7 37555184 38966703 1221 0.00018 3.4E−49 −0.00131 0.00031 2.0E−05

HDL 9 1079707 1916877 1143 0.00018 2.8E−15 0.00142 0.0003 1.5E−06

HDL 12 39227169 40816185 1246 0.01077 0.00019 0.00116 0.00027 1.5E−05

Note. This table lists the eight regions demonstrating a significant genetic correlation between DD and BMI, and the three regions demonstrating a significant
correlation between DD and HDL; significance was assessed at a Bonferroni‐corrected threshold of ≤P 0.05/1, 702region for each trait. Also included is the
number of SNPs within each region (“# SNPs”) as well as the minimum GWAS association p‐value for either BMI or HDL (“Min. Trait PGWAS ”) and DD (“Min.
DD PGWAS ”). All other regions demonstrated no significant genetic correlation between DD and any trait tested.

FIGURE 3 Tentative evidence for putative causality with DD. Here we show the genetic correlation for three different pairs of traits
(DD/BMI, left; DD/TG, center; and BMI/TG, right) between four groupings of SNPs: (1) GWAS‐significant SNPs specific to trait 1,
(2) GWAS‐significant SNPs specific to trait 2, (3) GWAS‐significant SNPs for both trait 1 and trait 2, and (4) all nonsignificant SNPs shared
between studies. In the left plot, since GWAS‐significant SNPs specific to BMI have more enrichment of genetic correlation compared to
those specific to DD, we can putatively interpret that BMI SNPs are driving the shared genetic etiology. The same can be said for the middle
plot with TG. On the right, for completeness, we show the same correlation for BMI and TG, which was significant. Error bars are defined by
the genetic correlation ± 1.96 times the s.e. for each grouping of SNPs. BMI: body mass index; DD: Dupuytren's disease; GWAS: genome‐
wide association study; SNP: single nucleotide polymorphism; TG: triglycerides; TWAS: transcriptome‐wide association studies
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et al., 2016; Campbell et al., 2017; Chen et al., 2017;
Darmanis et al., 2015; Enge et al., 2017; Furlan et al.,
2016; Gokce et al., 2016; Haber et al., 2017; Habib et al.,
2017; Han et al., 2018; Häring et al., 2018; Hochgerner
et al., 2017, 2018; Hu et al., 2017; Joost et al., 2016; La
Manno et al., 2016; Mohammed et al., 2017; Romanov
et al., 2017; Saunders et al., 2018; Tasic et al., 2016;
Usoskin et al., 2015; Vanlandewijck et al., 2018; Zeisel
et al., 2018, 2015; Zhong et al., 2018; Zhou et al., 2017).
While none of the single cell types were significant
(PGP,CT ≤ 0.05/5115), stromal cells and muscle cells were
among the top five results (Table S9). As a final analysis,
we averaged the χ2‐statistic (ZTWAS

2) for the 43 significant
TWAS models within each tissue to determine
which tissue had the most enrichment of TWAS signal.
We found adipose subcutaneous tissue was most
enriched among the 23 tissues with significant TWAS
models (Figure S2). Because of the lack of consistency
between methods and lack of statistical significance in
many methods, we are lead to believe that likely the
relevant tissue or cell type is not represented in current
datasets.

4 | DISCUSSION

In this work, we aimed to better understand the genetic
architecture of DD, find plausible biological mechan-
isms at known risk regions for DD, understand the
relationship between DD and a variety of other traits,
and identify possible novel risk regions through local
genetic correlation with other traits or genetic‐
mediated gene expression effects. We highlight that
the estimated SNP‐heritability of DD (0.53–0.67) is
relatively close to estimates of heritability from twin
studies (0.8). We also note that the strong concentra-
tion of DD GWAS signal in a handful of genomic
regions is more consistent with an oligogenic archi-
tecture than a polygenic one, suggesting that further
functional studies could be particularly fruitful as
compared to more polygenic traits and diseases. We
also identify a negative genetic correlation between DD
and BMI, supporting a previous epidemiological study
that observationally showed a negative correlation
between the traits (Hacquebord et al., 2017); under-
standing the relationship between DD and BMI as well
as that between DD and TG could shed light on shared
biologically important pathways. Finally, we identify
one novel risk region from TWAS and identify 11
regions with the significant local genetic correlation
between DD and BMI or HDL. Overall, our findings
highlight the need for more investigation into these
regions as a first step.

Additionally, we note a few caveats in our results.
First, though the sample size of 8,557 for the DD GWAS
is the largest yet, it is possible that additional GWAS
regions remain undiscovered due to the limit in power
and this also would further reduce power to fully detect
associations and relationships with other traits. Second,
while the patterns of genetic correlation between BMI
and DD as well as TG and DD are somewhat consistent
with causal relationships, true causality between these
traits cannot be determined without functional experi-
mentation. Third, we emphasize that TWAS may not
detect the true mechanism of disease if the gene
expression is not mediated through genetics or if
disease‐relevant tissue is not well‐represented in avail-
able gene expression reference panels. This may be
further illustrated by the fact we were unable to identify a
specific tissue or cell type to prioritize for further study in
DD. This could also be due to the small sample size of the
DD GWAS, the cell‐type specificity of enhancer elements,
or again the publication bias away from musculoskeletal
connective tissues, leading to a gap in the available
datasets.

Future work should be taken in multiple directions.
First, we provide additional evidence that EPDR1 may
contribute to the pathogenesis of DD; further work
should be dedicated to functionally validate and under-
stand this gene in connection with DD, as it may
represent an attractive therapeutic target. Second, there
is strong evidence for a relationship between BMI/TG
and DD‐elucidating the mechanism may lead to inter-
esting observations with implications for the treatment of
both traits. Third, additional GWAS, with larger sample
sizes and in additional populations, will uncover more of
the contribution of genetic variation to DD. And fourth,
given the putative oligogenic architecture of DD, and that
our tissue and cell type analyses lacked consistent results,
it might also be rewarding to generate more functional‐
omics data, such as reference gene expression panels or
chromatin accessibility data in the palmar fascia tissue.
These resources would offer valuable insight into the
underlying mechanisms of DD and opportunity to
explore therapeutic avenues.
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