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Abstract

Reductive transformation of toxic arsenic (As) species by As reducing bacteria (AsRB) is a key

process in As-biogeochemical-cycling within the subsurface aquifer environment. In this study,

we have characterized a Gram-stain-negative, non-spore-forming, rod-shaped As reducing

bacterium designated KAs 5-3T, isolated from highly As-contaminated groundwater of India.

Strain KAs 5-3T displayed high 16S rRNA gene sequence similarity to the members of the

genus Pseudoxanthomonas, with P. mexicana AMX 26BT (99.25% similarity), P. japonensis

12-3T (98.90%), P. putridarboris WD-12T (98.02%), and P. indica P15T (97.27%) as closest

phylogenetic neighbours. DNA-DNA hybridization study unambiguously indicated that strain

KAs 5-3T represented a novel species that was separate from reference strains of P. mexicana

AMX 26BT (35.7%), P. japonensis 12-3T (35.5%), P. suwonensis 4M1T (35.5%), P. wuyuanen-

sis XC21-2T (35.0%), P. indica P15T (32.5%), P. daejeonensis TR6-08T (32.0%), and P. putri-

darboris WD12T (22.1%). The DNA G+C content of strain KAs 5-3T was 64.9 mol %. The

predominant fatty acids were C15:0 (37.4%), C16:0 iso (12.6%), C17:1 isoω9c (10.5%), C15:0

anteiso (9.5%), C11:0 iso 3-OH (8.5%), and C16:1 ω7c/ C16:1 ω6c (7.5%). The major polar lipids

were diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, and two

unknown phospholipids (PL1, PL2). Ubiquinone 8 (Q8) was the predominant respiratory qui-

none and spermidine was the major polyamine of the strain KAs 5-3T. Cells of strain KAs 5-3T

showed the ability to use O2, As5+, NO3
-, NO2

-, and Fe3+ as terminal electron acceptors as well

as to reduce As5+ through the cytosolic process under aerobic incubations. Genes encoding

arsenate reductase (arsC) for As-detoxification, nitrate- and nitrite reductase (narG and nirS)

for denitrification were detected in the strain KAs 5-3T. Based on taxonomic and physiological

data, strain KAs 5-3T is described as a new representative member of the genus Pseudox-

anthomonas, for which the name Pseudoxanthomonas arseniciresistens sp. nov. is proposed.

The type strain is KAs 5-3T (= LMG 29169T = MTCC 12116T = MCC 3121T).
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Introduction

Taxonomic hierarchy of the genus Pseudoxanthomonas denotes its affiliation to the class Gam-
maproteobacteria, family Xanthomonadaceae of phylum Proteobacteria. Members of the genera

Xanthomonas, Xyllela, and Stenotrophomonas are found to be the nearest phylogenetic neigh-

bours of Pseudoxanthomonas [1]. Finkmann et al. [2] reported the first validly described spe-

cies of Pseudoxanthomonas, P. broegbernensis isolated from an experimental biofilter. The

taxon has been subsequently emended by Thierry et al. [3] and Lee et al. [4]. Members of this

genus were described as Gram-stain-negative, non-spore forming rods, with iso C15:0 and

anteiso C15:0 as major fatty acids, ubiquinone (Q8) as major respiratory quinone and capable

of performing strict respiratory metabolism with O2 as preferred terminal electron acceptor

[3]. The genus can be well differentiated from the two other related members Xanthomonas
and Stenotrophomonas by the absence of fatty acid C13:0 3-OH and from genus Xylella by the

presence of branched-chain fatty acids (as described in the Bergey’s Manual of Systematic Bac-

teriology, 2nd edition, Volume II, The Proteobacteria [4]). At the time of writing this manu-

script, 17 validly described and two non-validly described (but effectively published) type

species of the genus Pseudoxanthomonas were reported from varied environments [2–17]. The

non-validly described members (but effectively published): P. kaohsiungensis and P. gei are iso-

lated from an oil-polluted site and plant stem respectively [18, 19]. The members of this genus

are ecologically important due to their ability to reduce both nitrite and nitrate; degrade a vari-

ety of hydrocarbons (including benzene, toluene, ethyl-benzene and o-,m-, p- xylene) [20–22].

Recently, the presence of Pseudoxanthomonas and other members of Xanthomonadaceae have

been reported for As-contaminated groundwater of alluvial aquifers in West Bengal and Ban-

gladesh [23–26]. However, neither the taxonomic identity of these strains nor their eco-physi-

ology towards As-transformation has been adequately studied. As a result, the role of such

organisms in biogeochemical-cycling of As in contaminated groundwater remained highly

unexplored.

The present study was therefore undertaken to investigate the taxonomic and eco-physio-

logical properties of an As-resistant and -reducing Pseudoxanthomonas strain previously iso-

lated from As rich groundwater of West Bengal [23]. A polyphasic taxonomic approach was

undertaken to characterize and delineate the taxonomic position of the strain KAs 5-3T. This

strain was found to possess abilities for anaerobic As reduction and hydrocarbons utilization

as well as several other traits potentially important for surviving in highly As-contaminated oli-

gotrophic aquifer environment. To the best of our knowledge, till date no Pseudoxanthomonas
type strain has been characterized from As-contaminated groundwater and capable of reduc-

ing toxic As5+ while assimilating hydrocarbons.

Materials and methods

Bacterial strains and culture conditions

The strain KAs 5-3T (LMG 29169T = MTCC 12116T = MCC 3121T) was originally isolated

from an As-contaminated groundwater (total As of 500 μg/L, salinity of 0.4 parts per thou-

sand) of West Bengal [23]. Type strains of Pseudoxanthomonas (P.mexicana AMX 26BT, P.

japonensis 12-3T, P. indica P15T, P. suwonensis 4M1T, P. wuyuanensis XC21-2T, P. putridarboris
WD12T, and P. daejeonensis TR6-08T) were obtained from various culture collections [Japan

Collection of Microorganisms (JCM, Japan), Microbial Type Culture Collection (MTCC,

India), Korean Type Culture Collection (KCTC), and Korean Agricultural Culture Collection

(KACC, Korea)] and used as reference organisms in various experiments. Strain KAs 5-3T and

the reference type strains were routinely sub-cultured and maintained on Luria-Bertani broth
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(g L-1; Casein enzymic hydrolysate, 10.0; yeast extract, 5.0; NaCl, 10.0; pH adjusted to 7.5) or

minimal salt medium (MSM) (g L-1; Tris buffer, 6.0; NaCl, 5.0; KCl, 1.52; NH4Cl, 1.04;

Na2SO4, 0.4; MgCl2.6H2O, 0.2; CaCl2.2H2O, 0.03; K2HPO4, 0.01; KH2PO4, 0.01, pH adjusted

to 7.0). For MSM, either glucose (10 mM, v/v) or yeast extract (2.0%, v/v) was used as carbon

source, as appropriate.

16S rRNA gene phylogeny and multi locus sequence typing

Nearly complete stretch of 16S rRNA gene was PCR amplified using 27F/1492R primers

(Table A in S1 File); individual sequences were edited and assembled by BioEdit version 7.1.11

[27], subjected to similarity search in NCBI BLAST [28], RDP II [29], and against validly

described members in the EzBioCloud database (http://www.ezbiocloud.net/eztaxon; [30]).

Multiple alignments with 16S rRNA gene sequences of Pseudoxanthomonas type strains were

performed using the CLUSTAL W package of the MEGA software version 7.0 [31]. All ambig-

uous positions were removed for each sequence pair and a total of 1492 positions were taken

in the final dataset for construction of phylogenetic trees. Phylogenetic reconstruction and val-

idation were performed using neighbour-joining (NJ) method [32] (Fig 1) based on bootstrap

analysis with 1000 replications using Jukes-Cantor [33] distance model. Both maximum-likeli-

hood (ML) [34] and minimum-evolution (ME) [35] methods were employed to test the

robustness of the trees (Figure A in S1 File). Multi locus sequence analysis (MLSA) was per-

formed using single copy genes which include gyrB (1200 bp), dnaJ (1000 bp), atpG (400 bp),

and rpoB (1200 bp). PCR primers and conditions are given (Table A in S1 File). All PCR prod-

ucts were gel purified, cloned into pTZ57R/T vector and sequenced using vector specific

primer set (M13F/M13R). Sequences obtained were searched for similarity level using

BLASTN, concatenated, and phylogeny was inferred by constructing NJ tree with 1000 boot-

strap resampling (Figure B in S1 File).

Genotypic characterization

Molar G+C content was (mol %) determined following the thermal denaturation method [36].

DNA-DNA hybridization was carried out between strain KAs 5-3T and reference type mem-

bers (P.mexicana AMX 26BT, P. japonensis 12-3T, P. indica P15T, P. suwonensis 4M1T, P.

wuyuanensis XC21-2T, P. putridarboris WD12T, and P. daejeonensis TR6-08T) using a thermal

denaturation procedure involving SYBR green dye-DNA binding method [37]. Optimum

renaturation temperature (TOR) was calculated and hybridization was performed as described

by Mohapatra et al. [38]. DNA-DNA hybridization value < 70% or difference in Tm values of

5˚C or higher was considered as the cut-off for distinct microbial species [39].

Phenotypic and chemotaxonomic characterization

Morphological, physiological, biochemical, and chemotaxonomic characterization of the strain

KAs 5-3T and reference type strains (P. mexicana AMX 26BT, P. japonensis 12-3T, P. indica
P15T, P. daejeonensis TR6-08T, P. suwonensis 4M1T, P. putridarboris WD12T, and P. wuyua-
nensis XC21-2T) were performed by routine cultivation on LB or MSM as appropriate at 30˚C.

Cell morphology was examined under bright-field (1000 X oil immersion, Olympus) and scan-

ning electron microscopes (SEM-1400; JEOL). For SEM study, cells were fixed with 0.2% (v/v)

glutaraldehyde (EM grade, Sigma) in 0.1 mM phosphate buffer saline (PBS), serially dehy-

drated with ethanol (30 to 100%) (v/v), placed on poly-L-lysine coated cover glass, and viewed

under SEM after gold coating (Figure C in S1 File). Motility was tested by flagella staining pro-

tocol of Kodaka et al. [40]. Temperature sensitivity was assessed at 10–42˚C (with increments

of 5˚C from 10–25˚C and 2˚C from 26–42˚C). Sensitivity towards various pH (3.0–10.0, with
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increments of 1.0 pH unit) was investigated using appropriate buffer system [pH 3–5 (0.1 M

citric acid/0.1 M sodium citrate), pH 6–8 (0.1 M KH2PO4/0.1 M NaOH, pH 9–10 (0.1 M

NaHCO3/0.1 M Na2CO3)] in LB broth, where no significant pH change of the medium was

noticed after autoclaving. NaCl tolerance [0–10% (w/v) with increments of 0.5%] was exam-

ined in LB broth, where appropriate volume of NaCl was added (from 0–5%) to the autoclaved

medium from a sterile stock solution (20%, w/v). For> 5% of NaCl concentrations, the culture

medium was prepared in the double strength (2 X) to avoid the dilution done with the addition

of higher NaCl stock solution. For sensitivity towards temperature, pH, and NaCl concentra-

tions, cellular growth was assessed by measuring absorbance (growth optical density, OD 600

nm) at 0, 12, 24, and 48 h. Tests for catalase, oxidase, nitrate reduction to N2, utilization of gel-

atin, esculin, citrate, and urea were performed following the standard procedures [41–43].

Other biochemical properties were studied using API 20NE kit (Bio-Merieux) at 30˚C for

24–48 h and GEN-III microplate (Biolog) following the manufacturer’s instructions and are

Fig 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequence of KAs 5-3T with type strains of the genus Pseudoxanthomonas. Bootstraps (1000

replications) of above 60% are shown at each branch points. A total of 1492 positions involving 20 nucleotide sequences were considered in the final dataset for

construction of the tree. Filled circles indicate that the corresponding nodes were also recovered in trees generated with maximum-likelihood and minimum-evolution

algorithm. Bar 0.005 indicates 0.5% substitution.

https://doi.org/10.1371/journal.pone.0193718.g001
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presented in Table 1. Gram-staining was performed using Gram staining kit (HiMedia). Sus-

ceptibility towards various antibiotics was tested following disc diffusion susceptibility method

[44] involving commercially prepared paper antibiotic disks (HiMedia, India): cefixime (5 μg),

ceftriaxone (30 μg), amikacin (30 μg), cefotaxime (30 μg), chloramphenicol (30 μg), ofloxacin

(5 μg), polymyxin-B (300 units), tetracycline (30 μg), ciprofloxacin (5 μg), and erythromycin

(15 μg). Freshly grown bacterial cultures (approximately 2×107 CFU/mL) were spreaded onto

the surface of Mueller-Hinton (MH) agar plates and are incubated for 18–24 h at 30˚C. The

zones of growth inhibition around each antibiotic disks were correlated to the susceptibility of

the isolate using the criteria published by the clinical and laboratory standards institute (CLSI,

formerly the National Committee for Clinical Laboratory Standards or NCCLS) [45]. Mini-

mum inhibitory concentration (MIC) of As and various heavy metals was evaluated by grow-

ing the cells in LB supplemented agar medium under aerobic condition by following the plate

dilution protocol of Zhu et al. [46]. Increasing concentrations of As [0.1–200 mM] (As3+ as

Table 1. Phenotypic characteristics that differentiate strain KAs 5-3T from phylogenetically related type strains of Pseudoxanthomonas species. Strains: 1, KAs 5-

3T; 2, P.mexicana AMX 26BT; 3, P. japonensis 12-3T; 4, P. indica P15T; 5, P. daejeonensis TR6-08T; 6, P. suwonensis 4M1T; 7, P. wuyuanensis XC21-1T, 8, P. putridarboris
WD12T. +; Positive, -; Negative, W; Weak, and ND; No data available. GW; groundwater, HCHD; hexachlorocyclohexane dumpsite, SAS; saline-alkali soil, RT; rotten tree.

Characteristic 1 2 3 4 5 6 7 8

Habitat GW Sludge Soil HCHD Soil Compost SAS RT

Motility - + + + + - + +

Catalase + + - + + + + +

Oxidase + + + + + - + +

Growth

Opt. (0C) 30 28 28 28 30 30 35 37

10 0C + + + - - + + -

40 0C - - - - - + - +

pH 6–8 6–9 6–9.5 6–8 7–9 ND 6–7 6–8

NaCl (%) 0.5–5 0.5–4 0.5–3 1–4 1–5 ND 0.5–5 0–3

Nitrate to N2 + - - - - - - -

Assimilation

Esculin + + + + - + + +

Casein + + + - + - + +

Gelatin + + + - W + + +

Urea + - - - - - - -

Tween 80 - + + + - - + +

Arabinose - - - - + + + +

Mannose - + - + - - - -

NAG + - + - + + + +

Maltose - + + + + + - +

Gluconate - + - - - + - -

Caprate - - - - - - - -

Adipate + - - - + - - -

Malate + + + + - + + -

Citrate + + + - + - - -

β-galactosidase + + + - + + + -

β-glucosidase + - - - + - - +

G+C (mol %)
�

64.9 67.8±2 65.2±1 62.9±2 68.7±0.4 67.6±1 66.2 69.1

�G+C (mol %) data taken from Thierry et al., [3], Kumari et al., [13], Yang et al., [7], Weon et al., [8], Li et al., [14], and Lee et al., [17] respectively.

https://doi.org/10.1371/journal.pone.0193718.t001
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NaAsO2 and As5+ as Na2HAsO4) or heavy metals [0.1 to 30 mM] (Cd2+as CdCl2, Co2+ as

CoCl2, Cu2+ as CuSO4, Fe3+as FeCl3, Hg2+ as HgCl2, Cr6+ as K2Cr2O7, Se6+ as Na2SeO4, Ni2+

as NiCl2, Zn2+as ZnCl2) were amended into the medium and medium without any heavy

metal was treated as control. The lowest concentration of metals, which inhibited cellular

growth completely, was considered for MIC evaluation (Table 2). Strains of Escherichia coli
NCIM 2931T and Cupriavidus metallidurans DSM 2839T were used as negative and positive

control respectively, as the strains are found to have the lowest and highest resistance respec-

tively to the heavy metals tested.

The analysis of cellular fatty acid methyl esters (FAMEs) was performed after growth of bac-

terial strains (KAs 5-3T, P.mexicana AMX 26BT, P. japonensis 12-3T, P. indica P15T, P. suwo-
nensis 4M1T, P. wuyuanensis XC21-2T, P. putridarboris WD12T, and P. daejeonensis TR6-08T)

on Tryptic Soy agar (TSA) for 24 h at 30˚C. One loopful of bacterial colony was harvested at

exponential phase, subjected to saponification, methylation, and extraction. Fatty acids were

determined by Microbial ID using the fully automated GC Sherlock Microbial Identification

System (MIDI) using MIDI standard procedures [47]. Isoprenoid quinones were extracted

from overnight grown culture following the procedure of Komagata & Suzuki [48] and ana-

lysed using high performance liquid chromatography (HPLC, Agilent 1100; column: Sorbax

C18 reverse phase, Agilent), where methanol: isopropanol (2:1, v/v), was used as mobile phase

with peak detection at 275 nm. The ubiquinone fractions were separated and identified by liq-

uid chromatography-mass spectrometry (LC-MS, WATERS 2695) in a positive-mode electro-

spray analysis. Polar lipids were extracted and analyzed by two-dimensional TLC following

protocol of Komagata & Suzuki [48] (Figure D in S1 File). Polyamines were extracted as

described by Kumari et al., [13] and analysed by TLC (Silica gel 60 F254, 20×20 cm, Merck,

Germany).

Utilization of carbon substrates, electron acceptors, and As-reductive

growth

To test the utilization of different carbon substrates by strain KAs 5-3T, a range of hydrocarbon

compounds (benzene, toluene, xylene, catechol, benzoic acid, naphthalene, phenanthrene,

anthracene, pyrene, dodecane, pentadecane, hexadecane, nonadecane, docosane) were

Table 2. Minimum inhibitory concentration (MIC) of As and other heavy metals tested for strain KAs 5-3T and reference type strains. Strains: 1, KAs 5-3T; 2, P.

mexicana AMX 26BT; 3, P. japonensis 12-3T; 4, P. indica P15T; 5, P. daejeonensis TR6-08T; 6, P. suwonensis 4M1T; 7, P. wuyuanensis XC21-1T; 8, P. putridarborisWD12T; 9,

E. coliNCIM 2931T; 10, C.metalliduransDSM 2839T.

Heavy metals

[mM]

Bacterial strains

1 2 3 4 5 6 7 8 9 10

Co2+ 5.0 2.5 3 2.5 2.5 3.0 2.5 2.0 2.0 3.0

Ni2+ 3.0 2.5 2.5 2.5 2.5 3.0 2.5 2.0 2.0 2.5

Cr6+ 3.0 3.0 2.5 2.5 2.5 2.0 2.0 2.0 1.5 4.0

Cu2+ 5.0 2.5 2.5 2.0 2.0 2.0 2.0 5.0 2.5 3.5

Se6+ 10.0 2.5 3.0 2.0 2.0 2.0 2.5 3.0 4.0 15.0

Hg2+ 2.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 0.5 2.0

Zn2+ 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.0

Cd2+ 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.5 2.5

As5+ 150.0 1.5 2.0 1.5 1.5 2.0 1.0 1.0 3.0 10.0

As3+ 20.0 1.0 1.5 1.0 0.5 1.0 1.0 0.0 1.0 4.5

Fe3+ 20.0 5.0 5.0 5.0 5.0 5.0 2.5 5.0 10.0 20.0

https://doi.org/10.1371/journal.pone.0193718.t002
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amended into MSM medium at a concentration of 500 μM. Freshly grown cell suspension

(MSM culture medium) was centrifuged at 10,000 rpm for 5 min, washed twice with 0.85%

saline, resuspended in the MSM (without any amendment), inoculated (1%, v/v) into the

medium (OD600 0.03–0.05 at t0), and incubated for 72 h at 30˚C. Growth was monitored at

regular intervals by measuring colony forming unit (CFU)/mL, by plating 0.1 mL of the cul-

ture onto MSM plates supplemented with respective hydrocarbon sources. Utilization of vari-

ous terminal electron acceptors (TEAs) was tested following anaerobic growth (OD at 600

nm) with As5+ (5 mM), Fe3+ (5 mM), NO3
- (5 mM), NO2

- (5 mM) or SO4
2- (5 mM) in MSM

[37] as alternate electron acceptors following addition of either sugar substrates (glucose or

lactate, 20 mM each) and hydrocarbons (pentadecane or naphthalene, 750 μM each) as the

sole carbon/energy source (Fig 2). Medium with added TEAs and without any inoculum was

used as abiotic control. The concentration of TEAs in growth medium was measured in dupli-

cate at regular intervals using standard procedures [43, 49–51]. Cytosolic As5+ reduction was

also checked by growing strain KAs 5-3T in MSM supplemented with carbon sources (as

described above) and incubated at 30˚C for 24 h. The growth parameters and rate of reduction

of As5+ were calculated by checking growth OD (at 600 nm) and residual As5+ concentration

in the medium by spectrophotometric method [52] and validated by atomic absorption spec-

trophotometer (AAS; PinAAcle900H, Perkin Elmer).

Fig 2. Growth and reductive use of different electron acceptors (NO3
-, NO2

-, As5+, Fe3+) by strain KAs 5-3T in the presence of various sugar and hydrocarbon

sources as principal carbon substrates: a) glucose, b) lactate, c) dodecane, and d) pentadecane.

https://doi.org/10.1371/journal.pone.0193718.g002
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Functional gene-based analysis

Genes responsible for cytosolic As5+ reduction (arsC), dissimilatory nitrate- (narG) and nitrite

reduction (nirS) were also amplified through PCR based approach (Table A in S1 File). All

PCR products were gel purified, cloned and sequenced (as described above for MLSA). Nucle-

otide sequences obtained were searched for similarity level using BLASTN. The corresponding

nucleotides were translated to amino acids in ExPasy tool [53] using appropriate open reading

frames (ORFs) and searched in BLASTP, (nr database) excluding options for uncultured/envi-

ronmental sequences and including option for type material. Conserved domain was predicted

through CDD database and phylogeny was inferred through neighbour-joining method (Figs

3 and 4) considering the translated amino acid sequence of strain KAs 5-3T and similar

sequences (>90% similarity value). The nucleotide sequences were analyzed for GC content

(mol %), GC % deviation from their respective genomes (Table B in S1 File) as well as p-dis-

tance calculations through MEGA 7.0. Phylogenetic network analysis was performed using

SplitsTree software [54] (Figures E and F in S1 File).

The GenBank accession numbers for the 16S rRNA, gyrB, atpG, dnaJ, rpoB, arsC, narG,

and nirS gene sequences of strain KAs 5-3T are JX173988, KX827793, KX827799, KX827796,

KX880497, JX110552, KU994890 and KY563659 respectively.

Results and discussion

16S rRNA gene phylogeny and multi locus sequence typing

Comparison of nearly complete (1,495 nucleotides) 16S rRNA gene sequence indicated taxo-

nomic affiliation of strain KAs 5-3T to the genus Pseudoxanthomonas, with highest sequence

similarity to the type strains of P.mexicana AMX 26BT (99.25%), P. japonensis 12-3T (98.9%),

Fig 3. Neighbor-joining phylogenetic tree of genes encoding arsenate reductase (arsC) of KAs 5-3T with similar sequences (>90% identity) retrieved from NCBI

database. Bootstraps (1000 replications) of above 50% are shown at each branch points. The sequences obtained in this study are highlighted in bold, sequence accession

numbers are in parentheses.

https://doi.org/10.1371/journal.pone.0193718.g003
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followed by P. putridarboris WD-12T (98.02%), P. indica P15T (97.27%), P. wuyuanensis XC21-

2T (97.12%), P. suwonensis 4M1T (97.0%), and P. daejeonensis TR6-08T (96.99%). The NJ phy-

logenetic analysis showed that strain KAs 5-3T formed a coherent cluster of monophyletic pat-

tern with the type strains of P.mexicana AMX 26BT and P. japonensis 12-3T (bootstrap

support of 100.0%) and claded to the type members of Pseudoxanthomonas (Fig 1). Both ML

and ME phylogenetic reconstruction methods indicated a consistent tree topology cladding

strain KAs 5-3T to the AMX 26BT, 12-3T, P15T, and WD12T as the nearest phylogenetic neigh-

bours, while the clade comprising the near distant members of the strain KAs 5-3T was only

supported by either of the methods (Figure A in S1 File). On the basis of high percentage of

16S rRNA gene sequence homology and coherent monophyletic cladding of strain KAs 5-3T,

the type strains P. mexicana AMX 26BT,P. japonensis 12-3T, P. indica P15T, and P. putridar-
borisWD12T are inferred to be the closest phylogenetic neighbours. Multi locus sequence typ-

ing (MLST) involving various hose-keeping genes have been employed as a taxonomic marker

for species level comparisons and clonal relationship [55, 56]. Sequence analysis of gyrB, dnaJ,

rpoB, and atpG genes of strain KAs 5-3T showed> 92.0% sequence similarity to the type

strains P. mexicana AMX 26BT and P. japonensis12-3T but formed a separate clade in the NJ

phylogenetic reconstruction (Figure B in S1 File) indicating its non-clonal nature and species

distinction from both the closest phylogenetic neighbours.

Genotypic characterization

The genomic G+C content of strain KAs 5-3T was found to be 64.9 mol %, this value is within the

range for the genus Pseudoxanthomonas [2, 3]. It has been strongly emphasized that inter-species

differentiation should be evaluated by using DNA–DNA hybridization (DDH) studies [56]. The

Fig 4. Neighbor-joining phylogenetic tree of genes encoding dissimilatory nitrate reductase (narG) of KAs 5-3T with similar sequences (>90% identity) retrieved

from NCBI database. Bootstraps (1000 replications) of above 50% are shown at each branch points. The sequences obtained in this study are highlighted in bold,

sequence accession numbers are in parentheses.

https://doi.org/10.1371/journal.pone.0193718.g004
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levels of DNA-DNA relatedness of the strain KAs 5-3T with P.mexicana AMX 26BT, P. japonensis
12-3T, P. suwonensis 4M1T, P.wuyuanensis XC21-2T, P. indica P15T, P. daejeonensis TR6-08T, P.

putridarboris WD12T were calculated to be 35.7%, 35.5%, 35.5%, 35.0%, 32.5%, 32.0%, and 22.1%

respectively. Since DNA-DNA relatedness< 70% is considered to be the cut-off value for species

delineation, KAs 5-3T is unambiguously proposed to be a novel species [57].

Phenotypic and chemotaxonomic characterization

Culture characteristics revealed that on LB agar plates, colonies of strain KAs 5-3T were creamy

to pale yellow, circular, with entire margin and a diameter range of 1–2 mm after 24–48 h. Cells

were Gram-stain-negative, rod-shaped, aerobic to facultative anaerobic, non-motile, catalase

and oxidase positive, with a cell size of 1.2–1.5 μm length × 0.3–0.5 μm width (Figure C in S1

File). The strain was found to grow well at temperature range of 10–38˚C (optimum at 28–

32˚C), pH range of 6.0–8.0 (optimum at 7.0) and over a broad spectrum of NaCl concentrations

(0.5–5%; optimum of 1%) and growth did not occur without NaCl in the medium. The other

details of phenotypic characteristics of the strain KAs 5-3T are presented in the species descrip-

tion and Table 1. Compared with other type members of the same genus (Pseudoxanthomonas),
strain KAs 5-3T exhibited phenotypic differences (Table 1). The strain KAs 5-3T showed ability

to reduce nitrate to N2, assimilate esculin, casein, gelatin, urea, adipate, malate, citrate, and N-

acetyl glucosamine (NAG) and showed negative response for tween 80, arabinose, mannose,

gluconate, and caprate. The catalase-, oxidase-positive, mesophilic, slightly alkalophilic and het-

erotrophic growth pattern confirmed relatedness of KAs 5-3T to the same genus [13]. The dif-

ferential phenotypic properties viz., motility, assimilation of tween 80, urea, maltose, adipate,

and production β-glucosidase confirmed the species level distinction of KAs 5-3T from the com-

pared Pseudoxanthomonas members. In comparison with the phylogenetic neighbours, strain

KAs 5-3T showed considerably higher resistance towards several metals Co2+, Cu2+, Se6+, Fe3+,

As3+, and As5+ (Table 2). The strain’s ability to withstand Fe3+ was comparable to multi-metal

resistant C.metallidurans and for As species, it was highest amongst all the strains tested.

The predominant quinone of the strain KAs 5-3T was found to be Q8. This seems to be a famil-

iar character as prevalence of Q8 was previously reported as the major quinone in members of the

genus Pseudoxanthomonas [3, 5, 13]. The overall FAME profile of the strain KAs 5-3T was found

to be consistent to that of other type strains compared with some observed quantitative differences

(Table 3). The major cellular fatty acids (> 5% of the total fatty acids) of strain KAs 5-3T consisted

of C15:0 (37.4%), C16:0 iso (12.6%), C17:1 iso ω9c (10.5%), C15:0 anteiso (9.5%), C11:0 iso 3-OH

(8.5%), and C16:1 ω7c/ C16:1 ω6c (7.5%). The overall FAME profile was similar with the type strains

compared, but the differential presence of C11:0 anteiso, C16:0, as well as absence of C15:1 iso F and

C16:1 iso H distinguished the strain KAs 5-3T from the reference type strains.

The polar lipid profile of the strain KAs 5-3T was found to be consisting of diphosphatidyl-

glycerol (DPG), phosphatidyldimethylethanolamine (PDE), phosphatidylcholine (PC), and

unknown phospholipids (PL1, PL2, PL3). The presence of DPG, PDE and PL1 was found to be

consistent in all the compared members (except P. indica P15T), indicating the affiliation of

strain KAs 5-3T to the members of the genus Pseudoxanthomonas. The appearance of spot cor-

responding to PC and absence of PE, unknown lipids (UL1, UL2) uniquely distinguished the

strain KAs 5-3T from all the compared members (Figure D in S1 File).

Utilization of carbon substrates, electron acceptors, and As-reductive growth

Cells of the strain KAs 5-3T were found to utilize catechol, naphthalene, dodecane, and penta-

decane as sole carbon sources. Among various tested electron acceptors, strain KAs 5-3T

showed growth on As5+, NO3
-, NO2

-, and Fe3+, while no growth was observed in SO4
2-. But,
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the preferential pattern [net reduction of each added TEA (mM) vs time] was found to be

NO3
- > NO2

- > As5+ > Fe3+. The growth of the strain while growing under these preferred

electron acceptors showed that after 48 h, it reduced NO3
- preferably (5 mM to avg. of 1 mM)

followed by NO2
- (5 mM to avg. of 2.0 mM), As5+ (5 mM to avg. of 2.5 mM), and Fe3+ (5 mM

to avg. of 2.8 mM) (Fig 2). Substantial growth [with a maximum growth OD of 1.2–1.3, μ =

0.11 h-1] along with the formation of As3+ in the aqueous medium, confirmed its reductive

transformation ability. Cells of strain KAs 5-3T were also found to reduce As5+ (from 1 mM to

0.2 mM) within 30 h of aerobic growth with the concomitant release of As3+ in the superna-

tant, indicating its potential of cytosolic reduction of As5+. The ability of Pseudoxanthomonas
members to metabolize alkyl and aromatic hydrocarbons (BTEX, chrysene, and phenan-

threne) and degrade pollutants has been recently studied [20, 21, 58–60]. The As-rich ground-

water of Bengal basin harbours low amount of petroleum-derived hydrocarbons (that

naturally seeps into the groundwater from deeper mature sediments), presence and hydrocar-

bon metabolizing activity of Pseudoxanthomonas strains is highly justified [26, 61, 62]. Except

for P. kausinghensis and P. dokdonensis, Pseudoxanthomonas type members have been known

to reduce nitrite. Thus, the ability of strain KAs 5-3T to preferentially utilize NO3
- over NO2

- is

considered to be a unique metabolic character, distinguishing the strain from its closest rela-

tives. Strain’s ability in utilizing diverse electron acceptor sources, thus corroborates its poten-

tial to dwell at the interface of aerobic-anaerobic zones of groundwater [26, 62–65].

Table 3. Cellular fatty acid profiles of strain KAs 5-3T and related type members of the genus Pseudoxanthomonas. Strains: 1, KAs 5-3T; 2, P.mexicana AMX 26BT; 3,

P. japonensis 12-3T; 4, P. indica P15T; 5, P. daejeonensis TR6-08T; 6, P. suwonensis 4M1T; 7, P. wuyuanensis XC21-2T; 8, P. putridarborisWD12T.

Fatty acids� Strains

Saturated 1 2 3 4 5 6 7 8

C10:0 - - - 0.5 - 0.2 - 0.9

C16:0 1.9 0.7 0.6 2.0 0.3 1.2 0.8 9.0

Unsaturated

C18:1 ω9c 0.7 0.5 0.6 0.3 0.9 - - 0.8

Methyl branched

C10:0 iso 0.4 - - 0.5 - 0.5 - -

C11:0 iso 3.1 5.4 5.1 4.2 4.5 7.2 5.9 4.2

C11:0 anteiso 2.8 - - 0.3 - 0.5 1.1 0.9

C14:0 iso 2.4 2.5 3.2 3.2 2.2 2.9 1.4 3.5

C15:1 iso F - 1.3 1.6 1.9 - 1.5 0.7 -

C15:0 iso 37.4 39.2 35.6 27.9 40.5 31.7 28.5 14.5

C15:0 anteiso 9.5 2.6 3.8 5.6 6.5 12.8 3.6 6.2

C16:1 iso H - 3.9 4.2 0.2 - 0.4 1.1 1.5

C16:0 iso 12.6 9.8 12.5 18.3 6.9 10.9 16.8 20.5

C17:0 iso 1.5 4.5 3.7 3.1 1.2 2.8 3.6 -

C17:0 anteiso - 0.5 0.7 1.2 0.8 1.2 1.6 1.2

Hydroxy

C11:0 iso 3-OH 8.5 6.4 4.9 6.6 4.5 7.2 5.5 4.5

C12:0 iso 3-OH 2.2 0.9 0.4 1.1 - 1.3 1.2 1.8

Summed feature

C16:1 ω7c/ C16:1 ω6c 6.5 5.7 6.1 4.9 6.9 4.5 2.5 7.5

C18:1 ω6c - 1.1 0.79 0.4 1.1 0.8 - 1.0

C17:1 iso ω9c 10.5 19.5 19.5 17.6 20.0 11.6 18.1 11.5

�All strains were cultured and grown under the same conditions. The values shown are percentages of total fatty acids.

https://doi.org/10.1371/journal.pone.0193718.t003
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Functional gene-based analysis

The presence of cytosolic As5+ reductase (arsC; 118 AA), nitrate reductase (narG; 214 AA) and

nitrite reductase (nirS; 146 AA) were noted for the strains KAs 5-3T but not for the other clos-

est related strains. BLASTP search showed highest identity (100%) of arsC and narG genes to

the same genes from Escherichia coli followed by several Pseudoxanthomonas and other

Xanthomonas, while the sequence of nirS showed highest similarity with Pseudoxanthomonas
helianthi roo 10. Elaborate phylogenetic analysis was conducted for the arsC and narG genes.

Phylogenetic analysis (Figs 3 and 4), p-distance matrix based net amino acid substitution (Fig-

ures E and F in S1 File), and phylogenetic neighbour network (Figures E and F in S1 File)

showed a close phylogenetic proximity among KAs 5-3T and E. coli with respect to both of

these genes. The data further indicated presence of similar mutational (insertion/deletion)

events in these genes from the organisms, thus suggesting their possible transfer through hori-

zontal gene transfer events. So, the observed phylogenetic incongruence between these func-

tional genes and 16S rRNA gene was further studied with respect to GC mol %. Measure of

unrelated GC mol % of the functional genes in the genome of organisms is considered to be

the possible site of gene transfer events [24, 66, 67]. Hence, GC content (mol % and mol %

deviation) of both the genes was compared with the genomic GC mol % for Pseudoxanthomo-
nas reference genomes (Table B in S1 File). The GC mol % of both arsC and narG of strain

KAs 5-3T were close to the genomic GC content of E.coli genomes, but not to the genomes of

any of the nearest Pseudoxanthomonas members, further supporting the possibility of horizon-

tal gene transfer events [68, 69]. Unlike, nitrite reduction, a universal property for the genus

Pseudoxanthomonas; nitrate reduction by strain KAs 5-3T, is a unique trait.

The abilities to utilize multiple hydrocarbons, different electron acceptors with As5+ reduc-

tion abilities and genetic validation of this potential clearly demonstrated the metabolic flexi-

bility of the strain. Alluvial aquifer of West Bengal is oligotrophic in nature with low dissolved

carbon, low oxygen tension, fluctuating availability of electron donors and acceptors, with a

low concentration of naturally derived hydrocarbons [26, 38, 61, 62]. Considering the overall

hydrogeochemistry of West Bengal groundwater, the metabolic versatility of the strain KAs 5-

3T seems highly justified for its competitive niche adaptation.

Emended description of the genus Pseudoxanthomonas Finkmann et al.

2000 emend. Lee et al. 2008

As per the descriptions of Pseudoxanthomonas by Finkmann et al., emended by Lee et al.

(2008) and properties tested in this study, an emended description of the genus Pseudoxantho-
monas is provided. Type strains of all Pseudoxanthomonas species except P. kaohsiungensis, P.

dokdonensis, and P. arseniciresistens have no nitrate reduction (to N2) ability.

Description of Pseudoxanthomonas arseniciresistens sp. nov.

Pseudoxanthomonas arseniciresistens (L. n. arsenicum, arsenic; L. part. adj. resistens, resisting;

N.L. part. adj. arseniciresistens, arsenic resisting, referring to the high arsenic resistance of the

type strain).

Colonies are creamy to yellow, smooth and circular (1–2 mm on LB agar after 24–48 h at

30 oC). Cells are Gram-stain-negative, and facultative anaerobic rods (~1.5 × 0.5 mm). It

grows well at 28–32 oC, pH 6–8 and NaCl concentrations of 0.5–5% (optimum of 1%). Cells

are catalase- and oxidase-positive, highly As-resistant and able to reduce arsenate, nitrate as

well as nitrite. Cells are positive for hydrolyses of ONPG (beta-galactosidase), beta-glucosidase,

esculin, gelatin, casein, utilization of adipate, malate, citrate, N-acetyl glucosamine (NAG), and
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urea but negative for tween 80, arabinose, mannose, mannitol, maltose, gluconate, and caprate.

Among various sugars, it assimilates α-D glucose, D-turanose, D-raffinose, D-sorbitol, D-

galactose, sucrose, myo-inositol, and dextrin but does not assimilate α-D lactose, D-maltose,

D-trehalose, D-cellobiose, D-fucose, D-mannose, D-salicin, gentiobiose, inosine, tween 40,

and 3-methyl glucose. Among sugar acids, it waspositive for the assimilation of α-keto glutaric

acid, D-gluconic acid, D-glucuronic acid, D-galacturonic acid, D-lactic acid, D-aspartic acid,

D-malic acid, L-malic acid, L-aspartic acid, L-glutamic acid, acetic acid, citric acid, mucic acid,

propionic acid, fusidic acid, sodium lactate, amino butyric acid, β-hydroxy butyric acid but

negative for α-hydroxy butyric acid, α-keto butyric acid, L-galactonic acid, aceto acetic acid,

phenyl acetic acid, and N-acetyl neuraminic acid. Among N-containing compounds, it uses L-

glycyl proline, L-alanine, L-serine, D-serine, but unable to use D-glycyl proline, L-arginine,

and L-histidine. On Biolog plates, cells of the strain KAs 5-3T shows ability to use glucurona-

mide, guanidine-HCl, tetrazolium violet, tetrazolium blue, lithium chloride, and potassium

tellurite and inability to use sodium bromate. The cells are resistant to erythromycin, but, sus-

ceptible to ceftriaxone, cefixime, amikacin, cefotaxime, chloramphenicol, ofloxacin, poly-

myxin-B, tetracycline, ciprofloxacin, troleandomycin, rifamycin SV, minocycline, lincomycin,

vancomycin, nalidixic acid and aztreonam. Cells are able to use hydrocarbons and reduce arse-

nate through cytosolic reduction. The major cellular fatty acids are C15:0, C16:0 iso, C17:1 iso

ω9c, C15:0 anteiso, C11:0 iso 3-OH and C16:1 ω7c/ C16:1 ω6c and Q8 as the major isoprenoid

quinone. Polar lipids include diphosphatidylglycerol, phosphatidyldimethylethanolamine,

phosphatidylcholine, and three unknown phospholipids. Spermidine is the predominant poly-

amine. The molar G+C content is 64.9 mol %.The type strain, KAs 5-3T (= LMG 29169T =

MTCC 12116T = MCC 3121T), was isolated from highly As-rich groundwater of Kolsur village,

North 24 Pargana of West Bengal, India.

Conclusion

The phylogenetic, chemotaxonomic and phenotypic analysis supported the affiliation of strain

KAs 5-3T to the genus Pseudoxanthomonas. The strain KAs 5-3T showed distinguishing physi-

ological, phenotypic as well as molecular characteristic. Multi locus sequence analysis involv-

ing four house-keeping genes and DNA–DNA relatedness unambiguously demarcated the

species novelty. Dissimilatory reduction of nitrate and nitrite as well as ability to metabolize

hydrocarbons and reduce As5+ through cytosolic processes highlighted the unique properties

of the strain KAs 5-3T, which are of ecological significance. On the basis of phenotypic and

physiological characteristics, chemotaxonomic analysis, multi locus sequence analysis, and

DNA–DNA relatedness data, the isolate represents a novel species of the genus Pseudoxantho-
monas, therefore, the name Pseudoxanthomonas arseniciresistens sp. nov. is proposed.

Supporting information

S1 File. Table A, Details of PCR primers used for 16S rRNA, MLSA, and functional gene

analysis. Table B, GC mol % and dGC mol % (deviation) from their respective genomic GC

content of arsC and narG sequences (phylogenetically closest) as a measure of horizontal

gene transfer event. Figure A, Phylogenetic tree involving 16S rRNA gene sequences of

strain KAs 5-3T and type members of Pseudoxanthomonas species obtained through (a)

maximum likelihood (b) and minimum evolution methods. Bootstraps (1000 resampling) of

above 60% are shown at each branch. Genbank accession numbers are presented in parenthe-

ses. Bar 0.005 indicates 0.5% substitution. Figure B, Neighbor-joining phylogenetic tree

based on Multi Locus Sequence Alignment (MLSA) of four concatenated housekeeping

genes: gyrB (1200 bp), dnaJ (1000 bp), atpG (400 bp), and rpoB (1200 bp) of KAs 5-3T with
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the Pseudoxanthomonas type members. The percentage of replicate trees in which the as-

sociated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the

branches. The evolutionary distances were computed and are in the units of the number of

base substitutions per site. All ambiguous positions were removed and all codon positions

were included for construction of the tree in the final dataset through MEGA 7.0. GenBank

accession numbers for the genes of strain KAs 5-3T are: KX827793 (gyrB), KX827796 (dnaJ),

KX827799 (atpG), and KX880497 (rpoB). Figure C, Scanning electron micrograph of cells of

the strain KAs 5-3Tafter growth on LB agar plate for 18 h at 30˚C. Figure D, Polar lipid

profile of the strain KAs 5-3T and reference type strain members of Pseudoxanthomonas as

shown on TLC plate, developed after spraying with 5% ethanolic molybdophosphoric acid

lipid detection solvents; a) KAs 5-3T, b) P.mexicana AMX 26BT, c) P. japonensis 12-3T, d) P.

daejeonensis TR6-08T, e) P. indica P15T, f) P. suwonensis 4M1T, g) P. wuyuanensis XC21-2T, h)

P. putridarboris WD12T. Figure E, Analysis of gene encoding arsenate (As5+) reductase

(arsC) a) distance matrix for aligned sequence of KAs 5-3T with related sequences, b)

NeighborNet phylogenetic network of arsC gene of KAs 5-3T with related sequences

obtained through SplitsTree software. Colour codes indicate the p-distance value against the

specified sequences. Intensity in each branch indicates the similar evolutionary events. Bar, 0.1

indicates extent of evolution (10%) at amino acid level. Figure F, Analysis of gene encoding

nitrate (NO3
-) reductase (narG) a) distance matrix for aligned sequence of KAs 5-3T with

related sequences, b) NeighborNet phylogenetic network of nitrate reductase (narG) of

KAs 5-3T with related sequences obtained through SplitsTree software. Colour codes indi-

cate the p-distance value against the specified sequences. Intensity in each branch indicates the

similar evolutionary events. Bar, 0.1 indicates extent of evolution (10%) at amino acid level.
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3T. B, Microbial type culture collection (MTCC) deposition certificate of strain KAs 5-3T. C,
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