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ABSTRACT Against a backdrop of seasonal influenza virus epidemics, emerging
avian influenza viruses (AIVs) occasionally jump from birds to humans, posing a pub-
lic health risk, especially with the recent sharp increase in H7N9 infections. Evalua-
tions of cross-reactive T-cell immunity to seasonal influenza viruses and human-
infecting AIVs have been reported previously. However, the roles of influenza A
virus-derived epitopes in the cross-reactive T-cell responses and heterosubtypic pro-
tections are not well understood; understanding those roles is important for pre-
venting and controlling new emerging AIVs. Here, among the members of a healthy
population presumed to have previously been infected by pandemic H1N1 (pH1N1),
we found that pH1N1-specific T cells showed cross- but biased reactivity to human-
infecting AIVs, i.e., H5N1, H6N1, H7N9, and H9N2, which correlates with distinct protec-
tions. Through a T-cell epitope-based phylogenetic analysis, the cellular immunogenic
clustering expanded the relevant conclusions to a broader range of virus strains. We de-
fined the potential key conserved epitopes required for cross-protection and revealed
the molecular basis for the immunogenic variations. Our study elucidated an overall pro-
file of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum
vaccine development.

IMPORTANCE We revealed preexisting but biased T-cell reactivity of pH1N1 influ-
enza virus to human-infecting AIVs, which provided distinct protections. The cross-
reactive T-cell recognition had a regular pattern that depended on the T-cell epitope
matrix revealed via bioinformatics analysis. Our study elucidated an overall profile of
cross-reactivity to AIVs and provided useful recommendations for broad-spectrum
vaccine development.
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Influenza viruses (IVs) continuously pose a threat to public health due to point
mutations (antigenic drift) and reassortment events (antigenic shift), especially in the

viral surface proteins hemagglutinin (HA) and neuraminidase (NA). In recent years, new
influenza viruses have emerged, leading to occasional epidemics or even pandemics. In
2009, a novel H1N1 strain, 2009 pandemic influenza A (H1N1) virus (pH1N1), was first
reported in La Gloria, Veracruz, Mexico (1). It quickly spread all over the world and is still
circulating as one of the dominant seasonal influenza viruses in various countries (2).
After several seasons of circulation, an overall high (up to 24%) incidence of pH1N1
exists among the populations of those countries (3). Meanwhile, different avian influ-
enza viruses (AIVs) also emerged or reemerged, posing continuously threats to global
health. From 2003 to 2015, 844 laboratory-confirmed human cases (with 449 deaths) of
avian influenza A (H5N1) virus infection were officially reported to the World Health
Organization (WHO) from 16 countries. Hundreds of human infection cases (with a
mortality rate of 40%) were reported for avian influenza A (H7N9) virus since March
2013 (http://www.who.int/influenza). Additionally, H9N2, H6N1, and H5N6 have
emerged, all of which are connected with poultry exposure (4–6). These AIVs pose a
threat to human health, considering the circulation of the viruses in the live-poultry
market (LPM) and among wild birds (7, 8).

Cellular immunity plays a key role in the control of influenza virus infection (9–13).
CD4� T cells can promote effective immunity by providing secondary signals for
antibody (Ab) responses and produce cytokines upon infection (14), while cytotoxic
CD8� T cells can provide partial protection and reduce symptoms by promoting viral
clearance (15). Infection with influenza A virus often provides heterosubtypic immunity
against other subtypes (16). Although cross-subtype monoclonal antibodies (MAbs)
against influenza viruses have been reported (17), heterosubtypic neutralizing antibody
responses among the populations are rare (18). Influenza A viruses mainly express 14
proteins which are encoded by eight RNA segments (19). Cytotoxic T lymphocytes
(CTLs) specific for influenza A viruses mostly target internal, nonglycosylated proteins,
such as NP, M1, and PB1 (20), which are enriched with immunodominant CTL epitopes
and markedly conserved among different strains compared to HA and NA. This implies
an important role for virus-specific T cells in heterosubtypic immune responses. Influ-
enza virus-specific cross-T-cell reactivities between seasonal influenza virus and a
particular AIV, such as H5N1 or H7N9, have previously been investigated (10, 20–22).
However, a systematic evaluation of cross-subtypic T-cell immunity profiles with re-
spect to different human-infecting AIVs has not yet been performed, and the roles of
influenza A virus-derived epitopes in the cross-reactive T-cell responses and hetero-
subtypic protection are not well understood.

Recent vaccine development efforts have emphasized universal protection against
different influenza subtypes, which mainly depends on cross-T-cell reactivity in addition
to heterologous antibodies (23). Increasing the magnitude of memory CD8� T cells
could provide better protection against heterosubtypic infections (24). It was reported
that an effective vaccine from modified vaccinia virus Ankara (MVA) encoding the
A/Panama/2007/2099 NP and M1 proteins drastically boosts CTL responses in phase 1
and phase 2a clinical trials in healthy adults. The protective efficacy of the elicited CTLs
by the T-cell-based influenza vaccine can be confirmed by influenza challenge (25).
Nevertheless, combined structural and functional studies based on influenza virus-
derived T-cell epitopes demonstrated that minor mutation of an epitope can lead to a
profound effect on the antigenicity of the peptide (26–28). Although the internal
proteins targeted by these potential universal vaccines are quite conserved between
different influenza virus subtypes, it is largely unknown whether minor variations in
these T-cell epitopes would have an influence on protection.

Here, we evaluated preexisting T-cell responses to different human-infecting AIVs in
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a healthy cohort. The contribution of the cross-reactive T-cell responses to protection
against AIVs was also determined in a mouse model. The underlying molecular basis
was investigated using epitope-based phylogenetic trees and crystal structure deter-
minations. The data revealed the cross-immune profile in major human-infecting
subtypes of AIVs and pH1N1, providing a guide for the development of universal
influenza vaccines.

RESULTS
Undetectable cross-antibody responses to AIVs. A population of healthy volun-

teers (n � 35) residing in Beijing, China, was recruited in 2014, and peripheral blood
mononuclear cells (PBMCs) were collected from 30 of these volunteers (see Table S1 in
the supplemental material). Their humoral responses against A(H1N1)/California/04/
2009 and different human-infecting AIVs were tested through both HA inhibition (HAI)
and microneutralization (MN) (29) assays. The results showed pH1N1-specific HAI titers
(�40) and MN titers (�80) among 49% (17/35) and 60% (21/35) of the subjects,
respectively (Fig. 1A and B). Among the 35 subjects, 23 were A(H1N1)/California/04
antibody positive (pH1N1 Ab�) by HAI or MN assay. This indicated a high ratio of
previous pH1N1 exposure in the population. In contrast, no specific antibodies against
A(H5N1)/Vietnam/1194/2004, A(H6N1)/Taiwan/2/2013, A(H7N9)/Anhui/1/2013, or
A(H9N2)/Hong Kong/1073/99 could be detected among the study subjects by either
HAI or MN assay.

FIG 1 Humoral immune responses to pH1N1 and AIVs. (A and B) Humoral responses of healthy donors (n � 35) were detected by HAI assays (A) and MN assays
(B) with A(H1N1)/California/4/2009, A(H5N1)/Vietnam/1194/2004, A(H6N1)/Taiwan/2/2013, A(H7N9)/Anhui/1/2013, or A(H9N2)/Hong Kong/1073/99. Dashed
lines indicate the following cutoff values: 40 for the HAI assays and 80 for the MN assays. (C) Locations of the major antigenic sites for antibody binding of the
HA protein are marked based on the structures of the pH1N1 HA protein (PDB code 4JTV), H5N1 HA (PDB code 3ZNK), H6N1 HA (PDB code 4YY9), H7N9 HA
(PDB code 4KO1), and H9N2 HA (PDB code 1JSD). The mutant sites in the HA protein of each subtype in B-cell epitopes compared to pH1N1 HA protein are
marked with different colors (H5N1 as red, H6N1 as green, H7N9 as blue, and H9N2 as dark gray). (D) Sequences of B cell epitopes are shown in the table. (E)
The phylogenetic relationship of the representative human-infecting AIV strains and pH1N1 were analyzed by the maximum-likelihood method with MEGA 6.
The names of the viruses we used in HAI and MN assays are denoted with black characters. HAI, HA inhibition; MN, microneutralization.
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Using the crystal structures of the major humoral antigen HA, we investigated the
humoral antigenic variations of different AIVs compared to A(H1N1)/California/04/2009
(Fig. 1C). Humoral immunogenic sites on the HA protein of influenza A virus are mainly
distributed over five conformational sites (Fig. 1D), including four humoral antigenic
sites (Sa, Sb, Ca, and Cb) on the HA “head” and a subdominant B-cell epitope on the HA
“stem.” Structure-based conservancy analysis of these epitopes revealed that the four
antigenic sites on the HA head of the four AIVs A(H5N1)/Vietnam/1194/2004, A(H6N1)/
Taiwan/2/2013, A(H7N9)/Anhui/1/2013, and A(H9N2)/Hong Kong/1073/99 were distinct
from those of A(H1N1)/California/04. The stem-derived epitope in the HAs of each AIV
was comparatively conserved but still contained specific substitutions.

To expand our discovery to other AIV strains, we performed phylogenetic analyses
based on HA sequences from different human-infecting H5N1, H6N1, H7N9, and H9N2
strains (Fig. 1E). Different clusters of AIV HAs were generated. Though H1 and H5 are
adjacent to each other in phylogeny, there was no cross-reactive serological reactivity
to H5N1 among the putative pH1N1-infected population. Thus, the results are consis-
tent with respect to comparisons between the divergent B cell epitopes on the humoral
HA antigens of different AIVs and the phenomenon that no cross-reactive antibody
titers were observed between the tested AIVs and pH1N1.

Biased T-cell cross-reactivities. To investigate potential preexisting T-cell re-
sponses to different AIVs among the pH1N1-infected subjects, we stimulated freshly
isolated PBMCs from the pH1N1 Ab� cohort via an enzyme-linked immunosorbent spot
(ELISPOT) assay with live influenza viruses as stimulators. We found that certain levels
of cross-reactive T-cell responses against H5N1, H6N1, H7N9, and H9N2 viruses were
detected. Cross-reactive T-cell responses against H5N1 (36.8 spot-forming cells [SFCs]/
105 PBMCs) were found at levels similar to those determined for pH1N1-specific T-cell
responses (34.9 SFCs/105 PBMCs), but the levels for both were higher than those seen
with other AIVs, i.e., H6N1 (15.1 SFCs/105 PBMCs), H7N9 (16 SFCs/105 PBMCs), and H9N2
(17.7 SFCs/105 PBMCs) (Fig. 2A). Lee et al. synthesized the overlapping peptides
covering all proteins and found that M1 and NP possess the major immunogenic sites
(20). We evaluated cross-reactive T-cell responses to M1 proteins from different AIVs
among the pH1N1 M1-cultured PBMCs for 9 days. Though cross-T-cell reactivity was
observed for all four tested AIVs, the cross-reactivity to M1 of H5N1 (497 SFCs/105

PBMCs) shown by the pH1N1-specific T cells was higher than that to other AIVs (for
H6N1, 404 SFCs/105 PBMCs; for H7N9, 359 SFCs/105 PBMCs) (Fig. 2B). In intracellular
cytokine staining (ICS) assays, both the cross-CD8� T cells (4.37% gamma interferon
positive [IFN-��] CD8� CD8�) and CD4� T cells (0.27% IFN-�� CD4� CD4�) displayed
a bias with respect to H5N1; in contrast, H7N9 presented the lowest cross-T-cell
reactivity level, with 1.08% IFN-�-secreting cells in CD8� T cells and 0.14% IFN-�-
secreting cells in CD4� T cells (Fig. 2C to F), while the T-cell responses of pH1N1-
antibody negative individuals did not show such differences in statistics (see Fig. S1A in
the supplemental material).

M1 is the dominant contributor to biased T-cell reactivities. The cross-reactivity
to H7N9 was significantly lower than that to other AIVs among the pH1N1 antibody-
positive (Ab�) subjects. Thus, to investigate the contribution of different cellular
antigens of influenza viruses to biased cross-T-cell reactivities, we compared T-cell
responses to H7N9 and pH1N1 among the members of the healthy population using
overlapping peptides covering the M1 and NP proteins. We found that T-cell reactivity
to H7N9 NP was of the same level as the T-cell reactivity to pH1N1 NP as detected in
the PBMCs ex vivo by ELISPOT assay (Fig. 2I). Subsequently, we established H7N9- and
pH1N1-specific T-cell lines in vitro by stimulating the PBMCs with an NP peptide pool
for 9 days. The responses to NPs of either H7N9 (354 SFCs/105 PBMCs) or pH1N1 (398
SFCs/105 PBMCs) of the T-cell lines remained at the same level (Fig. 2J). In ICS assays,
the results seen with IFN-�-secreting cells in both CD8� and CD4� T cells were similar
under conditions of stimulation of H7N9 NP (4.49% IFN-��/CD8�) and pH1N1 NP
(4.34% IFN-��/CD4�) (Fig. 2K and L). In contrast, the cross-reactivity to H7N9 M1 (203
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SFCs/105 PBMCs) was significantly lower than the reactivity to pH1N1 M1 (368 SFCs/105

PBMCs) itself (Fig. 2G and H).
Subsequently, six immunogenic individual peptides from the pH1N1 M1 pool were

identified as responsible for the M1-specific T-cell responses among the subjects via a
matrix assay. A biased responsive magnitude against the corresponding peptides from
different AIVs was observed, consistent with the diverse substitutions in these peptides
(see Fig. S2). Further analysis indicated that these peptides contained previously
identified HLA class I- or class II-restricted epitopes (see Fig. S2D and H) and that the
immunogenicity can be influenced by the substitutions in different AIVs.

Phenotypes of the cross-reactive T-cell. To further investigate the functional

subset of the cross-reactive T cells, we detected the memory phenotypes of pH1N1-
specific IFN-�� T cells. Memory phenotypes of the IFN-�-secreting cells with respect to
all of the different antigens, including live pH1N1 virus and the M1 pool and NP pool
of pH1N1, were determined by analysis of the CD45RA and CD62L data (Fig. 3A and B).
The results showed that for all the antigens, the effector memory (CD45RA� CD62L�)
T-cell subset dominated the IFN-�-secreting cells both among CD8� and CD4� T cells.
For instance, 75.9% (median) of the IFN-�� CD8� T cells and 81.3% (median) of the
IFN-�� CD4� T cells specific for M1 presented an effector memory phenotype (Fig. 3C).

FIG 2 Cross-reactive cellular immune responses to avian influenza viruses. (A) Cellular immune responses of pH1N1 antibody-positive healthy donors to pH1N1,
H5N1, H6N1, H7N9, and H9N2. T-cell responses were investigated using freshly isolated PBMCs from individuals (n � 11) through IFN-� ELISPOT assays with
live viruses. (B) pH1N1-specific T cells in PBMCs from individuals (n � 20) were expanded by stimulation with the pH1N1 M1 peptide pool for 9 days, and the
T-cell responses were determined through IFN-� ELISPOT assays using pools of overlapping peptides derived from influenza virus M1 protein. (C and D) The
ratios of influenza virus-specific IFN-�-secreting cells in CD8� (C) and CD4� (D) T-cell levels were determined using ICS and flow cytometry. The frequencies
of virus-specific T-cell responses to AIVs were compared with the frequencies of responses to the pH1N1 M1 pool (n � 8). (E and F) Representatives of
virus-specific T cells in CD8� (E) and CD4� (F) T cells are shown. (G to J) T-cell responses to the M1 antigen and NP antigen of pH1N1 and H7N9 before and
after culturing with M1 pools or NP pools of pH1N1 and H7N9 were compared through IFN-� ELISPOT and ICS assays. (I) The T-cell responses of freshly isolated
PBMCs from the healthy donors to the pH1N1 NP pool and H7N9 NP pool were compared using IFN-� ELISPOT assays. (J) PBMCs were cultured with the pH1N1
NP pool and tested on the ninth day using IFN-� ELISPOT assays. The T-cell responses to M1 pools of these two viruses were tested at the same time as the
control (G, fresh PBMCs; H, PBMCs cultured in vitro with M1). (K and L) NP-specific T-cell responses to pH1N1 and H7N9 tested in ICS assays using PBMCs cultured
in vitro with the pH1N1 NP pool for 9 days. Data in panels A, B, and G to J are shown as means � SEM (standard errors of the means), and data in panels C
and D are shown as medians. The differences among multiple groups were compared using ANOVA (A to D), and differences between two groups were
compared using Student’s t test (E to H). *, P � 0.05; **, P � 0.001; ***, P � 0.0001.
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Correlation of the internal proteins and biased T-cell cross-reactivities. T-cell
immunity plays an important role in protection from heterosubtypic influenza infec-
tions when antibodies do not work well. To better investigate the correlation of the
internal proteins and T-cell cross-reactivities, we performed phylogenetic analyses of
the predominant influenza virus T-cell immunogens, i.e., M1, NP, and PB1, based on the
full-length protein sequences (Fig. 4A and C and E). We found that the HA relationship
of the AIVs did not reflect the biased cross-T-cell reactivities. The M1 protein from
different H5N1 strains and that from pH1N1 were not very clearly closely related to each
other, and neither were NP and PB1. Cross-reactive T cells targeted different CD8� or
CD4� T-cell epitopes of AIVs covering special sequences of the antigens. Thus, we
hypothesized that the phylogenetic relationship in terms of the T-cell epitopes from
different AIVs may correspond to the biased cross-T-cell reactivities. We retrieved the
previously defined HLA class I-restricted peptides located within the internal M1, NP,
and PB1 proteins of pH1N1 and the corresponding peptides within different AIVs and
plotted their phylogenetic relationship (Fig. 4B and D and F). The T-cell epitope
evolution of pH1N1 is close to that of H5N1 but distant from those of H7N9, H9N2, and
H6N1, which is consistent with the biased cross-T-cell reactivity to H5N1 but not to the
other strains.

To trace the full view of CD8� immunogenic features of pH1N1 and AIVs, we
performed bioinformatic analyses of potential cellular antigenicity for different viruses
based on previously determined T-cell epitopes available from the Immune Epitope
Data Base (IEDB). We analyzed 38 representative human-infecting AIV strains as well as

FIG 3 Phenotype and functional characterization of influenza virus-specific T cells. (A) Frequencies of influenza virus-specific T cells were determined via IFN-�
staining using ICS assays. (B) The memory phenotype of influenza virus-specific T cells was determined by the use of CD62L and CD45RA after stimulation with
pH1N1 live virus, the M1 peptide pool, and the NP peptide pool of pH1N1. Characteristics of the virus-specific CD8� T cells are shown on the first row in panel
B, and those of virus-specific CD4� T cells are shown on the second row in panel B. The cross-quadrant gate on the virus-specific T cells was determined by
the gate of the PBMCs, shown on the third row in panel B. (C and D) The median ratios of each phenotype of the IFN-�-secreting CD8� T cells (C) and CD4�

T cells (D) from six individuals are shown in the pie graphs.

Zhao et al. ®

July/August 2018 Volume 9 Issue 4 e01408-18 mbio.asm.org 6

http://mbio.asm.org


the recent seasonal H1N1 stains. A total of 266 CTL epitopes were retrieved from IEDB
and then mapped to each strain (up to 30 December 2016). We filtered out 129 internal
protein epitopes to perform further analysis (see Table S2). Clustering analysis indicated
that the H1N1 stains are located in one cluster (see Fig. S3A). For different human-
infecting AIV strains, H5N1 strains remained close to pH1N1 compared to the distance
of other AIVs (i.e., H7N9, H6N1, H9N2) to pH1N1 (Fig. 4G). The H7N9 and H9N2 strains
were intermixed with each other, which may have been related to the shared internal
genes of these AIV subtypes in China (5). Seasonal H1N1 influenza viruses before 2009,
such as A(H1N1)/Brisbane/59/07, were located in a cluster that was adjacent to but
distinct from that of pH1N1, indicating a cellular antigenic transition of pH1N1 com-
pared to previous H1N1 stains.

FIG 4 Immunoinformatic analysis of cellular antigenicities. Phylogenetic analyses based on protein sequence (A, C, and E) and CTL epitopes (B, D, and F) of
the T-cell antigens M1, NP, and PB1 were performed using MEGA6. The human-infecting AIVs (H5N1, H6N1, H7N9, and H9N2) together with the H1N1 strains
(including pH1N1 strains and seasonal H1N1 strains from before 2009 and also 1918 H1N1) are represented with different colors. The clusters of pH1N1 strains
are denoted with purple dotted squares. The clusters of human-infecting H5N1 strains are presented as brown dotted squares. The black triangles indicate the
five virus strains A (H1N1)/California/4/2009, A(H5N1)/Vietnam/1194/2004, A(H6N1)/Taiwan/2/2013, A(H7N9)/Anhui/1/2013, and A(H9N2)/Hong Kong/1073/99
used in this study. (G) Bioinformatics analysis of the potential cellular antigenicities of different AIVs based on the previously determined T-cell epitopes available
in the Immune Epitope Data Base (IEDB) on the heat map. Peptides within different viruses were extracted as predicted T-cell epitopes of the representative
sequences. We counted the number of residues of each predicted T-cell epitope using A/California/04/2009 as a reference. The maximum-likelihood
phylogenetic trees for T-cell epitope sequences were constructed using Molecular Evolutionary Genetics Analysis MEGA6 software with the JTT model and 1,000
bootstrap replicates. The virus and peptide information used for analysis of the data presented in panel G is presented in Table S6 and S7. Eleven epitopes that
are conserved in H5N1 and pH1N1 strains but that different from those in other AIVs are framed with a black rectangle. (H) The sequences of each strain were
compared to the sequence of A(H1N1)/California/04/2009 virus, and mutant sites are highlighted in red (potential TCR docking sites) or yellow (anchor residue
sites). Peptide M1 (99 –109; underlined) indicates peptide H1-P25. The sequence information from the 11 peptides is presented in Table S3. pH1N1, 2009
pandemic influenza virus cluster; sH1N1, seasonal H1N1 strains before 2009 (but the data also include the 1918 H1N1 strain).
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Comparing the different variations of the T-cell epitopes between pH1N1 and
various AIVs, a cluster that included 11 T-cell epitopes was found to be conserved in
H5N1 and pH1N1 strains but presented different variations in other AIVs, either in major
histocompatibility complex class I (MHC-I)-anchoring or T-cell receptor (TCR)-docking
positions (30) (Fig. 4G and H; see Table S3). This cluster of epitopes may have a key role
in determining the bias of cross-T-cell reactivities to different AIVs in the healthy
population.

We also performed bioinformatic analyses using influenza virus-derived T-cell
epitopes with restrictions of different mouse MHC alleles (H-2Db, H-2Kb). Both the
clustering and phylogenetic analyses (see Fig. S3B and C) showed that the mouse
epitope-based H1N1 lineage was still adjacent to H5N1 but far from other AIVs,
including H7N9.

Molecular basis of the biased T-cell cross-reactivities. As mentioned above, there
was a region covering 11 nonconserved short peptides which was highlighted in the
heat map (Fig. 4H). The 11 epitopes had a common feature: the amino acids which
showed substitutions at the anchoring positions and/or at the exposed positions were
substituted frequently (see Table S3). This indicates that the variable antigenicity of the
nonconserved peptides may be contributed by substitution-dependent intervention
of MHC binding and/or TCR recognition. In this study, more than half (54.5%) of the
subjects had the HLA-A*2402 allele, and M1 protein-derived peptide H1-P25 (M1
99 –109; LYKKLKREITF in pH1N1) with HLA-A*2402 restriction is 1 of the 11 peptides.
P25 is conserved between H1N1 and H5N1 (named peptide H1-P25) but has a domi-
nant mutation with substitutions at position 9 from Ile to Met (I9M) (named peptide
H7-P25) in H7N9 and H9N2 and Ile to Val (I9V) in H6N1. In HLA-A*2402� individuals, we
confirmed that peptide H7-P25 could induce lower cross-reactivity than peptide H1-P25
only in pH1N1-specific T cells (Fig. 5A).

To characterize the binding of peptide H1-P25 derived from pH1N1 (or H5N1) and
H7/H9 variant H7-P25 to HLA-A*2402, in vitro renaturing (Fig. 5B) and circular dichroism
(31) assays of the HLA-A*2402/peptide complexes were performed (Fig. 5C). The
refolding efficiencies of both the HLA-A*2402/H1-P25 and HLA-A*2402/H7-P25 com-
plexes were high (Fig. 5B). Further, the HLA-A*2402/H1-P25 complex was more ther-
mally stable (with a melting temperature [Tm] of 48.8°C) than the HLA-A*2402/H7-P25
complex (with Tm � 46.4°C) (Fig. 5C). Despite the fact that the I9M mutation is not
located in the traditional primary anchoring positions of HLA I binding peptides,
peptide H7-P25 displayed a minor decreased binding affinity for HLA-A*2402 compared
to H1/H5-derived peptide H1-P25.

To further interpret the immunogenicity transition at the molecular level, we
determined the crystal structures of HLA-A*2402 in complex with peptide H1-P25 or
H7-P25 (data set 1) (see Table S4). The overall conformations of main chains were
similar in the two structures (Fig. 5D and E). However, in the HLA-A*2402/H1-P25
structure, residue Ile9 inserts inside the E pocket of the HLA-A*2402 groove (Fig. 5F). In
contrast, in the HLA-A*2402/H7-25 complex, mutated residue Met9 is too large to be
accommodated in the E pocket of HLA-A*2402 and, thus, its side chain protrudes from
the peptide binding groove and might be contacted by the TCR (Fig. 5G). Another
structural variation is contributed by Lys4. Although this residue is conserved between
the P25 peptides of pH1N1 and H7N9, the salt bridge formed between Lys4 and Glu8
in HLA-A*2402/H1-P25 is not present in the structure of HLA-A*2402/H7-P25. Without
the constraint of the salt bridge, Lys4 of peptide H7-P25 in HLA-A*2402/H7-P25 is
exposed to solvent instead of being partially buried in the C pocket as in the HLA-
A*2402/H1-P25 structure. Due to the low resolution (3.3 Å) of the first data set from
HLA-A*2402/H7-P25, we collected another data set which had higher resolution (2.3 Å)
(see Table S4). Though no clear electron density for residues in the middle portion of
H7-25 was observable on the basis of data set 2 of HLA-A*2402/H7-P25, the confor-
mations of residues Lys4 and Met9 from H7-P25 in data set 2 were still different from
those from H1-P25 but were similar to those from H7-P25 in data set 1 (see Fig. S1B).
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Taking these data together, though the H7-P25 peptide has only one dominant I9M
mutation, this mutation influences the antigenicity of the peptide, most likely by
altering both HLA binding and TCR recognition. This may illustrate a common mode of
antigenic variation of the 11 nonconserved peptides between the H1N1/H5N1 cluster
and other AIVs (H6N1, H7N9, and H9N2) that induce a biased scale of cross-reactive
T-cell responses.

Biased T-cell cross-reactivities provided distinct cross-protection efficacies
against AIVs. Considering the unequal cross-reactivities to different AIVs exhibited by
pH1N1-specific T cells, especially with respect to the difference between H5N1 and
H7N9, the next issue that we addressed was whether these T-cell immunogenicity
variations can lead to different heterosubtypic protections against these AIVs. We used
pH1N1 virus at sublethal doses to prime mice, and 28 days later, the mice were
intranasally infected with lethal doses of pH1N1, H5N1, or H7N9. For homologous
challenge of pH1N1, the protection ratio was 100% (Fig. 6A). The rate of heterosubtypic
protection against H5N1 challenge was also 100% (Fig. 6D), but the rate of protection
against H7N9 challenge was 89% (Fig. 6G). The mice in the homologous pH1N1
challenge group (Fig. 6B) and the pH1N1 primed-H5N1 challenge group (Fig. 6E)

FIG 5 Molecular bases of the biased cross-T-cell reactivities. (A) An individual CD8� T-cell epitope that has antigenic variation between pH1N1 (H1-P25, similar
peptide in H5N1) and H7N9 (H7-P25) was determined among different donors with HLA-A*2402 restrictions. PBMCs from different donors were tested via the
IFN-� ELISPOT assay by stimulation with individual H1-P25 and H7-P25 peptides. Abbreviation: SFC, spot-forming cell. (B) Tetramers of HLA-A*2402 complexed
to H1-P25 or H7-P25 were prepared and utilized to stain influenza virus-specific T cells. (C) Binding of peptides H1-P25 and H7-P25 to HLA-A*2402 was
elucidated by in vitro refolding. Peptides with the ability to bind to HLA-A*2402 help the HLA-A*2402 H chain to refold in vitro in the presence of �2m. After
properly refolding, the high absorbance peaks of HLA-A*2402 with the expected molecular mass of 45-kDa eluted at the estimated volume of 16 ml on a
Superdex 200 10/300 GL column. The profile is marked with the approximate positions of the molecular mass standards of 67.0, 35.0, and 14.0 kDa. (D)
Thermostability of HLA-A*2402/H1-P25 and HLA-A*2402/H7-P25 complexes as revealed by CD spectroscopy. The Tms of different peptides are indicated by the
gray dashed line at the 50% unfolded fraction. (E) The conformational superposition of H1-P25 (orange) and H7-P25 (blue; based on data set 1 of
HLA-A*2402/H7-P25) presented by HLA-A*2402 observed by a side view. The residues are denoted with a single-letter name together with a position number.
The I9M substitution and changed-conformation residue K4 of H1-P25 (orange) and H7-P25 (blue; based on data set 1 of HLA-A*2402/H7-P25) are labeled with
different colors. (F) The conformational superposition of H1-P25 (orange) and H7-P25 (blue) presented by HLA-A*2402 through a top view. (G) The binding of
peptide H1-P25 to HLA-A*2402. Residue I9 inserts its side chain into hydrophobic pocket E. Residue K4 forms a hydrogen bond with E8. The peptide binding
groove is shown by the vacuum electrostatic surface potential of HLA-A*2402 H chain. (H) The location of peptide H7-P25 within the HLA-A*2402 groove based
on data set 1 of HLA-A*2402/H7-P25. The side chain of the substituted residue M9 protrudes from pocket E. Residue K4 is also solvent exposed and is ready
for TCR docking.
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FIG 6 Different cross-protection efficacies against H5N1 and H7N9 provided by pH1N1-specific T cells. Mice were preinfected with pH1N1 virus (103.8 TCID50)
and, 28 days later, challenged with a lethal dose of A(H1N1)/California/4/2009 (105.8 TCID50) (A to C), A(H5N1)/Vietnam/1194/2004 (105.2 TCID50) (D to F), or
A/Anhui/1/2013 (H7N9) (105.6 TCID50) (G to I), as well as with PBS as a control. Survival status, body weight, and viral titration of lung homogenates were
determined (A to I). The numbers of mice used for survival and weight analyses were as follows: n � 9 for PBS-PBS, n � 10 for PBS-H1N1, n � 10 for PBS-H5N1,
n � 7 for PBS-H7N9, n � 10 for H1N1-PBS, n � 10 for H1N1-H1N1, n � 10 for H1N1-H5N1, and n � 9 for H1N1 to H7N9. (A, D, and G) Survival was recorded
following the second virus infection. (B, E, and H) Body weight losses are presented as mean percentages of the weight differences of the animals relative to
their weight on the day prior to inoculation. (C, F, and I) Lung homogenate samples were collected at 3, 7, and 14 days postinfection. Data are shown with
the mean � SEM virus titers of three mice per time point. (J) Levels of antibodies to pH1N1, H5N1, and H7N9 of H1N1-positive serum samples were tested by
MN assay. (K and L) Levels of antibodies to pH1N1 and H5N1 in H5N1-positive serum samples (K) and levels of antibodies to pH1N1 and H7N9 of H7N9-positive
serum samples (L) were also tested. (M) Cross-reactive T-cell responses to H5N1 and H7N9 of spleen cells isolated from mice infected with pH1N1 for 2 weeks
were determined by IFN-� ELISPOT assays. (N and O) pH1N1-specific CD8� T cells of pH1N1-primed mice were stained with tetramers H1-NP366�374 (complex
between H-2Db and peptide from H1N1), H5/H7-NP366�374 (complex between H-2Db and peptide from H5N1/H7N9), H1-PA224�233 (complex between H-2Db

and peptide from H1N1), and H1-PA224�233 (complex between H-2Db and peptide from H5N1/H7N9). CD8� T cells were subsequently selected for the analysis
of tetramers (n � 4). Differences between two groups were compared using Student’s t test (J to L and N), and differences among multiple groups were
compared using ANOVA (M). *, P � 0.05.
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displayed no or minor body weight losses, while the mice in the pH1N1 primed-H7N9
challenge group (Fig. 6H) had a body weight loss of �10% in the first 7 days after H7N9
challenge. Concerning virus shedding in the lungs after infection, no virus was detected
by 3 days postinfection (d.p.i.) or afterward for the homologous challenge of pH1N1
(Fig. 6C). As for the pH1N1-primed H5N1 group (Fig. 6F), the H5N1 virus load was much
lower than that seen with the unprimed group by 3 dpi and disappeared by 7 dpi. In
the H7N9 groups (Fig. 6I), the primed group had a detectable virus load by 3 and 7 dpi.

To distinguish the contributions of neutralizing antibodies and T-cell responses in
the heterosubtypic protection against AIVs, we performed MN and T-cell response
detection assays in mice infected with different influenza viruses at sublethal dosages.
In the pH1N1-infected group, pH1N1-specific neutralizing antibodies were detectable
on day 14, and no cross-neutralization antibody titers to H5N1 or H7N9 could be
detected (Fig. 6J) and similarly, there was no cross-neutralization antibody titers to
pH1N1 detected in serum of the H5N1- or H7N9-infected group (Fig. 6K and L). The
pH1N1-specific T-cell response in the mice was found to be 363 SFCs/106 splenocytes
at 14 dpi with pH1N1 (Fig. 6M). Meanwhile, cross-reactive T-cell responses to either
H5N1 or H7N9 were found in the pH1N1-infected mice. However, the cross-reactive
T-cell responses to H7N9 (273 SFCs/106 splenocytes) were lower than those against
H5N1 (361 SFCs/106 splenocytes). These results indicated that bias of cross-reactive
T-cell responses induced by pH1N1 may lead to different protection efficacies against
H5N1 and H7N9. We also prepared the tetramers of two immunodominant H-2Db-
restricted T-cell epitopes, NP366 –374 and PA224�233, and their H5N1/H7N9 mutants. The
tetramer staining of the splenocytes from the mice infected by H1N1 for 28 days
showed that the mice possessed robust H1-NP366�374 and H1-PA224�233 peptide-
specific CD8� T cells (1.2% and 0.9%), whereas certain T cells cross-recognizing the
H5N1/H7N9 mutants could also be detected (0.31% and 0.40%) (Fig. 6N and O).
However, the ratios of mutant peptides H5/H7-NP366�374 and H1/H7-PA224�233 were
lower, which may still have contributed to the cross-protection.

DISCUSSION

Here, we found that pH1N1-specific T cells had biased cross-reactivities to different
human-infecting AIVs, while no preexisting neutralizing antibodies were detected. The
cross-cellular immune response to H5N1 in previously pH1N1-infected subjects was
higher than those to H6N1, H7N9, and H9N2, correlating with heterosubtypic protec-
tion in an animal model. Epitope-based phylogenetic analysis demonstrated that the
H5N1 subtype possesses a cluster of conserved epitopes with pH1N1 that may lead to
the observed cross-antigenicity. Peptide-MHC (pMHC) structure determination indi-
cated a molecular basis for the immune cross-reactivity between pH1N1 and H5N1, as
well as the lack of cross-reactivities toward other AIVs, especially H7N9.

Antibody-mediated neutralization is the direct inhibition of viral infection (32). The
elicitation of a neutralizing-antibody response is a correlate of protection for vaccines
and contributes to protection against many viral infections (33). In particular, HA
imprinting in childhood could provide lifelong protection against severe infection and
death from emergent viruses (34). However, a previous study showed that no H7N9-
specific antibody titers were detected in the 1,544 serum samples collected before the
emergence of H7N9 from poultry workers, most of whom were born after 1968, when
H3N2 emerged (18). This indicated that cross-reactive serological immunity against
H7N9 virus did not preexist among healthy young populations. In our study, the levels
of neutralizing antibodies that cross-recognized H5N1 and H7N9 were also undetect-
able, which may indicate a critical role of T cells in heterosubtypic protection. Recent
studies indicated that HA-specific CD4� T cells do not possess a dominant role
compared to the internal proteins such as M1 and NP (20, 35). Therefore, HA-specific
immunity may not be sufficient to explain the cross-protection against AIV by the
immunity to previous seasonal influenza viruses. According to our bioinformatics
analyses, the heat map of all available T-cell epitopes among human-infecting viruses
indicated that the accumulation of varied epitopes may hinder cross-T-cell reactivities.
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In particular, a cluster of conserved T-cell epitopes shared by H5N1 and H1N1 may be
related to cross-protection against H5N1. These epitopes could be considered for use
in the development of vaccines preventing H1N1 and H5N1 infections. In contrast,
T-cell recognition of the mutant viral epitopes in H7N9 was significantly decreased due
to the poor T-cell activation threshold and disrupted peptide-HLA interactions. Al-
though low cross-reactivity of the variable peptides may also exist due to TCR confor-
mational plasticity, their protective effect remains to be determined (36). We also
detected a certain level of cross-reactive T-cell responses against AIVs existing among
different individuals, which may be contributed by conserved T-cell epitopes. Green-
baum et al. showed that a large fraction of conserved T-cell epitopes in seasonal
influenza virus could induce significant T-cell responses; as such preexisting T-cell
immunity may decrease the severity of a variant strain infection (37). Our previous work
also confirmed a dominant role for conserved T-cell epitopes in anti-influenza virus
responses (30).

Although there have been hundreds of influenza virus-specific epitopes identified
across proteins using a range of epitope identification techniques, the majority of the
conserved epitopes are derived from the internal proteins M1, NP, and PB1 (37–39). Lee
and others reported that M1 and NP possess the major immunogenicities among the
internal proteins, followed by PB1 and PA (20). They also found that the recognition
frequency of M1 protein was higher than those of the other internal proteins. However,
the identity of the internal proteins which possess a dominant influence on T-cell
cross-reactivity was still unknown. On the basis of previous researches, we compared
the T-cell responses against H1N1 and H7N9 among healthy donors with overlapping
peptide pools of NP and M1, respectively, in the present study. NP-specific T-cell
cross-reactivity against H7N9 showed a high level among the members of the pH1N1
Ab� population. Interestingly, we found biased T-cell cross-reactivities in responses to
M1 proteins derived from different AIVs. The similarity of the M1 sequences in the two
strains was lower (92%) than those of NP (93%) and other internal proteins (PB1 [96%],
PB2 [97%], and PA [96%]). Besides, the influences of the substitutions on immunoge-
nicity would be different among different proteins, which may also contribute to varied
cross-reactivity of the internal proteins between H1N1 and H7N9. Mutations in the M1
protein might have a larger influence on its immunogenicity. Considering the immu-
nogenicity and dissimilarity conservation of these two proteins, we proposed that M1
might have a more dominant influence in eliciting T cell immunity among influenza
viruses and chose M1 as the stimulus in the experiments that followed that assessed T
cell cross-reactivity and heterogeneous protection. Thus, like the humoral response in
HA, minor variations among the immunodominant epitopes may impact cross-T-cell
reactivities, which should be carefully considered during the development of universal
vaccines based on the M1 proteins of influenza viruses.

The activation of T cells could be affected mainly by two factors: the stability of the
peptide-MHC (pMHC) complex and the interaction between TCR and pMHC. Minor
substitutions of the residues on the middle bulged region of the peptides can abrogate
T-cell recognition (40). Also, the thermal stability of pMHC could influence T-cell
activation. Peptide Gag180 –188 derived from HIV could be recognized by HLA-B*07:02,
HLA-B*42:01, HLA-B*42:02, and HLA-B*81:01. However, Gag180 –188 showed poor ther-
mal stability with HLA-B*42:02 and elicited weaker T-cell responses (41). Also, the
substitutions of the primary or secondary anchor residues may completely change the
antigenicity of the peptides (42). As previously determined in structural studies,
mutational escape in T-cell epitopes contributed to the antigenic disaccord (43, 44).
Gras et al. investigated the cross-reactive T-cell responses against HLA-B7 supertype-
restricted variable epitope NP418�426 in humans (43). They found that cross-reactive
CD8� T-cell immunity did not exist between the pH1N1 virus and recent seasonal
influenza viruses due to structural variation of the solvent-exposed residues in T-cell
epitopes that can be recognized by TCRs. Mutations of anchor residues (or partially
solvent-exposed secondary anchors) can also dramatically decrease CD8� T-cell re-
sponses and result in delayed viral clearance (45). Moreover, the substitutions may also
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lead to an induced fit on the helices of MHC-I that form the peptide-binding groove (46)
and thus impact TCR recognition (47). In the structures of HLA-A*2402 with H1/H5-
derived peptide H1-P25 and H7/H9-specific epitope H7-P25, the I9M substitution
influenced the solvent-exposed surface and decreased the force of anchoring of the
peptide to HLA-A*2402. This indicated that variable antigenicities of nonconserved
peptides could be largely influenced by both exposed positions for TCR docking and
anchoring positions for MHC binding, which should be investigated in the HLA-A*2402
cohort.

Influenza virus-specific effector memory T cells were shown to be able to efficiently
reduce the pulmonary viral titer early during the secondary infection as they accumu-
lated in the lungs with rapid kinetics (48). A previous study reported the correlation of
preexisting T cells with memory phenotype to the conserved pH1N1 epitopes in core
proteins M1 and NP with clinical outcomes after incident pH1N1 infection (12). We also
found that most of the functional cross-reactive T cells were dominated by the effector
memory phenotype. In recent years, while hundreds of AIV-infected cases had been
reported, a large number of latent AIV infections also existed among LPM workers, as
revealed by serological surveillance (49). Our study showed that prior pH1N1 infection
led to heterosubtypic protection, and others indicated that the cross-reactive memory
T cells were critical in heterosubtypic protection against H7N9 with different hierarchies
in mice (50, 51). Determining whether the memory T cells induced by seasonal
influenza viruses provide cross-protection against AIV infection in humans requires
further investigation.

Overall, our study revealed preexisting but biased T-cell reactivity of pH1N1 influ-
enza virus to human-infecting AIVs which provided distinct protection toward each
subtype. This cross-reactive T-cell recognition had a regular pattern depending on the
T-cell epitope matrix derived from AIVs and seasonal influenza viruses. Thus, efforts to
develop heterosubtypic protection-oriented universal vaccines against influenza vi-
ruses should consider the pattern of cross-T-cell immunity.

MATERIALS AND METHODS
Ethics statement. The Ethics Review Committee, National Institute for Viral Disease Control and

Prevention, Chinese Center for Disease Control and Prevention (China CDC), approved this study [project
approval number IVDC2014(005)]. All of the subjects provided written informed consent for the studies
performed on their samples and publication of their cases. The donors were identified anonymously as
donor 1 to donor 35. Animals and eggs used in this study (6-to-8-week-old female C57BL/6 mice and
9-to-11-day-old embryonated chicken eggs) were bought from Beijing Vital River Laboratory Animal
Technology Co., Ltd. Animal experiments were approved by Animal Experimental Ethics Board, China
CDC (approval number 20140225011). The study was conducted in accordance with the principles of the
Declaration of Helsinki and the standards of good clinical practice (as defined by the International
Conference on Harmonization).

Subjects and samples. A total of 35 healthy volunteers were recruited from November 2013 to April
2014. Serum samples were collected from coagulation-promoting tubes (BD Vacutainer) from all donors,
and PBMCs were isolated from anticoagulant blood by Ficoll-Paque density centrifugation from 30 of the
samples (see Table S1 in the supplemental material). Volunteers were given questionnaires to confirm
whether they had received influenza vaccination or had caught cold. None of the subjects had previously
received influenza vaccines. And no symptoms of influenza virus infection were reported during the
sampling period. HLA class I genotyping of the donors was performed using LABType SSO (One Lambda).

Viruses. The A(H1N1)/California/4/2009 virus was propagated in Madin-Darby canine kidney cells
(MDCK) (the Cell Bank of Chinese Academy of Sciences). MDCK cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Gibco) containing 10% fetal bovine serum (Gibco). The A(H5N1)/Vietnam/1194/
2004, A(H6N1)/Taiwan/2/2013, A(H7N9)/Anhui/1/2013, and A(H9N2) /Hong Kong/1073/99 viruses were
propagated in 9-to-11-day-old specific-pathogen-free (SPF) embryonated chicken eggs (Beijing Vital
River Laboratory Animal Technology Co., Ltd.).

Serological assays. HAI and MN assays were performed using A(H1N1)/California/4/2009, A(H5N1)/
Vietnam/1194/2004, A(H6N1)/Taiwan/2/2013, A(H7N9)/Anhui/1/2013, and A(H9N2)/Hong Kong/1073/99
inactive virus antigens, in accordance with WHO protocols (18). Titers of �1:40 for HAI and 1:80 for MN
were defined as seropositive.

Design and synthesis of influenza virus-derived peptide pools. Peptides (15- to 18mers) over-
lapping by 11 residues and spanning the M1 protein of A(H1N1)/California/4/2009, A(H5N1)/Vietnam/
1194/2004, A(H6N1)/Taiwan/2/2013, A(H7N9)/Anhui/1/2013, and A(H9N2)/Hong Kong/1073/99 were
designed and synthesized as previously described (52). The peptides with substitutions within these
viruses were divided into corresponding pools (see Table S5). Overlapping peptides covering NPs of
A(H1N1)/California/4/2009 and A(H7N9)/Anhui/1/2013 were synthesized according to a similar strategy.
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Expansion of influenza virus-specific T-cell lines in vitro. PBMCs from donors were incubated with
influenza virus peptide pools in RPMI 1640 (Gibco) containing 10% fetal bovine serum (HyClone) at 37°C
with 5% CO2 at a density of 2.5 � 106 cells/ml in a 24-well plate. On day 3, 20 U/ml recombinant human
IL-2 (rhIL-2) was added to the medium (53). Half of the medium was changed on day 7 with supple-
mentation by rhIL-2. Cells were harvested and tested for the presence of influenza virus-specific T cells
on day 9.

ELISPOT assay. Antigen-specific T lymphocyte responses were detected via an IFN-�-secreting
ELISPOT assay (BD). Briefly, 96-well ELISPOT plate membranes were coated with anti-human IFN-�
antibody at 4°C overnight before use. PBMCs from donors were incubated in wells (2.5 � 105/well ex vivo
for freshly isolated PBMCs and 5 � 104/well for in vitro-cultured T-cell lines) along with viruses
(multiplicity of infection [MOI] of 3) or peptide pools (2 �M for individual peptides) for 18 h at 37°C with
5% CO2, as well as with phytohemagglutinin (PHA) as a positive control for nonspecific stimulation. Cells
incubated without stimulation were employed as a negative control. After incubation, cells were
removed and, in turn, plates were processed with biotinylated IFN-� detection antibodies, streptavidin-
horseradish peroxidase (HRP) conjugate, and substrate. The development of the spots was stopped
by thoroughly rinsing with water. The numbers of the spots were captured and quantified with an
automatic ELISPOT reader and image analysis software (Cellular Technology Limited). The threshold of
the positive responses set for ex vivo ELISPOT was �20 SFCs/106 PBMCs.

Intracellular cytokine staining and flow cytometry. After pH1N1-specific T cells were expanded in
vitro for 9 days, T-cell lines were washed and rested for 2 h. These cells were then stimulated with a
specific peptide pool for 2 h and incubated with GolgiStop/monensin (BD Bioscience) for an additional
4 h at 37°C in 5% CO2. Then, cells were harvested and stained with a panel of surface MAbs in
fluorescence-activated cell sorter (FACS) buffer (0.5% bovine serum albumin) for 30 min on ice, including
fluorescein isothiocyanate (FITC)-anti-CD8 (BD Pharmingen 555366), peridinin chlorophyll protein
(PerCP)-anti-CD4 (BioLegend 317432, clone OKT4), phycoerythrin (PE)-anti-CD62L (BD Pharmingen
555544), and V450-anti-CD45RA (BD Biosciences 560362). Subsequently, cells were fixed with BD
fix/perm buffer on ice for 20 min and then stained with the intracellular marker allophycocyanin
(APC)-anti-IFN-� (BD Pharmingen 554702). After two washes, cells were resuspended in 4% paraformal-
dehyde (PFA) FACS wash buffer for flow cytometry (BD Influx). PBMCs stimulated with pH1N1 virus were
prepared as described above. Samples were analyzed with FlowJo software.

Tetramer preparation and staining. H-2Db-restricted tetramers of peptides NP366�374 and
PA224�233 and HLA-A*24-restricted tetramers of peptides H1-P25 and H7-P25 were prepared as previously
described (30). Preparation and staining of H-2Db-restricted tetramers were performed as follows. Briefly,
to produce biotinylated peptide-MHC protein, H-2Db was modified by the addition of a substrate
sequence for biotinylating enzyme BirA at the C terminus of the �3 domain. In vitro-renatured H-2Db/
peptide complexes were then purified and biotinylated by incubation with D-biotin, ATP, and the biotin
protein ligase BirA (Avidity) at 4°C for 12 h. The biotinylated H-2Db was further purified using a Superdex
200 10/300 GL gel-filtration column (GE Healthcare) to remove excess biotin and then mixed with
PE-streptavidin (Sigma). Cells from the subjects were stained with PE-tetramer, FITC-conjugated anti-CD3
antibody, and PerCP-cy5.5 anti-CD8 antibody. All samples were analyzed with a FACSCalibur flow
cytometer (Becton, Dickinson) after staining.

Mice and influenza virus infection. Six-to-8-week-old female C57BL/6 mice were used for virus
infections. For the primary infection, mice were lightly anesthetized by inhalation of Drikold and
intranasally (i.n.) infected with 103.8 50% tissue culture-infective doses (TCID50) of pH1N1 in 40 �l of
phosphate-buffered saline (PBS). The same operation was performed on the control group of mice with
40 �l of PBS. For the secondary challenge, mice were challenged with a high dose of H1N1 (105.8 TCID50)
and a lethal dose of H5N1 (105.2 TCID50) or H7N9 (105.6 TCID50) or with PBS 4 weeks later and grouped
as H1N1-PBS, H1N1-H1N1, H1N1-H5N1, H1N1-H7N9, PBS-PBS, PBS-H1N1, PBS-H5N1, and PBS-H7N9.
Inoculated animals were assessed daily. The mice with severe manifestations after the virus challenge
(�20% weight loss plus severe clinical impairment) were humanely euthanized according to our
approved protocol.

Tissue sampling and cell preparation. Three mice from each group were euthanized at 0, 3, 7, and
14 dpi after secondary challenge. Lungs were collected, weighed, and homogenized in 1 ml of cold
DMEM using an IKA T10 homogenizer under sterile conditions. Then, solid debris was pelleted by
centrifugation at 5,000 � g for 10 min, and the homogenates were used for virus titrations in MDCK cells.
Splenocytes were filtered through cell strainers and were lysed with 0.83% ammonium chloride lysis
solution to remove erythrocytes (54).

Immunoinformatics. Human host and mouse B6 host MHC-I T-cell epitopes of internal proteins of
influenza A viruses were downloaded from IEDB (55). Epitopes with peptide lengths of �12 residues were
selected, and their positions in proteins were renumbered using isolate A/California/04/2009 as a
reference. After merging of duplicates was performed, 129 unique human-host MHC-I T-cell epitopes and
122 unique mice B6-host MHC-I T-cell epitopes were obtained (see Table S2 and S6). Protein sequences
of representative strains were downloaded from the GISAID EPIFLU database, and 38 strains were
analyzed (see Table S7). Subsequently, multiple-sequence alignment was performed for each protein
with the alignment tool MUSCLE v3.8.31 (56). Peptides were extracted as predicted T-cell epitopes of the
representative sequences according to the unique epitopes mentioned above. The numbers of different
amino acids of each predicted T-cell epitope compared with those from strain A/California/04/2009 were
counted. The maximum-likelihood phylogenetic trees for full-length proteins and epitope joint se-
quences were constructed using Molecular Evolutionary Genetics Analysis MEGA6 software (57) with the
JTT model and 1,000 bootstrap replicates.

Zhao et al. ®

July/August 2018 Volume 9 Issue 4 e01408-18 mbio.asm.org 14

http://mbio.asm.org


Protein expression, refolding, and purification. The ectodomain of the HLA-A*2402 heavy chain
and human �2 microglobulin (�2m) were expressed in Escherichia coli as inclusion bodies and subse-
quently refolded in vitro in the presence of different peptides. Briefly, the dissolved HLA heavy chain, �2m
inclusion body, and peptides were diluted at a molar ratio of 1:1:3, respectively, into a refolding buffer
(100 mM Tris-HCl, 400 mM L-arginine, 2 mM EDTA-Na, 5 mM glutathione [GSH], 0.5 mM glutathione
disulfide [GSSG]) and slowly stirred for 12 h at 4°C. The refolded complexes were then concentrated and
purified by Superdex 200 10/300 GL (GE Healthcare) chromatography, further purified on an ion-
exchange Resource Q column (GE Healthcare), and manipulated for crystal screening.

Thermal stability assay. The stability of each HLA/peptide complex was tested using circular
dichroism (CD) spectroscopy. All complexes were refolded and purified as described above and mea-
sured at 150 �g/ml in a solution consisting of 20 mM Tris-HCl (pH 8.0) and 50 mM NaCl. CD spectra at
218 nm were measured on a Chirascan spectrometer (Applied Photophysics) using a thermostatically
controlled cuvette at temperature intervals of 0.1°C at a rate of 1°C/min between 25 and 90°C. The
denaturation curves were generated by nonlinear fitting with origin 8.0 software.

Crystallization, data collection, and structure determination. Crystals of HLA-A*2402/H1-P25 and
HLA-A*2402/H7-P25 were grown by the sitting-drop, vapor diffusion method at 18°C with a protein/
reservoir drop ratio of 1:1 and at a concentration of 10 mg/ml in a mixture containing 20 mM Tris-HCl
(pH 8.0) and 150 mM NaCl. The HLA-A*2402/H1-P25 complex crystal grew in a mixture of 0.1 M imidazole
(pH 7.0) and 12% (wt/vol) polyethylene glycol 20000. The HLA-A*2402/H7-P25 complex crystal grew in
a reaction mixture containing 0.1 M MES (morpholineethanesulfonic acid) monohydrate (pH 6.0) and
14% (wt/vol) polyethylene glycol 4000. Reservoir solutions containing 20% glycerol were used for
cryoprotection. The X-ray diffraction data were collected at the Shanghai Synchrotron Radiation Facility
(SSRF) 17U beamline. Data were indexed and scaled using DENZO and the HKL2000 software package.
The structures were determined using molecular replacement with the program CNS with the structure
of Protein Data Bank (PDB) code 3I6L as the model. Extensive model building was performed by hand
using COOT, and restrained refinement was performed using REFMAC5. Additional rounds of refinement
were performed using the phenix.refine program implemented in the PHENIX software package with
anisotropic displacement parameter (ADP) refinement and bulk solvent modeling. The stereochemical
quality of the final model was assessed with the program PROCHECK.

The structure-based antigenic analyses of HA proteins pH1N1, H5N1, H6N1, H7N9, and H9N2 were
performed using the structures with PDB codes 4JTV for H1N1 (58), 3ZNK for H5N1 (59), 4YY9 for H6N1
(55), 4KOL for H7N9 (60), and 1JSD for H9N2 (61). Structure-related figures were generated using PyMOL
(http://www.pymol.org/).

Statistical analysis. One-way analysis of variance (ANOVA) was used in multiple comparisons. The
two-tailed Student’s t test was used to compare data that were normally distributed and the Mann-
Whitney test for nonparametric analyses. Asterisks in each figure indicate statistical significance (*, P �
0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001). Analyses were performed with GraphPad Prism 6
software (GraphPad Software, Inc., La Jolla, CA).

Accession number(s). The coordinates and structure factors of peptides complexed to HLA-A*2402
have been deposited in the Protein Data Bank under accession codes 5WWU (HLA-A*2402/H1-P25),
5WXD (HLA-A*2402/H7-P25, data set 1), and 5WXC (HLA-A*2402/H7-P25, data set 2).
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