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showed that, for urine samples, the results obtained with
the CBB method do not agree with those obtained with
the M-TP, BC, BTC, or PYR methods. The comparison
studies showed that BC correlates better with the M-TP
method than do the BTC and CBB methods for urine and
CSF samples, based on the slope, intercept, and correla-
tion (r) values.

BC is a widely used disinfectant and is much less
expensive than the other reagents, especially the dyes
CBB and PYR. It also inhibits bacterial contamination, and
this can be a reason for the better reagent stability.
Shephard and Whiting (17) compared four protein pre-
cipitants—BC, BTC, trichloroacetic acid, and sulfosalicylic
acid for nephelometry—and found that BC had good
precision and agreed most closely with the trichloroacetic
acid—-Ponceau S dye-binding method. In our hands, the
nephelometric method of Shephard and Whiting was
linear 50-1000 mg/L protein, similar to the measuring
range (78-1250 mg/L) reported by those authors (17). In
imprecision studies, the precision and linearity of our
method were better than those of the nephelometric
method. Nephelometers are also expensive and are not
used in many in small- and medium-sized clinical labo-
ratories.

In conclusion, we present a new turbidimetric method
that correlates better with the M-TP method than do the
BTC and CBB methods; is more precise than the M-TP,
CBB, PYR, and BTC methods; has better precision and
recovery in the critical decision concentration range; has
satisfactory albumin-globulin response and analytical
range; uses less expensive and accessible chemicals; and is
suitable for automation.
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An outbreak of severe acute respiratory syndrome (SARS)
has affected 33 countries on five continents, with 8098
suspected and probable cases and 774 deaths. During the
SARS epidemic, more than 1700 infected cases have been
reported in Hong Kong. The disease is infectious, partic-
ularly within the healthcare setting. Early diagnosis is
essential to control the spread of SARS by identifying and
isolating infected patients (1,2). Diagnostic tests have
been developed that detect either antibodies to or reverse
transcription-PCR (RT-PCR) products of the SARS coro-
navirus (SARS-CoV). SARS-CoV antibodies can be reli-
ably detected only around 20 days after disease onset
(3,4). Quantitative real-time RT-PCR assays, on the other
hand, allow the detection of SARS-CoV within the first
week of illness. Our recent study showed that detection
sensitivity could approach 80% for plasma and serum
samples from SARS patients (5, 6). Aside from improving
the analytical and clinical sensitivity of the RT-PCR as-
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says, it is also possible to develop new types of assays on
the basis of other biological variables and/or technolo-
gies. In the past few years, surface-enhanced laser desorp-
tion/ionization time-of-flight mass spectrometry (SELDI-
TOF MS) has been applied to the discovery of diagnostic
proteomic signatures for cancers such as prostate cancer,
ovarian cancer, breast cancer, and hepatocellular carci-
noma (7,8). Here we report the presence of plasma
proteomic signatures in serial blood samples from eight
pediatric patients with SARS and their correlation with
SARS-CoV RNA concentrations in plasma (6).

The serial plasma samples investigated in this study
were those examined for SARS-CoV RNA by real-time
RT-PCR in our recently reported study (6). The pediatric
patients were admitted to the New Territories East Clus-
ter of Hospital Authority Hospitals in Hong Kong and
satisfied the WHO surveillance case definition for SARS
(9). These patients were recruited between March 13 and
May 17, 2003. Informed consent was obtained from the
patients or their parents, and ethics approval was ob-
tained from the Institutional Review Board. The serial
blood samples used in this study were collected from the
patients during sample collection for routine blood tests,
which included the monitoring of lymphocyte counts and
biochemical indices and enzymes. The convalescent sera
of these patients were tested for IgG antibodies against
SARS-CoV with SARS-CoV-infected cells in an indirect
immunofluorescence assay (4). All patients were serolog-
ically positive for SARS-CoV IgG antibody. As negative
controls, blood samples from 15 pediatric patients who
suffered from fever and infections other than SARS were
collected. The plasma SARS-CoV RNA concentrations in
the pediatric patients were compared with the results of
adult SARS patients as reported previously (5).

Seven of the eight studied patients had been in close
contact with infected adults, whereas one patient had no
SARS contact history. All patients had a fever, and the
mean duration of the fever was 8 days (range, 4-10 days).
During the course of hospitalization, all patients were
initially treated with oral ribavirin (40-60 mg/kg daily),
which was continued for a mean duration of 10 days
(range, 3-14 days). Seven were treated with oral pred-
nisolone starting at a mean of 7 days (range, 6-10 days)
after the onset of fever, and the duration of prednisolone
treatment was 14 days.

The plasma samples were subjected to SELDI Protein-
Chip analysis, similar to the method described previously
(8). We denatured proteins in 3 uL of the plasma sample
by adding 6 uL of U9 solution (9 mol/L urea, 20 g/L
CHAPS, 50 mmol/L Tris-HCl, pH 9), and diluted them
with 51 pL of binding buffer (50 mmol/L sodium acetate,
1mL/L Triton X-100, pH 4.0) to give a final dilution of
20-fold. CM10 ProteinChip arrays were preequilibrated
twice with 5 uL of binding buffer for 5 min, after which 5
uL of each diluted sample was applied to the ProteinChip
array in duplicate and incubated with shaking at room
temperature for 90 min. After the incubation, each array
was washed five times with the binding buffer and rinsed
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twice with deionized water. After air-drying, sinapinic
acid matrix in 500 mL/L acetonitrile containing 5 mL/L
trifluoroacetic acid was added to each array. The Protein-
Chip Arrays were read on the ProteinChip PBS II reader
of a ProteinChip Biomarker System (Ciphergen Biosys-
tems) to measure the masses and intensities of the protein
peaks. The common peaks among the SELDI mass spectra
were identified and quantified by Biomarker Wizard
software (Ciphergen Biosystems). Before data mining, the
peak intensities were normalized with the total peak
intensities, followed by log, transformation.

To avoid the identification of proteomic features that
might be associated only with the investigated SARS
patients but not the SARS disease itself, SARS-specific
proteomic features were defined as SELDI proteomic
features that fulfilled three criteria: () normalized peak
intensities that were increased in the SARS patients at the
onset of the fever; (b) normalized peak intensities that
were decreased at the time of recovery; and (c) normal-
ized peak intensities that were positively correlated with
the concentrations of SARS-CoV in plasma.

We compared the normalized proteomic data between
the earliest available plasma samples collected from the
pediatric SARS patients (6 within the first week, 1 on day
8, and 1 on day 11) and the 15 control plasma samples
from pediatric patients with influenza and fever, using
the two-class unpaired test at a median false discovery
rate of zero [Significance Analysis of Microarrays Algo-
rithm; Stanford University (10)]. We identified 41 pro-
teomic features that were positively associated with
SARS. Among these 41 proteomic features, normalized
peak intensities of 24 proteomic features significantly
decreased on recovery (Wilcoxon signed-rank test, P
<0.05). The Spearman rank correlation test was used to
analyze the correlation between these 24 proteomic fea-
tures and SARS-CoV RNA in the serial plasma samples
from the eight pediatric SARS patients. Fifteen were
positively correlated with the plasma SARS-CoV RNA
concentrations (all P values <0.05; see Table 1 in the Data
Supplement that accompanies the online version of this
Technical Brief at http://www.clinchem.org/content/
vol50/issue8/). Fig. 1 illustrates the similarities between
the changes in the plasma concentrations of SARS-CoV
RNA and the peak intensities of three representative
SARS-specific proteomic features during the treatment
period.

The potential use of the SARS-specific proteomic fea-
tures in the detection of pediatric SARS patients within
the first week of admission was evaluated by ROC curve
analysis for the differentiation of 7 SARS samples (6
collected within the first week and 1 collected on the 8th
day of admission) from the 15 control samples. The ROC
curve areas of the SARS-specific proteomic features were
between 0.800 and 0.981 (all P values <0.05; see Table 1 in
the online Data Supplement). Our results suggest that all
of the identified SARS-specific proteomic features are
potential markers for detection of SARS.
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Fig. 1. Serial analysis of SARS-CoV RNA concentrations (@) and three representative disease-specific plasma proteomic features at m/z 11 710
(M), m/z84 700 (#), and m/z 98 250 (A) in pediatric SARS patients.

The proteomic features at m/z 11 710 and m/z 98 250 gave the highest ROC curve areas for differentiating SARS patients from controls, whereas the peak at m/z
84 700 showed the highest correlation with circulating SARS-CoV RNA.
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Recently, the reliability of the studies using SELDI-TOF
MS technology has been questioned. It has been sug-
gested that the findings may be biased by artifacts related
to the nature of the clinical samples used, the experimen-
tal details, the sample storage conditions, the mass spec-
trometric instruments, and/or bioinformatic analysis (11—
13). We believe that such problems can be overcome by
the use of good experimental design and stringent criteria
for defining a proteomic feature as disease specific so that
significant proteomic features could be validated at mul-
tiple levels. This study illustrates the success of a stringent
and systemic approach for analyzing SELDI proteomic
data in the identification of SARS-specific proteomic fea-
tures. With better fulfillment of different data-filtering
criteria, it will become less likely that identified proteomic
features are identified by chance and that the identified
features result from bias in patient selection. In this study,
although 3 filtering criteria were set up for the identifica-
tion of SARS-specific proteomic features, there were 15
significant proteomic features identified. Later ROC curve
analyses showed that all of these SARS-specific proteomic
features were potential biomarkers for detection of SARS.

Characterization of these circulating SARS-specific pro-
teomic features may help us to understand the disease
pathology and patient response. It has been suggested
that the SELDI-TOF MS technology has a preference
toward detection of high-abundance protein molecules,
such as acute-phase reaction proteins. The 11.7-kDa hap-
toglobin a-subunit (14) and 11.6- and 11.8-kDa isoforms
of serum amyloid A (15) have been identified by this
technology as cancer-associated proteomic features. It is
possible that some of the SARS-specific proteomic fea-
tures identified in this study are also acute-phase pro-
teins. For example, the SARS-specific proteomic feature at
m/z 11 710 may be the haptoglobin a-subunit (11.7 kDa) or
the 11.6- or 11.8-kDa serum amyloid A isoforms. The
proteomic feature at m/z 78 300 may be transferrin (78
kDa) or clusterin (~80 kDa). The proteomic feature at 11/z
165 600 may be doubly charged (2 H") fibrinogen (332
kDa). A recent Chinese study has shown that serum
concentrations of the acute-phase proteins complement 4
and C-reactive protein were significantly higher in pa-
tients with SARS than those in patients with other pneu-
monias and in healthy individuals (16). In cats, feline
coronavirus infection also led to increased concentrations
of haptoglobin, serum amyloid A, a;-acid glycoprotein,
IgG, and IgM (17).

In conclusion, this study has demonstrated the presence
of unique proteomic signatures in the sera of SARS
patients, which were increased within the first week of
infection, decreased on recovery, and were positively
correlated with SARS-CoV viral load. A similar study on
adult samples is being undertaken to determine whether
there are similar changes in the plasma/serum proteomic
patterns. SELDI TOF-MS, which can be performed in a
96-well microplate format, is a high-throughput technol-
ogy. It may be possible to develop a quick SELDI Protein-
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Chip assay for detection and monitor of potential SARS
patients.
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