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Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains
unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed
to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung
carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers
(NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing
revealed amean of 289 somatic exonicmutations per tumor and the frequent C:G→ A:T nucleotide substitutions
inXuanweiNSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CRNSCLCs had amean of 68 and
22 mutated genes per tumor, respectively (p b 0.0001). We found 167 genes (including TP53, RYR2, KRAS,
CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in
most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2,
MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers
themutation spectrumof air pollution-related lung cancers, and provides evidence for pollution exposure–geno-
mic mutation relationship at a large scale.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Air pollution is a significant environmental risk factor for lung can-
cer. For every increase of 5 μg/m3 of particulate matter (PM) smaller
than 2.5 μm in diameter (PM2.5) in the environment, the risk of lung
cancer rises by 18%; for every elevation of 10 μg/m3 in PM smaller
than 10 μm (PM10), the risk increases by 22% (Raaschou-Nielsen et al.,
2013). Anthropogenic PM2.5 is associated with 220,000 lung cancer
mortalities annually (Anenberg et al., 2010). Based on sufficient evi-
dence of carcinogenicity, the International Agency for Research on Can-
cer (IARC) Working Group recently classified outdoor air pollution and
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Table 1
The demographic characteristics of the 164 NSCLC patients from HPR or CR.

Characteristics Total (n = 164) HPR (n = 79) CR (n = 85)

Gender
Male 101 42 59
Female 61 37 24
n.d. 2 0 2

Age
b65 122 61 61
≥65 40 18 22
n.d. 2 0 2
Median, range 56 [34, 78] 57 [36, 76] 59 [34, 78]

Residence
Xuanwei/Fuyuan 79 79 0
Rest of Yunnan 24 0 24
Guangdong 61 0 61

Smoking
Smoker 81 38 43
Non-smoker 81 41 40
n.d. 2 0 2

Histology
Adenocarcinoma 112 64 48
Squamous-cell carcinoma 46 14 32
Adenosquamous carcinoma 0 0 0
Large-cell carcinoma 6 0 0

TNM stage
IA 18 12 6
IB 47 25 22
IIA 13 2 11
IIB 22 9 13
IIIA 28 13 15
IIIB 15 9 6
IV 16 9 7
n.d. 5 0 5

n.d.: not determined.
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related PM as Group 1 carcinogenic to humans (Loomis et al., 2013).
However, the carcinogenic mechanism of air pollution remains to be
dissected using systematic approaches.

Xuanwei (XW) City in Yunnan Province of China (Fig. S1), provides
an example of the epidemiological association between PM10, PM2.5

and lung cancer (Xiao et al., 2012; Cao and Gao, 2012; Mumford et al.,
1987). This city and the neighboring Fuyuan (FY) county have a large
deposit of smoky coal (Mumford et al., 1987). Until the 1970s, residents
of these regions used smoky coal in unvented indoor fire pits for domes-
tic cooking and heating, all processes that release high concentrations of
PM10 and PM2.5. These airborne particles contain high concentrations of
polycyclic aromatic hydrocarbons (PAHs) including benzo(a)pyrene
(BaP) and polar compounds that are highly mutagenic (Mumford
et al., 1987). Lung cancer incidence in XW is among the highest in
China (Mumford et al., 1987; Xiao et al., 2012), and a reduction in
lung cancer morbidity was noted in the 1990s after stove improvement
in central XW, supporting the association between air pollution and
lung cancer (Lan et al., 2002). The findings in XW had been cited in
the IARCmonograph classifying indoor emissions from household com-
bustion of coal as “carcinogenic to humans (Group 1)” (World Health
Organization International Agency for Research on Cancer, 2010). How-
ever, the overall lung cancer incidence in this region has been increasing
(Xiao et al., 2012; Chen, 2008), possibly due to pollutants generated by
coal-burning industrial plants that moved into the area (Cao and Gao,
2012). In 2011, a survey (Li et al., 2011) of 52,833 residents living in
382 rural villages in XW/FY reported 363 subjects diagnosed with
lung cancer, with the world age-standardized rate (ASR) of 426/
100,000 in some regions of XW. Population in these highly polluted re-
gions (HPR) lends a unique opportunity to dissect the carcinogenesis
that is specifically related to air pollution, and we took this opportunity
by sequencing thewhole genomes of lung cancers from these regions to
provide a comprehensive landscape of genomic alterations in this study.

2. Materials and Methods

2.1. Study Design

We sequenced thewhole genomes of 14 non-small-cell lung cancers
(NSCLCs) fromHPR, and performed targeted exome sequencing of 2010
genes in additional 150 primary NSCLCs from HPR and control regions
(CR) in the rest of Yunnan and Guangdong Province where the level of
air pollution and lung cancer incidence was comparable to most parts
of China (van et al., 2010; Chen, 2008). The mutation patterns of HPR
and CR NSCLCs were compared, and the exposure–response relation-
ship was analyzed (Fig. S1).

2.2. Patients

The study was approved by the Local Research Ethics Committees of
all participating sites. Tumor and adjacent normal lung tissues and
peripheral blood samples were obtained from 164 patients with previ-
ously untreated NSCLCs (Tables 1, S1, Fig. S1 and S2). The diagnosis
and TNM stage were established as previously described (Brambilla
et al., 2001; Goldstraw et al., 2007). The patients resided in their com-
munities and rarely (or never) stayed in other regions for a long time,
and had regular life routines and regular daily time-spent indoors and
outdoors. The exposure dosages of the patients to BaP were estimated
by historical measurements in various regions of China that used differ-
ent fuels and their smoking histories (Sinton et al., 1995; Sullvivan and
Krieger, 2014). The most recent 10 years were excluded to allow for a
hypothesized 10-year latency period between exposure and clinical
recognition of lung cancer. Whole-genome sequencing (WGS) was
performed in 14 HPR patients (Table S1 and Fig. S3), and exome
sequencing was conducted in additional 65 HPR and 85 CR patients
(Table 1).
2.3. Analytic Platforms

DNAs and RNAs were isolated from cancer or counterpart normal
tissues, sequencing libraries were constructed, and sequenced using
the Illumina Hiseq2000 platform. A SNP array using Illumina High
Density GenomeWide Human 660WQuad_v1 was performed to detect
somatic copy number alterations (SCNAs) throughout the genomes.
Mutations of 2010 genes identified by WGS were screened in 150
additional NSCLCs by exome captured and sequencing. The protocols
are detailed in eMethods.
3. Results

3.1. Somatic Mutation Profile in HPR NSCLCs

For WGS, cancer DNAs were sequenced to an average of 65.74×
(range, 61.02×–74.64×) and normal controls of 43.16× (30.07×–
78.70×) coverage. Point mutations, indels, somatic structural variations,
and somatic copy number alterations (SCNAs) were found throughout
the 14 NSCLC genomes (Fig. S3, Fig. 1 and Tables S1, S2, S3). We reported
a mean of 12.75 somatic genomic mutations/Mb, 8.16 exonic mutations/
Mb, and 289 exonic mutations/tumor (Table S1). Only an average of
0.74% mutations was found in coding sequences (CDS) (Fig. S4A, B).
Using capillary sequencing, 331/361 (91.7%)mutations in CDSwere val-
idated. Smoker, non-smokers, squamous cell carcinoma (SCC) and ade-
nocarcinoma (AD) patients had approximately equal mutations in their
genomes and CDS (Fig. S4C). The numbers of non-synonymous muta-
tions, synonymous mutations (Fig. 1A), chromosomal rearrangements
(Table S2) and somatic gene rearrangements (Fig. 1B) were not associ-
ated with smoking status or age. Within predicted promoter regions,



Fig. 1.Mutation landscape of lung cancer fromHPR. (A): A stacked bar graph representing the total number of non-synonymous versus synonymousmutations in each patient. (B): Sum-
mary of somatic genic rearrangements in each patient. “Other Genic” indicates rearrangements linking an intergenic region to the 3′ portions of a genic footprint. (C): Total numbers of
recurring and non-recurring mutations in each patient. (D): The 381 recurring mutated genes (with dN/dS N 2), classified into 18 categories. (E): Mutations and copy number variations
in calcium signal and ion channel genes.
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there is a positive correlation between GC content and somatic muta-
tion rate (Fig. S4D).

We analyzed the CDS mutations and reported a mean of 158
non-recurring and 31 recurring (defined as mutated in at least 2
samples) mutated genes per tumor (Fig. 1C and Table S4). Three
genes, MUC16, RYR2 and TP53, were mutated in 7 (50%) of the 14
patients. CSMD3, RYR1, TTN and ZNF831 were mutated in 5
(35.7%) of the patients. There were 18 (including XIRP2 and
ANK2), 65 (including EGFR and KRAS), 338 (including CACNA1E,
CACNA1S, CACNA2D1 and RYR3) and 2209 genes mutated in 4
(28.57%), 3 (21.43%), 2 (14.29%), and 1 (7.14%) of the 14 patients,
respectively (Table S4). Among the 428 recurrently mutated genes,
381 ones had a ratio of non-synonymous to synonymous mutations
(dN/dS) N 2. These genes fall into 18 categories (Table S4 and Fig. 1D),
with calcium signaling and ion channel-related genes (Fig. 1E), structural
proteins, and transcription factors as the three most frequently mutated
gene categories.
3.2. Somatic Copy Number Alterations (SCNAs)

A total of 479 SCNA segments and a mean of 34 copy number
variations (CNVs) per tumor were detected (Table S3 and Fig. S5A).
We identified 5 regions of significant CNVs: copy loss in 13q12.3-q34
(containing 13 genes including BRCA2, ERCC5, and RB1), 4p16.1-p13
(containing 6 genes), 4q22.1-q35.2 (containing 18 genes including
CASP3, EGF, and FGF2), and 3p24.3-12.2 (containing 17 genes including
TGFBR2 and SETD2); copy gain in 1q21.1-q44 (containing 35 genes
including ABL2, IL6R, andMCL1) (Table S3).

Some genes including CYP1A1, CYP1B1, CAT, and ERCC1, affect PAH
metabolism, detoxification, PAH-DNA adduct formation and repair
(Irigaray and Belpomme, 2010). We assessed 23 genes involved in
these processes, and reported that 20 ones had copy loss in 12/14
patients, and 1 gene (EPHX1) had copy gain in 4/14 patients at the
DNA level (Fig. S5B). By quantitative real-time RT-PCR analysis of 17
of these genes, we found that 13 genes were down-regulated in at
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least 7 patients, with down-regulated CYP3A4 seen in 14 patients, de-
creased CAT, CYP1A1, and NAT in 13 patients, and down-regulated
GSTM1 in 12 cases (Fig. S5C). CNV was also frequently seen in DNA re-
pair genes in the patients, with a mean of 114 copy loss and 17 copy
gain genes per tumor (Table S3).

3.3. Genomic Rearrangements

We used the CREST method (Wang et al., 2011) to detect and map
the breakpoints of the somatic rearrangements among the 14 HPR
patients. Totally, 992 chromosomal rearrangements including 573
(57.8%) gene rearrangements and 419 (42.2%) purely intergenic events
were identified, with a mean of 71 genomic rearrangements per tumor
(Table S2 and Fig. 1B). We identified six previously unreported
interchromosomal in-frame fusion transcripts: ARHGEF10-IMMP2L,
COL13A1-DLD, PCDH15-SOX5, CACNA1B-FAF1, MCF2L2-PHF3, and
ABCC8-C3orf55 in 5 patients (Fig. S6, A-F), andfive previously unreported
intrachromosomal in-frame fusion transcripts (PLCB1-CRLS1, DOCK2-
TENM2, SOX5-ST8SIA1, TADA2B-TBC1D19 andNINJ2-NTF3) in four patients
(Fig. S7, A-E). Sanger sequencing of PCR products using genomic DNA of
the samples was conducted, and 99/108 (91.7%) tested structural
variations were validated.

3.4. Genomic Signatures

In 12/14 (85.7%) HPR patients, the C:G→ A:T transversionswere the
most frequent nucleotide substitutions (Fig. S8A). The percentage of
transversions ranged from 17.7% to 58.8% (Table S5; p = 0.008). In
males, the percentage of A:T → G:C mutations were much higher than
in females (Table S5; p= 0.008); in 2 of the 6males, themost prevalent
mutation was A:T→ T:A (Fig. S8A). Themost frequently observed dinu-
cleotide changewasGG→ TT/CC→AA (p b 0.001) (Fig. S8B). Among the
trinucleotide alterations, XpCpG → XpApG was detected in 13/14 pa-
tients. CpCpX → CpApX and XpCpG → XpTpG were also detected
(Fig. S8C).

3.5. Mutations in Calcium Signaling Genes

Gene Ontology Analysis showed that motor activity, calcium ion
binding, extracellular matrix structural constituent, ion binding, cation
binding, and metal ion binding activity were affected (Table S6). Path-
way analysis using single-nucleotide variation and indel data revealed
that the differentially altered genes were significantly enriched in 46
KEGG (Kyoto Encyclopedia of Genes andGenomes) pathways, including
pathways involved in focal adhesion, calcium signaling and pathogene-
sis of NSCLC (pb 0.0001) (Table S6). Indeed, someof themost frequently
mutated genes (Table S4)were related to calcium signaling, e.g., RYR1-3,
which encode RYRs calcium release channels located on the membrane
of the endoplasmic reticulum (Lanner et al., 2010); ANK2, which is
required for cardiac sinoatrial node Ca2+ homeostasis; XIRP2, which is
a target of the calcium-dependent transcription factorMEF2A; CACNA1E
(or Cav2.3) (Soong et al., 1993), CACNA1S and CACNA2D1, which encode
plasma membrane calcium channel subunits (Pallone et al., 2012).
Table 2
Comparison of mutations in the 2010 genes in HPR and CR NSCLCs.

HPR (n = 79)

Total S (n = 38) NS (n = 41) p

Mutation/Mb (mean) 15.90 18.31 13.66 0.81
G:C → T:A substitution 54.79% 54.03% 55.73% 0.11
Mutated genes/tumor 67.99 74.87 61.61 0.93
Non-silent mutations/tumor 72.66 81.24 64.71 0.89
Genes mutated in N3% samples 785 703 617 0.06

S, smoker; NS, non-smoker.
⁎ The smoking status of two CR patients was unknown.
3.6. HPR NSCLCs Have Much More Mutations Than CR Patients

To unveil the difference in somatic mutations between HPR and CR
NSCLCs (Table 1), exons of 2010 of the 2637 (76.2%) mutated genes
found inWGS were captured and sequenced (Table S7), and the results
were confirmed by sequencing of PCR products using according primers
(Table S8). Cancer DNAs were sequenced to an average of 140×
(54.8×–261×) and normal controls of 145.2× (46.6×–218.5×) cover-
age. We found that the 79 HPR and 85 CR NSCLCs had a mean of 68
and 22 mutated genes per tumor (Table 2), respectively (p b 0.0001).
The HPR NSCLCs had much more mutations, e.g., the total number of
mutated genes (Fig. 2A), recurrent mutated genes (Fig. 2B), and genes
mutated in more than 3%–10% tumor samples (Fig. 2C, Table 2), than
the CR patients. In HPR, the number of genes mutated in N3% samples
was 785, more than 3 times higher than that in CR (213 genes;
Table 2). There were 59 genes which were mutated in N10% tumor
samples in HPR NSCLCs, but only 6 genes (TP53, EGFR, KRAS, COL22A1,
PAPPA2), TMEM132C were mutated in N10% tumor samples in CR
(Fig. 2D). Among the 1529 recurrent mutated genes (Table S7), 167
genes (including TP53, RYR2, KRAS, CACNA1E, XIRP2) had statistically
significantly higher mutation rates in HPR than CR patients, but no
gene had significantly higher mutation rate in CR than HPR patients.
One gene, TMEM132C, was mutated in 7.59% HPR and 14.12% CR sam-
ples, respectively (p = 0.182; Fig. 3C).

3.7. Comparison of Somatic Mutations in HPR and CR NSCLCs

We compared the mutation patterns in HPR and CR NSCLCs. Among
the total 80mutations (46mutations in HPR and 34 ones in CR NSCLCs)
of TP53, 9 common mutations (G154V, R158L, A159P, E171*, Y220C,
G244C, G245C, G245V, and E285K) were seen in both regions
(Fig. 3A). However, most of the TP53 mutations in HPR were different
from those in CR cases. HPR NSCLCs had equal EGFR mutation rate to
CR cases (p = 0.135). However, CR non-smokers had higher EGFR
mutation rate (40%) than smokers (16.3%; p = 0.0158), while in HPR
non-smokers (43.9%) had equal mutation rate to smokers (31.6%;
p = 0.26). In HPR, 14/43 (32.6%) mutations occurred in G719, while in
CR only 1/25 (4%) alterations was observed in this amino acid; 9
(20.9%) mutations occurred in S768 in HPR cases, but no mutation
was seen in this site in CR NSCLCs (Fig. 3A). Mutations in RYR2,
COL22A1, PAPPA2 and TMEM132C in HPR NSCLCs were distinct to
those found in CR patients (Fig. 3). Interestingly, 16/19 (84.2%) KRAS
mutations in HPR NSCLCs and 10/11 (90.9%) KRAS mutations in CR
patients were found in G12 (Fig. 3A), suggesting that NSCLCs of the
two regions also had a few similar points in mutation patterns.

3.8. Association Between BaP Exposure and Gene Mutation

Lifetime exposure to BaP was calculated by applying air concentra-
tion (ng/m3) reported for various regions of China that used different
fuels for cooking and heating (Sinton et al., 1995), an average inhalation
rate of 20 m3/day, and the duration of exposure. Smoking a pack of fil-
tered cigarettes per day was assigned a BaP exposure of 0.4 μg/day
(Sullvivan and Krieger, 2014). The median value of BaP exposure in
CR (n = 85)⁎ p (HPR vs CR)

Total S (n = 43) NS (n = 40) p

8 6.34 7.98 4.49 0.0297 3.611E-06
4 41.92% 45.26% 38.08% 3.421E-05 1.711E-39
0 22.06 28.16 15.58 0.017 9.966E-07
5 23.13 29.67 16.22 0.015 8.796E-07
2 213 273 97 6.339E-10 9.052E-21



Fig. 2. Comparison of mutations in HPR lung cancer with those in CR NSCLCs. (A): HPR NSCLCs boremoremutated genes than CR patients. (B): Comparison of recurrent mutated genes in
HPRwith those in CR NSCLCs. (C): Genes mutated in N5% tumor samples from HPR and CR. (D): Mutations in 59 genes whose mutation frequencies are N10% of HPR NSCLCs. Tumors are
arranged from left to right in the top track.
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the HPR was 151.0 mg, five times as high as in the CR (30.1 mg)
(Fig. 4A). By logistic regression, we found that themutation frequencies
of 70 genes (including RYR2, MYH3, GPR144, RBCC1, NRXN2, KLHL1,
TCHH, ARAP1, COL13A1, CUX2, ZNF800, KCNT1, XIRP2, CACNA1E and
TP53) were associated with BaP exposure (p b 0.05; Table S9, Fig. 4B
and Fig. S9).

4. Discussion

In this study, we examined the cancer genomes of HPR NSCLCs to
identify the genomic mutation profile associated with prolonged expo-
sure to smoky coal pollutants. Of the 14WGSpatients, therewas amean
of 12.75 somatic genomic mutations/Mb, 8.16 exonic mutations/Mb,
and 289 exonic mutations/tumor. Among the 2010 genes sequenced
by targeted exome sequencing, the HPR patients had 68 mutated
genes/tumor, 3 times higher than that in CR cases. Previous studies
demonstrated that smoker NSCLCs bear more somatic mutations than
never-smokers (Imielinski et al., 2012; Govindan et al., 2012). However,
in HPR, the smokers and non-smokers harbored equal numbers of
mutations and gene rearrangements in their genome. In CR, stages
III–IV cancers had more mutations in 6 genes (KRAS, MYH13, TNR,
ADAMTS20, PXDNL and SEZ6L) than stages I–II tumors, while patients
≥65 years harbored more mutations in 4 genes (RYR2, COL22A1,
ADAMTS12 and ZFPM2) than patients b65 years; in HPR, only ACVR2A
had more mutations in stages III–IV cancers than stages I–II tumors,
and ADCY7 had a higher mutation rate in patients ≥65 years than
those b65 years (Table S7 sheet 4). These results demonstrate the
genotoxic effect of air pollution and the urgent need to attenuate
pollution.

PAHs are important carcinogens in PM2.5 and PM10 (Zielinska et al.,
2010; Mumford et al., 1987). A variety of enzymes metabolize PAHs to
more polar and water-soluble metabolites to be excreted from the
body. However, during the course of metabolism, some unstable and
reactive intermediates are formed, which can bind to DNA to form
bulky DNA adducts (Hecht, 2012; DeMarini et al., 2001). At the same
time, the cells constantly deal with the formation of DNA adducts by
DNA repair processes to eliminate these alterations so that mutation
does not occur (Irigaray and Belpomme, 2010). We showed that in the
WGS NSCLCs, genes responsible for PAH detoxification (GSTM1, GSTP1,
GSTT1) were mainly copy loss (Fig. S5B) or down-regulated (Fig. S5C),
while genes involved in PAH activation (CYP1B1 in particular;
Fig. S5C) were mainly up-regulated. DNA repair genes were mainly
copy loss or mutated (Table S3). Mutations in DNA repair pathways
have also been implicated in the production of chromosomal transloca-
tions (Aplan, 2006). Therefore, the events in PAH metabolism and DNA
repair genesmay pave theway to genomicmutations and chromosomal
translocations, and may represent an essential step to allow accumula-
tion of significant mutations to initiate malignant transformation.



Fig. 3.Mutations in some representative genes. Schematic representations of proteins encoded by the genes are shown. Numbers refer to amino acid residues. Mutations found inHPR and
CR patients are shown in red and black, respectively. Each “+” corresponds to an independent, mutated tumor sample, and “*” indicates a nonsense (truncating) mutation. Mutations
underlined with a same-colored line are found in the same patient. (A): The five genes which were mutated in N10% tumor samples in both regions. (B): Representative five genes
whose mutation rates in HPR lung cancer were significantly higher than in CR NSCLCs. (C): Mutations in TMEM132C which were mutated in 6/79 (7.59%) HPR NSCLCs and 12/85
(14.12%) CR lung cancers (p = 0.182).
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PAHs are associated with the C:G→ A:T transversions in nucleotides
(Ruggeri et al., 1993; Eisenstadt et al., 1982), and recent studies in cell
lines showed that BaP can induce this type of nucleotide substitutions
(Olivier et al., 2014). We found that the C:G → A:T substitutions were
the most frequent nucleotide substitutions in 12/14 patients (Fig. S8),
and exome sequencing confirmed the prevalent of C:G → A:T
transversions in HPR NSCLCs (Table 2), indicating that PAHs were the
main carcinogens for these patients. However, in 2/14 cases the most
frequent nucleotide changes were A:T → T:A transitions (Fig. S8), sug-
gesting that there might be other pollutants that caused this signature
in the genomes.
Some genes, e.g., TP53, EGFR, and KRAS, have high frequency of
mutations in lung cancer (The Cancer Genome Atlas Research
Network, 2012; Imielinski et al., 2012), and ethnic and sex-related
differences in mutation spectrum are noted (Dearden et al., 2013;
Kosaka et al., 2004). We showed that the mutation pattern of TP53,
EGFR, and KRAS in CR NSCLCs (Figs. 2D and 3) was in consistence with
previous report in Asian patients (Dearden et al., 2013), and HPR
patients also had high mutation rates in these genes (Fig. 2D). Some
genes, e.g., COL22A1, PAPPA2, TNR, TMEM132C, ADAMTS20, BAI3, CPS1,
and OTOA, had high mutation frequencies in both regions (Table S7).
Mutations in most genes, e.g., TP53, COL22A1, PAPP2A, CACNA1E,



Fig. 4.Association betweenmutations and exposure to BaP. (A): Estimated doses of the patients' exposure to BaP. Sources of combustion of smoky coal and cigarette smokewere included.
(B): Exposure–response relationship between BaP exposure and the mutation probability of 24 representative genes. See also Figure S9.
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MYH3, NRXN2, RYR2, XIRP2, and TMEM132C, distributed throughout the
entire genes were either missense or nonsense in nature; on the
contrary, some genes, e.g., EGFR and KRAS, had mutation hot spots
(Fig. 3). The results indicated that although NSCLCs from HPR and CR
had distinct mutation patterns inmany genes, they did show some sim-
ilar points in some somatic mutations.

Alterations in Ca2+ TRP, ORAI1 and RYR channels have been identi-
fied in cancer (Monteith et al., 2012; Ho et al., 2013; Love et al., 2012),
and overexpression of CACNA1E are correlated with relapse in Wilms'
tumors (Natrajan et al., 2006),while CACNA2D1 plays a role inmaintain-
ing the properties of tumor-initiating cells in hepatocellular carcinoma
(Zhao et al., 2013). Interestingly, Olivier et al. (2014) found that treat-
ment of cells with BaP for 6 days leads to mutations in CACNA1C and
CACNA1G. We showed that in the 79 HPR NSCLCs, calcium signaling-
related genes RYR2, RYR1, XIRP2, CACNA1E and ANK2 had high frequency
mutations (29.1%–17.7%), compared to 1.2%–8.2% mutation rates in CR
patients. In HPR NSCLCs, RYR1 and RYR2 had mutations of loss of func-
tion patterns, because the mutations were distributed throughout the
entire genes and were either missense or nonsense in nature.
CACNA1B-FAF1 fusion (Fig. S6D) could also damage CACNA1B's Ca2+

channel function, because its C-terminal ion transmission and calcium
channel domains were deleted. The 23 CACNA1E mutations in 15/79
(19%) HPR lung cancers were missense mutations and distributed
throughout the entire gene. Among them, 10/23 (43.5%) mutations
were found in the amino acid 119–546 region, and 10/15 (67%) patients
had one mutation in ion transmission, PKD channel or calcium channel
domains (Fig. 3B). These mutations may interfere with the function of
the calcium channel and the intracellular Ca2+ concentration, the
essential second messenger that can regulate nearly every aspect of
cellular functions. Further investigation should be conducted to charac-
terize the “driver mutation” aspects of these genes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.04.003.
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