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Abstract

Glioblastoma (GBM) treatment has remained almost unchanged for more than 20years. The current standard of care
involves surgical resection (if possible) followed by concomitant radiotherapy and chemotherapy. In recent years,
immunotherapy strategies have revolutionized the treatment of many cancers, increasing the hope for GBM therapy.
However, mostly due to the high, multifactorial immunosuppression occurring in the microenvironment, the poor
knowledge of the neuroimmune system and the presence of the blood—brain barrier, the efficacy of immunotherapy
in GBM is still low. Recently, new strategies for GBM treatments have employed immunotherapy combinations and
have provided encouraging results in both preclinical and clinical studies. The lessons learned from clinical trials
highlight the importance of tackling different arms of immunity. In this review, we aim to summarize the preclinical
evidence regarding combination immunotherapy in terms of immune and survival benefits for GBM management.
The outcomes of recent studies assessing the combination of different classes of immunotherapeutic agents (e.g.,
immune checkpoint blockade and vaccines) will be discussed. Finally, future strategies to ameliorate the efficacy of
immunotherapy and facilitate clinical translation will be provided to address the unmet medical needs of GBM.
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Background

Glioblastoma (GBM) is the most common and aggressive
malignant tumor of the central nervous system (CNS) [1,
2]. GBM is a grade IV diftuse astrocytoma that is thought
to arise from neural stem cells or progenitor cells, such
as oligodendrocyte precursor cells [2—4]. Approximately
90% of GBM cases are considered primary GBM, with
fast and de novo expansion and without any sign of less
malignant precursor tumors. Primary GBM often devel-
ops in elderly patients and shows a much poorer progno-
sis than secondary GBM, which originates from grade II
and III astrocytomas, oligodendrogliomas or oligoastro-
cytomas and most likely manifesting in younger patients
(3, 5].
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Standard of care (SOC) therapy aims at increasing
patient life expectancy and focuses on maximal and safe
surgical resection combined with radiotherapy (RT)
and adjuvant chemotherapy in the form of oral deliv-
ery of temozolomide (TMZ) [6]. Despite this treatment,
the median survival of patients diagnosed with GBM is
approximately 15months, with a 2-year life expectancy
of less than 30% [7]. For patients with unresectable GBM
(up to 35-40% of patients), the prognosis is even poorer
[8-10]. Indeed, microscopic infiltration of GBM cells and
the tumor location render total resection difficult or even
impossible and produce inevitable recurrences [9]. Find-
ing new therapies for GBM is therefore an urgent unmet
need, although it is very challenging because of unique
characteristics of GBM and its tumor microenviron-
ment (TME). GBM are characterized by intratumoral and
intertumoral heterogeneity, highly invasive and infiltra-
tive cell properties and an immunosuppressive TME pro-
moting GBM growth via complex interactions [11].
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Immunotherapies, by re-educating and harnessing the
patient’s immune response against tumors, hold great
promise for cancer treatment. These methods have
become increasingly used in the treatment of different
kinds of cancers, including brain cancers [12, 13]. Cur-
rent immunotherapy strategies used to treat cancers are
mainly based on immune checkpoint blockade (ICB)
agents [14, 15], but also therapeutic vaccines [16, 17],
adoptive cell therapy [18, 19], monoclonal antibodies
(mAbs) [20] and oncolytic viruses [21].

Treatment with ICBs has shown remarkable success
in a population of patients with melanomas and other
tumors [22-25]. Therapeutic vaccines have also emerged
as promising cancer treatments, with currently 3 thera-
peutic cancer vaccines approved by the Food and Drug
Administration (FDA) [26]. However, even though
immunotherapies have shown survival benefit for some
proportions of patients with solid tumors, most patients
still do not respond to immunotherapy. Less than 15%
of cancer patients currently respond to ICBs [27]. Fur-
thermore, these strategies are not as effective as would
be desired for GBM treatment. To date, phase III clini-
cal studies with ICB and vaccine therapies have shown no
major benefit of immune modulation for GBM treatment
or patient survival [13, 28].

A recent clinical study, however, demonstrated that
administration of anti-programmed cell death pro-
tein 1 (PD-1) mAbs prior to tumor resection increased
local and systemic antitumor immune responses [29].
Additionally, interim results of a phase II clinical study
evaluating the combination of an allogeneic/autologous
therapeutic GBM vaccine in combination with granulo-
cyte-macrophage colony-stimulating factor (GM-CSF),
cyclophosphamide and bevacizumab demonstrated a sig-
nificant survival benefit [30]. These results raise hope for
research on GBM immunotherapy treatments. Immune
modulation in combination with other treatments has
shown encouraging preclinical results. This review sum-
marizes some of these promising combination strategies
for the treatment of GBM. We will particularly focus on
combinations including ICBs, as they are the most stud-
ied combination strategies including immunotherapy for
GBM.

The BBB and immune microenvironment in GBM:

implications for the development of new therapies
To ensure proper neuronal function, the brain has to be
maintained in a homeostatic state. This implies regula-
tion of the influx/efflux of cells, molecules and ions [31].
Two major barriers contribute to separating the CNS
from the variable environment of blood: (i) the blood—
cerebrospinal fluid barrier, formed by the choroid plexus
epithelium and separating the cerebrospinal fluid from

Page 2 of 22

the blood; and (ii) the blood—brain barrier (BBB), formed
by endothelial cells of the capillary of brain parenchyma
and separating the blood from the brain interstitial fluid
(32, 33].

Due to its anatomical structure and vascular organiza-
tion, the BBB is the most selective barrier [34]. For this
reason, the BBB is also an important obstacle for the
development of successful GBM treatments. While it has
been shown to be disrupted in GBM, an intact BBB is still
found peritumorally [35, 36]. This heterogeneous disrup-
tion leads to protection of most infiltrative components
of GBM and limits the delivery of the majority of thera-
peutics to the tumor [35-37].

Additionally, due to the presence of the BBB and its
tight junctions, the brain has long been considered an
immune-privileged site. The identification of an absence
of classic lymphatics and tolerance of foreign tissue
transplants in the brain also suggested that the brain
was immunologically unique [38—40]. However, it is now
known that the brain is not isolated immunologically
[41]. It has been proven that functional lymphatic vessels
are present in the CNS, that activated T cells can traffic
to the CNS and that CNS antigens can reach the periph-
eral lymph nodes [38]. This emerging evidence suggests
that immunotherapy can be applied to GBM and other
brain cancers. However, several characteristics of GBM,
e.g., its heterogeneity, BBB, low tumor mutation burden,
low infiltration of T cells and microenvironment (which,
for example, features a high infiltration of immunosup-
pressive cells) induce very complex immunosuppression,
which is one major hindrance in finding new treatments
and translating immunotherapies for GBM (Fig. 1).

GBM tumors develop in an immunosuppressive micro-
environment that stimulates tumor cell growth and
aggressiveness. The GBM TME is composed of vari-
ous cell types: infiltrating tumor cells and cancer stem
cells as well as noncancerous cells, such as myeloid cells
(including resident microglia and bone marrow-derived
macrophages), tissue-resident cells (such as neurons
and astrocytes), and lymphocytes, and all these cells can
interact together [42, 43].

GBM cells are known to secrete chemokines, growth
factors and cytokines into the TME. Liberation of these
molecules will attract and stimulate immunosuppressive
cells [43-45]. In turn, immunosuppressive cells inter-
act with GBM cells through different immunosuppres-
sive receptors, resulting in tumor growth promotion and
tumor cell resistance and evasion of immune surveil-
lance [43, 44, 46, 47]. One of the most well-known and
described immunosuppressive receptors involved in
GBM immune escape is PD-1 [48-50]. The PD-1 recep-
tor is mostly expressed on activated T cells, and bind-
ing of PD-1 with its ligand PD-L1 leads to inactivation
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Fig. 1 Schematic representation of GBM TME. A GBM TME is composed of various cell types. B Factors impeding translation of GBM
immunotherapy treatments: (i) the BBB limiting drug delivery efficacy, (ii) the relatively low infiltration of T cells as well as their high
exhaustion marker expression, (iii) the high infiltration of immunosuppressive cells (such as Tregs, TAMs and MDSCs) in the TME and (iv) the
infiltrative and heterogeneous characteristics of GBM cells. (Abbreviations: GBM = Glioblastoma; LAG-3 = Lymphocyte activation gene 3
protein; MDSC = Myeloid-derived suppressive cell; NK=Natural killer; PD-1 =Programmed cell death-1; TAM =Tumor-associated microglia
and macrophage; TIM-3 =T cell immunoglobulin and mucin domain containing-3)

of those T cells [51]. In GBM, PD-L1 has been shown to
be overexpressed by GBM and myeloid cells, leading to
effective binding of PD-L1 to PD-1 and therefore inhibi-
tion of the immune response [48, 52, 53].

The predominant non-neoplastic cells are tumor-asso-
ciated microglia and macrophages (TAMs), which consti-
tute approximately 30% of GBM TME [54, 55]. Microglia
and macrophages are the main innate immune cells in the
healthy CNS, where they play a major role in maintaining
homeostasis and immune surveillance [56, 57]. Micro-
glia are the resident macrophages of the CNS localized
in the parenchyma. They arise from yolk-sac macrophage
precursors at early embryonic stage [58—61]. Three non-
parenchymal macrophage populations, or border-asso-
ciated macrophages, are also found in the CNS under
normal conditions: perivascular, meningeal and choroid
macrophages [56, 57, 62]. In GBM, the partial disrup-
tion of the BBB leads to peripheral bone marrow-derived
macrophages infiltration. This macrophage population
account for approximately 85% of GBM TAMs [63].

Two TAM phenotypes are commonly described: (i)
the classical inflammatory and anti-tumoral M1 pheno-
type and (ii) the anti-inflammatory and pro-tumoral M2
phenotype [64]. Recent studies also indicate that hetero-
geneous populations of TAMs expressing both M1- and
M2-associated markers are found in human and murine
GBM [65, 66]. A high infiltration of M2-like TAMs has
been associated with poor prognosis in GBM [55, 67].
Moreover, a higher proportion of M2-like TAMs are
found in high grade gliomas, as compared to low grade
gliomas [68]. Indeed, GBM cells recruit microglia and
macrophages in the TME by means of chemoattractants
(e.g., C-C motif chemokine ligand 2 (CCL2), CSE-1) [69,
70] and induce a switch to pro-tumoral subtype [65, 71,
72]. In return, TAMs promote tumor cell proliferation
and angiogenesis as well as inhibition of effector T cells
proliferation and attraction of T regulatory cells (Tregs)
and MDSCs through cytokines secretion [65, 72, 73].

MDSCs constitute a heterogeneous population of
cells that play an important role in maintaining an
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immunosuppressive environment in GBM. They inhibit
the immune response by interacting with different cells
in the TME, promoting Treg function, limiting antigen
presentation and inhibiting effector T cell activity, among
other things [74-77]. In addition, as already mentioned,
myeloid cells (including TAMs and MDSCs) have been
shown to overexpress the negative checkpoint molecule
PD-L1 in GBM patients, therefore promoting negative
regulation of the immune response by inducing T cell
dysfunction [78].

Compared to other tumors, the number of tumor-infil-
trating lymphocytes (TILs) is relatively low in GBM [79].
Additionally, those that are present express high levels of
exhaustion markers such as the inhibitory coreceptors
T cell immunoglobulin and mucin domain containing-3
(TIM-3), lymphocyte activation gene 3 protein (LAG-
3), and PD-1 [80-83]. Moreover, the fraction of Tregs
among TILs is increased in GBM patients [84]. Tregs
contribute to the TME immunosuppression by inhibiting
effector T cells and antigen-presenting cells (APCs) [83].
Beside a low density of TILs, a low number of infiltrat-
ing Natural killer (NK) cells and B cells are found in GBM
[85]. Besides, GBM cells have developed mechanisms to
escape from NK immune surveillance through inhibitory
bindings [86].

In addition to the complex interplay between all the
cells present in the TME of GBM, resulting in multifacto-
rial and complex immunosuppression, low tumor muta-
tion burden is an additional likely reason why applying
immunotherapy in GBM is difficult. Indeed, tumor-asso-
ciated antigen production is quite low in GBM, which
may lower the efficacy of immunotherapy [87].

Moreover, unique characteristics of GBM also impede
the development of new treatments. Indeed, GBM is a
very infiltrative tumor that exhibit inter- and intratu-
moral heterogeneity. Intratumoral heterogeneity refers to
molecular diversity within a same tumor, leading to dif-
ferences in growth rate, cellular morphology, histopathol-
ogy and differentiation markers expression, among other
things [88]. Therefore, different subpopulations of GBM
cells coexist and cooperate to promote tumor growth and
progression, contributing to divergence in response and
resistance to SOC [89, 90]. Intertumoral heterogeneity
refers to cellular and genetic differences between GBM
tumors from different patients and leads therefore to dif-
ferent molecular subtypes, and heterogeneity in patients’
response to therapy [91].

GBM immunotherapy: disappointing initial clinical
results of monotherapies

Immune checkpoints are regulators of the immune
system that control immune effector function by
maintaining an equilibrium between inhibitory and
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costimulatory signals. Their role is to protect tissues
from damage due to excessive immune response but
also to prevent autoimmunity [14, 92]. However, cancer
cells have been shown to take advantage of this system
to escape immune surveillance by upregulating inhibi-
tory immune checkpoint expression and activating
these negative regulators on tumor-specific immune
cells [14, 93, 94]. The main example of this mechanism
in GBM is the appropriation of the PD-1/PD-L1 path-
way [48-50].

The main immune checkpoints that have been success-
fully targeted in cancer treatments are PD-1, its ligand
PD-L1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4).
Inhibition of these T cell negative regulators with mAbs
increases the immune response in many cancers (e.g.,
melanoma and non-small-cell lung cancer) [25, 95-97].
In 2011, the FDA for the first time approved the use of
the checkpoint inhibitor ipilimumab — a monoclonal
antibody inhibiting CTLA-4 — as a frontline cancer treat-
ment in advanced melanoma [22, 98]. Since 2014, the first
mAb directed toward PD-1, nivolumab, has been FDA-
approved for the treatment of metastatic melanoma [99].
Nivolumab was further approved for other cancers, such
as non-small-lung cancer and squamous cancer of the
head and neck [23, 24]. The combination of ipilimumab
and nivolumab was also approved for advanced renal cell
carcinoma, metastatic melanoma and metastatic colorec-
tal cancer [100-102].

By generating and amplifying specific T cell responses
against tumors, therapeutic cancer vaccines hold a major
place among strategies to fight cancer. In the past decade,
research on therapeutic cancer vaccine has extended,
thanks to recent progress in delivery technologies and
target selection methods as well as continuous advances
in understanding tumor immune response mechanisms
[103]. Today, there are 3 FDA-approved therapeutic can-
cer vaccines. The first immunotherapy ever approved by
FDA was intravesical BCG (bacillus Calmette-Guérin)
in 1990 [26]. This live attenuated vaccine is now part of
the standard treatment of early-stage bladder cancer and
reduces risks of cancer progression [104, 105]. In 2010,
the FDA approved Sipuleucel-T (Provenge®) — an autol-
ogous dendritic cell (DC) vaccine that reduces the risk
of death in prostate cancer patients [106]. Intralesional
vaccination with an oncolytic herpes virus encoding
GM-CSF, talimogene laherparepvec (T-VEC; Imlygic®),
improved mOS in patients with advanced melanoma
[107]. T-VEC was approved by the FDA in 2015 [108].

However, both ICBs and vaccines as monotherapies
are still ineffective in multiple cancers, such as GBM.
To date, there is no FDA-approved immunotherapy for
GBM, even though some are being tested in clinical trials
[109]. Moreover, some phase III clinical trials have failed,
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including trials of immunotherapy treatments such as
ICBs or therapeutic vaccines (Table 1).

ICBs, and anti-PD-1 therapy more particularly, have
been extensively studied in GBM treatment given their
promising results in other solid tumors. Anti-PD-1
agents were the first type of ICB tested in a clinical trial
for GBM treatment (CheckMate 143, NCT02017717)
[110, 113]. Phase III of this study was conducted on 369
patients with recurrent GBM randomized to receive
either nivolumab (anti-PD-1 antibody) or bevacizumab
(an antibody targeting and inhibiting vascular endothe-
lial growth factor (VEGF); an antiangiogenic treatment).
The results of this study showed no improvement in the
median overall survival (mOS) for patients treated with
anti-PD-1 antibody compared to those in the other treat-
ment arms [110]. Similarly, the phase III CheckMate 498
trial (NCT02617589) failed to meet its primary endpoint
of improving mOS. The study was conducted on 560
newly diagnosed patients and compared nivolumab and
TMZ, each of which was given with RT. More recently,
Bristol-Myers Squibb (BMS) announced that the phase
IIT trial Checkmate 548 (NCT02667587) did not meet
its primary endpoint. The study evaluated the addition
of nivolumab to the SOC and was conducted on 693
patients with newly diagnosed GBM.

Likewise, two phase III studies with therapeutic vac-
cines added to standard treatments failed to produce
convincing results [111-113]. In the ACT IV phase III
study (NCTO01480479), the addition of rindopepimut
— a vaccine targeting EGFRVIII — to standard chemo-
therapy did not improve survival of EGFRvIII-positive
glioblastoma patients [111]. The NCTO00045968 phase
II trial evaluating the addition of an autologous tumor
lysate-pulsed DC vaccine (DCVax®-L) to SOC for newly

Table 1 Failures of phase Il clinical trials of immunotherapy for GBM
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diagnosed GBM patients was put on hold by the FDA for
unidentified reasons [112, 113].

The main commonality between the agents used in
these disappointing phase III trials is that they stimulate
only one arm of antitumor immunity: they reduce the
immunosuppression exerted on T cells (ICBs), stimulate
the immune response against a specific antigen or acti-
vate a specific dendritic cell (DC) response against the
tumor. Even when combined with SOC, the immune
response is not enhanced, mainly because of the immu-
nosuppressive characteristics of systemic chemother-
apy and RT (which induce lymphopenia and hypoxia,
respectively), as well as corticotherapy [114, 115]. Indeed,
the blood of patients treated with dexamethasone has a
reduced number of immune cells [116].

Despite these disappointing clinical trial results, the
randomized open-label pilot study from Cloughesy and
colleagues raises hope for the use of immunotherapy in
GBM [29]. In this study, an anti-PD-1 mAb (pembroli-
zumab) was given as a neoadjuvant drug to patients
with recurrent GBM. Administration of pembrolizumab
before resection significantly improved overall and
progression-free survival with induction of TIL func-
tional activation and production of an interferon (IFN)-y
response within the TME [29]. Besides, a phase II study
on the therapeutic GBM vaccine ERC1671 (Gliovac'")
showed promising preliminary results. ERC1671 is a vac-
cine composed of tumor cell lysate from allogeneic and
autologous GBM patients mixed with primary irradi-
ated/inactivated whole tumor cells [30]. Combination of
ERC1671 with GM-CSF and cyclophosphamide plus bev-
acizumab resulted in a significant survival benefit with
a mOS of 12months, while placebo plus bevacizumab
mOS was 7.5 months. Interim results suggested that the

Trial Treatment

Outcome Reference

CheckMate 143 phase Il
(NCT02017717)

anti-PD-1 (nivolumab) vs anti-VEGF
(bevacizumab)

CheckMate 498 phase Il
(NCT02617589)

anti-PD-1 (nivolumab) +RT vs
TMZ +RT

CheckMate 548 phase Il
(NCT02667587)

ACT IV phase Il (NCT01480479)

anti-PD-1 (nivolumab) + SOC vs
placebo 4 SOC

Peptide vaccine targeting EGFRvIII
(rindopepimut) +TMZ vs placebo
+TMZ

NCT00045968 phase Il Dendritic cell vaccine

(DCVax®-L) + SOC vs placebo + SOC  For unidentified reasons

Primary endpoint not reached
< No improvement of mOS with
anti-PD-1 (9.8 months) vs anti-VEGF
(10months)

Primary endpoint not reached
<> No improvement of mOS with
anti-PD-1+RT (13.4 months) vs
control treatment (14.9 months)

Reardon et al., (2020) [110]

BMS press release; ClinicalTrials.gov

Primary endpoint not reached
Data not yet released

BMS press release

Primary endpoint not reached
< No improvement of mOS with
rindopepimut (20.1 months) vs
control group (20.0 months)

Put on hold

Weller et al, (2017) [111]

Liau et al,, (2018) [112]; ClinicalTri-
als.gov
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benefit was correlated with the CD4 helper T lympho-
cytes counts in the peripheral blood [30].

The use of immunotherapy for GBM is therefore not
a dead end. According to us, combination strategies tar-
geting different arms of the cancer immunity cycle have
great potential to overcome GBM multifactorial immu-
nosuppression and increase antitumor immune response.
These strategies are being tested to a large extent in pre-
clinical and clinical studies, giving encouraging results.

Targeting different arms of the GBM immunity
cycle to improve immunotherapy efficacy:
preclinical aspects

The immune cycle in GBM is a multistep process that
can be targeted by treatments at different levels (Fig. 2).
Antigens released from dying GBM cells are captured by
APCs, processed and displayed on major histocompat-
ibility complex (MHC)-I and -II molecules for presenta-
tion to T cells. Effector T cells are primed and activated
in response to tumor antigen presentation. Activated T
cells kill GBM cells after binding to GBM tumor antigen
on MHC-I through the T cell receptor (TCR). However,
the immunosuppressive microenvironment can hinder
immune control in GBM.

ICBs act by restoring the activity of effector cells so
that they can recognize and attack cancer cells again.
However, if there is not enough T cell infiltration at the
tumor site and/or too many immunosuppressive cells
in the TME (e.g., Tregs and TAMs), ICBs may not be
enough to promote a strong antitumor response induc-
ing the death of cancer cells. Targeting different arms
of the cancer immunity cycle is of great interest, par-
ticularly in the context of GBM, in which it could offer
better chances to overcome multifactorial immunosup-
pression [117, 118]. Indeed, it is possible to stimulate the
immune system at different times and locations during
immune response generation. One possibility to enhance
the immune response against GBM (or other cancers)
is by stimulating antigen release from dying tumor cells
and their presentation to APCs. Immunogenic cell death
(ICD) inducers, such as RT and some chemotherapeu-
tics, induce dying cancer cells to release danger signals
that stimulate the recruitment of APCs and antigen
presentation [117]. Antigen presentation may also be
stimulated by using vaccines (e.g., whole-cell tumor vac-
cines or peptide vaccines) that enhance the recognition
of antigens and increase the production of antigen-spe-
cific T cells [118]. Another way to improve the immune
response against GBM is to decrease the immunosup-
pression occurring at different stages of the generation of
effector T cells. The use of ICBs is helpful to block the
inhibition of effector T cells and therefore restore their
activity (either early in the course of their activation or in
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the TME) [119]. Costimulatory agonist mAbs might also
be of great interest to potentiate effector T cell function
(120] (Fig. 2).

In this chapter, we describe some of the combination
strategies that are used in preclinical studies. Most of the
described results rely on GL261(—Luc) models, as they
are the most common models used nowadays for study-
ing the immunotherapy of GBM. We focus first on com-
bination of chemotherapy with immunotherapy and then
on combination of different immunotherapies. ICBs are
the most studied immunotherapeutic approach; for this
reason, the majority of the combinations presented here-
after includes inhibitory checkpoint molecules. However,
we also describe other strategies, including vaccines and
agonist costimulatory checkpoints.

Combination of immunotherapy with chemotherapy

The combination of ICBs with chemotherapy, particu-
larly TMZ, is one of the most studied combination thera-
pies for GBM. The combination of chemotherapy and
ICBs offers the advantage of enhancing the recognition
and elimination of tumor cells (e.g., by increasing tumor
antigenicity, inducing ICD and reducing the immuno-
suppression exerted on effector cells in the TME) [121,
122]. Moreover, as TMZ is part of the SOC, the combina-
tion could have potential for inducing a first-line antitu-
mor immune response [13]. However, a standard dose of
TMZ causes severe lymphopenia and T cell exhaustion,
and anti-PD-1 immunological benefits are almost totally
absent. Although the combination of systemic adminis-
tration of a standard dose of TMZ and anti-PD-1 mAbs
has been shown to increase the survival rate in murine
GBM, no benefit of immune modulation has been
observed, and tumors recur [123—125] (Table 2).

One way to enhance ICBs efficacy while using chemo-
therapy is to modify the dose or the administration route
(Table 2). It has in fact been proven that metronomic
doses of TMZ do not induce exhaustion of T cells, while
standard doses lead to upregulation of exhaustion mark-
ers [124]. Moreover, the anti-PD-1 survival benefit was
maintained upon the addition of metronomic doses of
TMZ, while it was abrogated upon the addition of stand-
ard TMZ doses [124]. Comparatively, low doses of TMZ
combined with anti-PD-1 therapy also led to survival
benefits with an increased number of TILs [126].

Modifying the administration route has also proven
to improve the efficacy of combined chemotherapy and
immunotherapy, as shown by Mathios and colleagues
[125]. In their study, they demonstrated that local admin-
istration of chemotherapy, using a wafer impregnated
with either TMZ or carmustine (bis-chloroethylnitro-
surea (BCNU)), enhanced anti-PD-1 antitumor effects,
while systemic chemotherapy abrogated them [125]. One
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Fig. 2 The GBM immunity cycle and associated treatments. The immune response in GBM can be divided into six steps, starting with antigen
release from GBM cells and ending with the killing of GBM cells. Potential treatments impacting the immune response steps are written in blue.
Step 1 - Antigens are released from dying GBM cells. Step 2 — Tumor antigens are captured by APCs, processed and displayed on MHC-I and -I
molecules for presentation to T cells. Step 3 - Effector T cells are primed and activated in response to tumor antigen presentation. Step 4 — Activated
T cells traffic through the BBB and infiltrate the tumor site. Step 5 - The immunosuppressive TME must be overcome to allow activated T cells to
recognize and bind to GBM cells. Step 6 — Activated T cells kill GBM cells after binding to GBM tumor antigen on MHC-I through the T cell receptor
(TCR). The boxes * and ** represent the CTLA-4 and PD-1/PD-L1 pathways. * T cells are activated after the binding of TCR with antigens displayed
on MHC and the simultaneous CD28:CD80/86 costimulatory signal. CTLA-4 mediates T cell inhibition by competitively binding to CD80/86. **

T cells are activated after recognizing GBM cells, secreting inflammatory cytokines and inducing GBM cell death. PD-1:PD-L1 binding induces T
cell inhibition by reducing T cell proliferation and cytokine production. (Abbreviations: APC = Antigen-presenting cell; Chemo = Chemotherapy;
CTLA-4 =Cytotoxic T-lymphocyte antigen 4; CXCR4 = C-X-C chemokine receptor 4; GBM = Glioblastoma; GITR = Glucocorticoid-induced tumor
necrosis factor-related protein; IDO = Indoleamine 2,3-dioxygenase; LAG-3 = Lymphocyte activation gene 3 protein; MDSC = Myeloid-derived
suppressive cell; MHC = Major histocompatibility complex; PD-1=Programmed cell death-1; PD-L1 =Programmed death ligand-1;
RT=Radiotherapy; TAM =Tumor-associated microglia and macrophage; TCR=T cell receptor; TIGIT=T cell immunoreceptor with Ig and ITIM
domains; TIM-3 =T cell immunoglobulin and mucin domain containing-3; VEGF =Vascular endothelial growth factor)

potential explanation for the synergistic effect observed  This explanation was supported by an immune profile
with local chemotherapy is the increased antigen presen-  analysis, which showed an increased percentage of DCs
tation during chemotherapy-induced tumor cell death. in groups treated with local chemotherapy [125].
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Similar trends have been observed when TMZ is com-
bined with vaccines in preclinical studies using GBM
murine models (Table 2). The preclinical study of Garg
and colleagues in 2016 also proved the immune ablative
effects of systemic TMZ [127]. The researchers showed
a survival benefit after treatment with TMZ combined
with an ICD-based DC vaccine. However, the addition
of TMZ decreased the levels of infiltrating CD8 T cells
[127]. Additionally, a comparison between systemic and
intratumoral administration of TMZ in combination
with a whole-cell tumor vaccine showed better sur-
vival and immune benefits with local administration of
chemotherapy [128]. Moreover, while lymphodepletion
was observed following systemic administration, there
was none after local administration [128]. Finally, the
importance of combining immunotherapy with local
chemotherapy was again proven in a study using both
the GL261 and KR158 glioma models. Therapy with a
whole-cell tumor vaccine combined with intratumoral
convection-enhanced delivery (CED) of TMZ not
only increased the number of long-term survivors and
reduced tumor volume but also increased TILs in both
models [129].

More recently, studies have also been focusing on
immunotherapy targeting innate immune checkpoints
given the key role of the innate immune system in the
early detection of cancer as well as in the initiation and
maintenance of an immune response [131]. CD47 is
expressed on the cell surface of solid tumor cells and
its ligand, signal regulatory protein alpha (SIRPa),
is expressed on macrophages and DCs [132]. CD47
acts like an antiphagocytic signal for phagocytic cells;
blockade of CD47 with mAbs induce therefore mac-
rophage phagocytosis of cancer cells [133]. The effects
of the innate ICB anti-CD47 in combination with TMZ
was evaluated on GL261 and CT-2A mouse mod-
els [130]. Combination of TMZ and anti-CD47 mAbs
inhibited tumor growth and significantly improved the
survival by activating both innate and adaptive immune
responses. Indeed, activation of the cyclic GMP-AMP
synthase-stimulator of interferon genes (cGAS-STING)
pathway and increased numbers of activated mac-
rophages as well as higher numbers of T cells and IFN-
y-secreting CD8 T cells were observed in mice with
GBM [130]. The combination was further improved by
adjuvant PD-1 blockade, probably because it helped
overcoming adaptive immune resistance [130]. It is
worth noting that schedule of TMZ administration was
once more of major importance in this study. While
concurrent TMZ/anti-CD47 treatment did not induce
survival and immune benefits, sequential treatment
with metronomic doses of TMZ administered before
the concomitant TMZ/anti-CD47 did [130].

Page 10 of 22

Combination of multiple immunotherapies

Combination of different ICBs offers the opportunity
to enhance their efficacy and is often studied in many
cancers [93]. Indeed, not all immune checkpoints act
on effector T cells at the same location or time in the
course of their activation (Fig. 2) [134]. Therefore, the use
of different ICBs may result in synergistic effects [134,
135]. Moreover, while ICB as a monotherapy induces
compensatory upregulation of other immune check-
points, numerous preclinical studies of different cancers
have demonstrated better outcomes and tumor growth
decreases with the inhibition of two or more checkpoint
receptors [82, 134—136]. In preclinical studies of murine
GBM, combinations of multiple ICBs or combinations of
ICBs with other immunotherapies have been shown to
increase the immune response and survival rate (Table 3).

The expression of LAG-3 by CD4 and CD8 T cells was
correlated with a significant decrease in their IFN-y pro-
duction, corroborating other study results showing that
LAG-3 is a marker of T cell exhaustion [137]. LAG-3 is
a receptor upregulated on activated NK and T cells, and
binding to MHC-II - its main ligand — induces nega-
tive regulation of T cells by decreasing proliferation and
cytokine production [149—151]. The combination of anti-
LAG-3 with anti-PD-1 significantly improved long-term
survival. The combination was more effective when anti-
LAG-3 was given at an early point. However, no differ-
ence in the immunological profile was observed when
comparing the combination therapy and the other treat-
ment arms [137].

The expression of the checkpoint molecule T cell
immunoreceptor with Ig and ITIM domains (TIGIT)
was found to be upregulated on CD8 T cells and Tregs
in the brains of mice bearing GBM tumors compared to
the expression seen in lymph nodes and spleens [138].
TIGIT is a negative checkpoint receptor that is mostly
upregulated by NK and T cells, and its ligands are mainly
expressed by tumor cells and APCs. TIGIT pathways
induce, among other things, negative regulation of T cell-
mediated tumor recognition and promotion of NK cell-
dependent tumor immunity in different mouse models
[152, 153]. Treatment of mice with a combination of anti-
TIGIT and anti-PD-1 mAbs significantly improved sur-
vival compared to their treatment with monotherapies,
with an increase in effector T cell function and downreg-
ulation of immunosuppressive cells [138].

The combination of dual ICB therapy with 1-meth-
yltryptophan (1-MT) — an inhibitor of the tryptophan
catabolic enzyme indoleamine 2,3-dioxygenase (IDO)
— significantly improved the survival of mice bearing
intracranial GBM tumors [139]. The inhibition of PD-L1,
CTLA-4 and IDO synergistically decreased Treg infil-
tration. Early blockade of these checkpoints induced an
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increase in effector CD8 T cell infiltration in the brain
and led to 100% long-term survival. Late blockade, how-
ever, induced a decrease in TILs and led to cure of 78% of
the mice [139].

In addition to inhibitory checkpoint molecules, ago-
nists of costimulatory checkpoint pathways are also
promising in the research of new immunotherapy treat-
ments [154]. Treatment of mice with stereotactic radio-
surgery (SRS) and a glucocorticoid-induced tumor
necrosis factor-related protein (GITR) agonist — which
induces stimulation of effector T cells and inhibition of
Tregs [155, 156] — induced long-term survival, with an
increase in the CD4 T cell/Treg ratio as well as elevated
cytokine production by CD4 and CD8 TILs [140]. Com-
bination of costimulatory agonist mAbs with ICB has
also shown efficacy in GBM murine models. While using
ICB reduces the immunosuppression of effector cells,
targeting costimulatory receptors increases effector cell
activity, and the combination of both approaches could
reinforce the immune response against cancers [135].

The efficacy of combining an anti-PD-1 antibody with
an agonist anti-OX40 antibody has been demonstrated,
with an increase in the long-term survival rate and the
CD8 T cell/Treg ratio in the brain [141]. A triple combi-
nation of anti-PD-1 immunotherapy, an anti-OX40 ago-
nist and GVAX — a whole tumor cell vaccine — induced
cure of 100% of mice [141]. The synergistic effect was
due to complementary actions of the three treatments.
Indeed, while GVAX increased the number of activated
tumor-specific T cells and infiltrating CD8 T cells, PD-1
blockade further stimulated them, and OX40 induced
a vigorous type 1 helper T (Thl) cell response and
decreased Treg infiltration [141].

Likewise, neoantigen vaccination has shown synergis-
tic effects when combined with ICB in a CT-2A ortho-
topic model [142]. Three newly identified neoantigens
were used in a polyvalent peptide vaccine and tested in
combination with anti-PD-L1 treatment. Following com-
bination therapy, survival was significantly improved
compared to that achieved by monotherapies [142].

Other triple therapies targeting different steps of the
cancer-immunity cycle have also shown more encour-
aging results than dual therapies, with a significant
improvement in survival and immune profile. The com-
bination of anti-PD-1 mAbs, anti-TIM-3 mAbs and SRS
cured 100% of mice. This combination improved the
TME immune profile, with an increase in both the CD8 T
cell/Treg ratio and the number of IFN-y-producing CD4
and CD8 TILs [143]. The combination of anti-CTLA-4
mAbs with SRS and an agonist of 4-1BB — a T cell
costimulatory checkpoint inducing activation, prolifera-
tion and cytokine production [155, 157] — significantly
prolonged the survival of mice and increased the number

Page 15 of 22

of long-term survivors [144]. The authors demonstrated
an increase in TILs and a glioma-specific memory
response. The antitumor activity of this triple combina-
tion was shown to be CD4 T cell-dependent [144].

Combinations of ICBs with immunotherapies or treat-
ments decreasing GBM TME immunosuppression
has also shown synergistic effects. An anti-PD-1 and
anti-C-X-C chemokine receptor 4 (CXCR4) combina-
tion improved the survival of GBM-bearing mice [145].
CXCR4 overexpression in GBM contributes to treatment
resistance through recruitment of immunosuppressive
myeloid cells and promotion of tumor aggressiveness
[145, 158, 159]. It was demonstrated that targeting mye-
loid cells with anti-CXCR4 enables anti-PD-1 therapy to
induce an antitumor immune response [145].

Modulation of angiogenesis is another way to target
the TME. While antiangiogenic therapy and anti-PD-L1
mAbs as monotherapies have both failed in improving
the survival of GBM patients, a preclinical study showed
that combining both approaches could improve the effi-
cacy of GBM immunotherapy. Anti-VEGF/Ang-2 therapy
followed by anti-PD-L1 treatment decreased MDSCs and
Tregs in the brain, increased effector CD8 T cell infiltra-
tion and improved survival [146].

Targeting the adenosinergic pathway, that has recently
been discovered as a major actor in GBM TME immu-
nosuppression, also showed promising preclinical results
[160, 161]. Blockade of CD73 — an ectonucleotidase con-
verting ATP to adenosine and involved in chemoresist-
ance and tumor invasion and proliferation [162—164]
— decreased GBM growth and modulate GBM TME by
reducing TAMs and Tregs infiltration [165]. Moreover,
silencing CD73 improved survival of mice treated with
ICBs [162].

Strategies targeting TAMs in GMB TME in combina-
tion with ICBs are also being explored. It was demon-
strated that TAMs polarization promoted eradication of
GBM tumors following combination of ICBs and immu-
novirotherapy [147]. G47A-mIL12 — an oncolytic herpes
simplex virus expressing murine IL-12 — induced M1
polarization of TAMs, plausibly because of IFN-y expres-
sion induced by IL-12. The effect of G47A-mIL12 was
further increased with the addition of anti-CTLA-4 and
anti-PD-1 due to an influx of TAMs. The triple combi-
nation also induced an increase in effector CD8 T cells.
Altogether, triple combination synergistic effects led to
the cure of 89% of 005-GSCs-bearing mice and 50% of
CT-2A-bearing mice [147]. What is worthy of note is that
combining the oncolytic virus with only one ICB was not
sufficient to induce long-lasting effects and overcome
GBM immunosuppression [147].

Likewise, it was demonstrated that inhibition of IL-6
reversed TAMs-mediated immunosuppression. However,
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IL-6 inhibition also induced a reduction in CD40 expres-
sion, leading to treatment resistance [148]. CD40 is
expressed on APCs (DCs and macrophages) and ligation
with CD40L on T cells activates both T cells and APCs,
by increasing the latter antigen-presenting and co-stim-
ulatory functions [166, 167]. Anti-CD40 agonist mAbs
were able to reprogram the TME and synergized with
ICBs in other cancers [168—170]. But in GBM preclinical
models, agonist CD40 monotherapy did not demonstrate
therapeutic improvement [148, 171]. However, combi-
nation of IL-6 inhibition and CD40 activation reversed
TAMs-mediated GBM immunosuppression and sensi-
tized GBM to anti-PD-1 and anti-CTLA-4 [148].

Limitations of current preclinical models

and future outlook to improve combination
strategies for the immunotherapy of GBM

Many immunotherapy strategies that have shown suc-
cessful results in preclinical studies have failed to produce
convincing results in clinical trials, revealing limitations
and inadequacies of current GBM preclinical models
[110, 111, 172]. Translational impact may be improved
by developing new relevant preclinical models. In the
literature, murine GL261 GBM cell lines are the most
commonly used. However, they are highly immunogenic
unlike human GBM [172, 173]. Additionally, luciferase-
expressing GL261 cells display even more immunogenic
features than GL261, with a prolonged median survival
time and an elevated inflammatory cytokines production
[174]. Transitioning to other models that are less immu-
nogenic and closer to human GBM is highly encouraged
[175]. To that purpose, the recently developed SB28 and
005 GSC models are interesting alternatives and are
among the best syngeneic models to represent human
GBM TME [147, 171, 176-178]. Indeed, they are poorly
immunogenic, with absence of MHC molecules expres-
sion as well as low immune cell infiltration and activation
[177-179]. These models are moreover resistant to ICBs
(147, 178].

An alternative to syngeneic immunocompetent mouse
models is the use of genetically engineered mouse models
(GEMs). GEMs of GBM reproduce more closely the his-
tology and biology as well as the development of human
GBM [172, 180]. Another advantage of these models is
that they usually do not require intracranial injections as
they are generated through genetic modifications [180].
However, GEMs still do not reflect GBM heterogeneity.
Moreover, setting up GEMs requires a lot of expertise
and can be expensive [172].

Using patient-derived xenograft models is the best
approach to gather human GBM histology and het-
erogeneity as well as intratumoral heterogeneity [172].
However, these kinds of models generally require
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immunodeficient mice, which are not suitable for immu-
notherapy studies [181]. Yet, an immunocompetent
mouse model of human GBM was recently developed. By
transiently blocking T cell costimulation, the researchers
managed to grow human GBM xenograft while keeping
intact the mouse immune system [182]. This could be a
step forward in the preclinical research for immunother-
apy against GBM.

However, the perfect model imitating exactly all char-
acteristics of human GBM (e.g., intratumoral heterogene-
ity, invasive properties, low immunogenicity, resistance
to radio- and chemotherapy) doesn’t exist [172, 175]. It
is therefore crucial to design the experiment and select
the models according to their unique characteristics. In
addition, studies on different models will help to develop
a more general therapy against GBM by (i) covering
multiple aspects of GBM immunology and (ii) address-
ing GBM heterogeneity (intratumoral and interpatient)
[175].

Nevertheless, to improve immunotherapy for GBM,
novel strategies need to be studied. Looking at the devel-
opment of novel therapeutic targets (e.g., STING, Toll-
like receptor (TLR) agonists or old combination therapies
applied to new targets) is important to assess the utility
of targeting underexplored pathways useful for improv-
ing combination immunotherapy [183-187]. In pursuit
of this goal, targeting immunosuppressive factors and/
or cells within GBM TME is highly valuable [39]. To do
so, targeting angiogenesis signaling factors (e.g., VEGE,
Ang-2) [146] and adenosinergic pathways components
(e.g., adenosine receptors, CD73, CD39) [160, 165, 173,
188] has shown great potential in preclinical studies.
Moreover, targeting TAMs are particularly interesting
since these cells are the major non-neoplastic cellular
components of GBM TME. To this end, many strate-
gies are tested in preclinical studies such as (i) depleting
TAMs using CSF-1R inhibitor [189], (ii) activating TAMs
by using agonist anti-CD40 mAbs [148, 190], (iii) repro-
gramming TAMs to induce pro-inflammatory and antitu-
mor immune response by using TLR agonists [186], (iv)
promoting TAMs phagocytic activity by using anti-CD47
mAbs [130, 191] and (v) inhibiting TAMs recruitment by
targeting the C-C motif chemokine ligand 2/C-C recep-
tor 2 (CCL2/CCR?2) axis [192]. CCL2 chemokine produc-
tion in GBM TME has also been shown to be essential
for the recruitment of MDSCs and Tregs [193]. Blockade
of CCL2 is therefore a promising approach to overcome
GBM TME immunosuppression [194]. Therapies target-
ing myeloid cells are even more interesting to use in com-
bination with ICBs knowing that they express high levels
of PD-L1. This imply furthermore the great potential of
targeting both innate and adaptive immunity for GBM
treatment.
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In addition, development of technologies that improve
immunotherapeutic combination against different tar-
gets is necessary. As an example, bispecific antibodies
targeting two different antigens has shown to be a valu-
able approach for combination strategies [195]. Antibod-
ies hold a fundamental place in cancer immunotherapy
strategies. However, the BBB limits the passage of most
of the large molecules such as mAbs [196]. Many phys-
icochemical properties determine the ability of a com-
pound to pass the BBB (e.g., size, lipophilicity, molecular
weight, degree of hydrogen bonding) and the delivery of
many drugs across the BBB is consequently insufficient
[198]. Therefore, improving delivery systems needs to be
considered in order to increase delivery at the tumor site.
In this regard, novel cyclic peptides modulating the BBB
enhanced the brain delivery of mAbs [196]. Similarly,
focused ultrasound-mediated BBB disruption improved
anti-CD47 mAbs delivery to GBM tumors [199].

To improve local administration, the use of drug deliv-
ery systems enhancing brain penetration for intratumoral
administration is highly valuable to improve drug distri-
bution and sustained-release. It was demonstrated that
densely PEGylated PLGA-based nanoparticles enhanced
the penetration of paclitaxel in the brain tissues and
therefore improved the treatment efficacy [200, 201].
Similarly, development of novel implantable biomaterials
to improve administration in GBM resection cavity and
prevent tumor recurrences are encouraged [202, 203].
Among other technologies, a thermoreversible biode-
gradable chitosan-based hydrogel containing therapeutic
T cells showed encouraging results in GBM, offering an
interesting platform for local immunotherapy [204]. Fur-
thermore, nanocarriers have to be developed to enhance
the local immune response, turning GBM “cold” tumors
into “hot” tumors and therefore promoting the infiltra-
tion of immune cells. To do so, inducing ICD of GBM cell
by using immunostimulant nanocarriers can facilitate the
antitumor immune response and improve therapeutic
effects [205, 206]. In addition, new administration routes
need to be explored. In this regard, intranasal adminis-
tration is providing promising results [207, 208]. Finally,
scalability and clinical translation must be considered
when developing such systems.

Conclusions

It was long thought that immunotherapy could not be
applied to GBM (e.g., because of the BBB, multifacto-
rial immunosuppressive TME, tumor heterogeneity,
etc.). The use of ICBs as immunotherapy during the
past decade has revolutionized cancer treatments given
their ability to improve patient outcomes. However,
ICBs for GBM are still ineffective, as proven by the
recent phase III clinical trials that did not reach their
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primary endpoints when administered in monotherapy.
Likewise, vaccines added to the SOC did not improve
survival.

In contrast, preclinical studies on combination immu-
notherapy showed encouraging results. The most suc-
cessful strategies in terms of survival and immune
benefits are the ones that impact the cancer-immunity
cycle at different time and/or locations, inducing both
stimulation of the immune response and inhibition of
immunosuppressive components. Combination of ICBs
with chemotherapy, radiotherapy inducing ICD or vac-
cines have been extensively studied and demonstrated
significant improvement over monotherapies. Besides,
while immunotherapy for cancer is mainly focusing on
factors regulating T cell activation, concomitant target-
ing of both innate and adaptive immunity holds great
promise for GBM treatment. The simultaneous use of
immunotherapeutic agents targeting different arms of the
immune system is starting to be largely tested in GBM
clinical trials, given the success of combination immuno-
therapy in other cancers and in GBM preclinical studies.
There are currently nine ongoing clinical trials (phase I or
II) studying the combination of multiple ICBs for GBM
treatment [209]. The combination of ICBs with radio-
therapy or vaccination is also being tested, with twelve
and seven ongoing clinical trials, respectively [209].

We believe that currently ongoing clinical trials and
preclinical research on combination strategies will pro-
vide key information and better survival without major
side effects and that immunotherapies will be added to
the SOC for patients facing GBM in the near future.
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