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ABSTRACT

The objective of this work was to investigate and quantify the effect of sharp edges of the phantom on the point dose measurement 
during patient‑specific dosimetry with Rapid Arc  (RA). Ten patients with carcinoma of prostate were randomly selected for 
this dosimetric study. Rapid Arc plans were generated with 6 MV X‑rays in the Eclipse (v 8.6.14) with single arc (clockwise). 
Dosimetry verification plans were generated for two phantoms (cylindrical and rectangular). The cylindrical phantom was solid 
water  (diameter 34 cm) and the rectangular phantom was a water phantom (25 cm × 25 cm × 10 cm). These phantoms 
were pre‑scanned in computed tomography  (CT) machine with cylindrical ionization chamber  (FC65) in place. The plans 
were delivered with Novalis Tx linear accelerator with 6 MV X‑rays for both the phantoms separately. The measured dose was 
compared with the planned dose for both the phantoms. Mean percentage deviation between measured and planned doses 
was found to be 4.19  (SD 0.82) and 3.63  (SD 0.89) for cylindrical and rectangular phantoms, respectively. No significant 
dosimetric variation was found due to the geometry (sharp edges) of the phantom. The sharp edges of the phantom do not 
perturb the patient specific Rapid Arc dosimetry significantly.
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Introduction

Intensity‑modulated radiation therapy  (IMRT) 
poses a number of challenges for properly measuring 
commissioning data and quality assurance  (QA). 
Volumetric modulated arc therapy  (VMAT) is a system 
for IMRT treatment delivery that achieves high dose 
conformality by optimizing the dose rate, gantry speed, 
and the leaf positions of the dynamic multileaf collimator. 

However,  VMAT  is more difficult technique to master 
because there are more variable parameters.

Patient‑specific dosimetry for VMAT logically 
demands the ideal geometry of the phantom (cylindrical 
or thoracic shape). These phantoms are commercially 
available and some phantoms have been customized.[1‑4] 
They are available with ion chambers or an array of 
diodes. They may or may not be available easily in the 
department due to economical constraints, and hence, 
rectangular phantoms are routinely used for dosimetry. 
The dosimetric results may vary due to the sharp edges 
of the phantom. However, no study has been reported yet 
quantifying the uncertainty due to the phantom shapes 
or geometry.

Recently, Rapid Arc (RA) (Varian, Palo Alto, CA, USA) 
was commissioned in our institution and retrospective 
patient‑specific dosimetry was carried out for a few patients. 
The objective of this study was to investigate and quantify 
the effect of sharp edges of the phantom on the point dose 
measurement during patient‑specific dosimetry with Rapid 
Arc.
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Materials and Methods

Ten patients with carcinoma of prostate were randomly 
selected for this dosimetric study. Two phantoms were 
used in this study. The cylindrical phantom  (diameter 
34 cm, IBA Dosimetry, Sweden) was made of solid water 
with density 1.04  g/cc. Figure  1 shows the cylindrical 
phantom. The rectangular phantom was a real water 
phantom  (25  cm  ×  25  cm  ×  10  cm) and is shown in 
Figure  2. Both the phantoms have the provision to 
insert  (adaptor) cylindrical ionization chamber  (0.65 cc). 
These phantoms were pre‑scanned individually in computed 
tomography  (CT) machine (Somatom Emotions, 
Obersternfeld, Germany) with cylindrical ionization 
chamber (FC65, IBA) in place at 5 cm depth. The scans 
were acquired with 2‑mm slice thickness and the images 
were transferred via ARIA networking system to the Varian 
Eclipse  (v 8.6.14) three‑dimensional treatment planning 
system (3DTPS).

All the Rapid Arc  (RA) verification plans were 
generated with 6 MV X‑rays in the Eclipse with single 
arc  (clockwise) on these phantoms. For this, the Rapid 
Arc intensity‑modulated beam fluence was imported from 
the respective patient’s plan to each phantom. The gantry 
angle of the arc is from 180.1° to 179.9°. The advantage 
of RA is its shorter treatment times compared to Helical 
Tomotherapy and conventional IMRT. It uses more beam 
directions than fixed‑gantry IMRT and delivers highly 
conformal volumetric dose distributions in a single or 
multiple arcs. Progressive Resolution Optimizer was used 
for Rapid Arc optimization. Planned dose was recorded for 
both the phantoms from the Eclipse. Dose distribution 
optimization is performed inversely using dose–volume 
objectives. The optimizer is enabled to continuously 
vary the instantaneous dose rate, MLC leaf positions, as 
well as the gantry rotational speed with inter‑digitization 
capability for a single optimized arc around the patient in 

achieving the desired level of delivery modulation. The 
Anisotropic Analytical Algorithm photon dose calculation 
algorithm was used for all RA cases in this study with 
Eclipse TPS. RA plans consisted of a single co‑planar 
arc capable of one rotation during delivery. For single 
arc plans, collimator angle was fixed to 45° with a couch 
angle set to 0°. Collimator field size and collimator angles 
were determined automatically via tools within Eclipse 
to encompass the planning target volume. The dose 
calculated by TPS at 5 cm depth in central axis was noted 
for each verification plan to be irradiated at the machine.

The plans were delivered with Novalis Tx  (Varian) 
linear accelerator with 6 MV X‑rays and high‑definition 
MLCs (2.5‑mm and 5‑mm leaf width at the isocenter) for 
both the phantoms separately. Similar setup from the TPS 
was simulated at the machine with target to surface distance 
of 95 cm with chamber at 5‑cm depth. Prior to irradiation 
of RA plan, the output of the machine was measured by 
delivering 200 monitor units with 10  cm  ×  10  cm field 
size with the above setup to check the beam stability. The 
response from the electrometer was converted into absorbed 
dose after correcting it with appropriate conversion factors 
as per international dosimetry protocols.[5] The dose was 
measured at the central axis with same chamber and DOSE1 
electrometer (IBA). The measured dose was compared with 
the planned dose for both the phantoms. All the planes 
were delivered on the machine with the image‑guided 
radiotherapy (IGRT) couch.

Results and Discussion

The linac output was within the acceptable range (±2%) 
for 6 MV X‑rays for 10  cm  ×  10  cm field size prior to 
Rapid Arc measurements. Thus, the beam stability was 
satisfactory. For RA plans, the mean percentage variation 
between measured and planned doses was found to be 4.19 
(SD 0.82) and 3.63 (SD 0.89) for cylindrical and rectangular 

Figure 2: Rectangular phantom used for point dose measurements with 
Rapid Arc for 10 patients

Figure  1: Cylindrical phantom used for point dose measurements with 
Rapid Arc for 10 patients
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center was the reason and measurements were carried out 
at off‑axis. The agreement between measured and planned 
doses was within 5%. The setup time for both the phantoms 
was less than 5 min.

In IMRT and VMAT, the use of posterior oblique beams has 
become common. Beam attenuation by the treatment couch 
is not negligible when the couch is in the beam portal. Li et al., 
in their study, established the relationship of relative dose 
versus beam angle for two Varian 21EX linacs, one equipped 
with the Exact couch  (standard couch) with sliding side 
support rails and the other equipped with the Exact IGRT 
carbon fiber couch. Measurements were performed using 
an ion chamber placed at the center of an acrylic cylindrical 
phantom. For oblique fields with 6 MV photons, the standard 
couch attenuated the radiation beam by up to 26.8%, while 
the carbon fiber IGRT couch attenuated the beam by up to 
4.1%. In the clinical evaluation, the highest dose difference 
between rails set at the “in” and “out” positions was 2.1% in 
the VMAT case. The magnitude of potential dose difference 
due to couch attenuation in our RA plans was also studied. 
In our study, Exact IGRT couch was used for dosimetry and 
the couch rails were set at the “in” and “out” positions for 
five cases each. Thus, it is necessary to incorporate the couch 
in TPS for calculation.

Conclusion

The effect of sharp edges on the point dose measurement 
during patient‑specific dosimetry with Rapid Arc was 
investigated and quantified for 10 patients with both the 
phantoms. The sharp edges of the phantom do not perturb 
the patient‑specific Rapid Arc dosimetry significantly. 
The results demonstrate the suitability of the rectangular 
phantom for the patient‑specific QA of VMAT plans and 
suggest that this phantom can also be an alternative tool 
to cylindrical phantom in exceptional cases for the routine 
QA. Systematic patient‑specific planar dosimetry for more 
number of cases with complex tumor shapes will be carried 
out in future.
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