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Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During
development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly
restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus
in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix
components that conform their niche.The interplay among the niche elements andNSCs determines the balance between stemness
and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity
is critical to building in vitromodels that include the relevant components of the in vivo niche and to developing neuroregenerative
approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on
neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivomimicking of extracellular
NSCs conditions.

1. Introduction

Stem cells are characterized by their extensive potential for
proliferation and differentiation, as well as their major role
in homeostasis and tissue regeneration. Although stem cells
are a promising source for cell replacement therapies and cell
regeneration after injury or disease, their use is still limited
because there are several factors that must be taken into
account, such as survival, tissue integration, specific differen-
tiation, and functionality. In order for them to be considered
within regenerative medicine, it is imperative to understand
their in vivo biology and microenvironment, or niche. In
recent years, the use of in vitro models that simulate various
components of the niche has helped the understanding of
the role of the various factors that compose it and even the
design of artificial models that recapitulate microenviron-
ment conditions [1, 2]. In that sense, biocompatible substrates
are an alternative for the incorporation of different physical
and chemical properties that can modulate the biology of
stem cells and improve their manipulation [3]. This paper
will review some of the main extrinsic characteristics of the
neurogenic niche and how current knowledge about it is

being used to design biocompatible substrates that mimic the
microenvironment of neural stem cells in order to regulate
their biology, as well as the impact thismay have on the future
of tissue regeneration therapies.

2. Embryonic and Adult Neural Stem Cells

Neural stem cells (NSCs) originate the main cell types in
the central nervous system (CNS) during development and
adulthood.These cells are able to self-renew through cell divi-
sion and have the capacity to generate specialized cell types.
NSCs generate other NSCs, which maintain their differentia-
tion potential and their proliferation or self-renewal capacity,
and/or originate transit-amplifying cells or neural progenitor
cells (NPCs), which display decreased proliferative potential
and limited capacity to differentiate into neurons, astrocytes,
and oligodendrocytes. From early embryonic development
up to early postnatal stages, neurons are the main cell types
generated, while late embryogenesis is characterized by the
production of both astrocytes and oligodendrocytes, which
continues during postnatal stages and throughout adult life
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Figure 1: Neural stem cell niche in the early stages of CNS development. (a) During early embryogenesis, neuroepithelial cells transform
into radial glial cells (RGCs) with cell process elongating toward the pial surface of the neural tube. RGCs divide asymmetrically to form
neuroblasts. (b) Neuroblast division generates progenitors known as “transit-amplifying progenitor cells” (TAPCs), which divide rapidly and
generate the first local neural niche or ventricular zone (VZ); at this stage the first blood vessels invade the neural tube from the dorsal region
toward the VZ zone and extend their branches tangentially to the pial surface. (c) In the forebrain, TAPC proliferation produces a second
germinal zone, the subventricular zone (SVZ). In this zone, postmitotic neuroblasts and glioblasts migrate toward the dorsal intermedia and
marginal zones and produce neurons and glial cells. CNS, central nervous system; ECM, extracellular matrix; IZ, intermediate zone; MZ,
marginal zone.

[4].The process of generating functional neurons or glial cells
from precursors is defined as neurogenesis and was thought
to occur only during the embryonic and perinatal stages in
mammals. Currently, it is widely accepted that neurogenesis
takes place in the adult brain and that the neural stem cells of
this organ are descendants of their embryonic counterparts.

A number of significant questions remain regarding the
biology of embryonic and adult neural stem cells. How is
the fate of NSCs determined? What determines whether
NSCs remain in their stem stage or differentiate into one
of the three mature phenotypes? Over the last few years, it
has become clear that NSCs are sensitive to multiple signals
during development, including extracellular matrix proteins,
growth and transcription factors, or even the interaction with
different cell types in their proximity [5, 6]. Although appar-
ently of the same nature as their embryonic counterparts,
adult NSCs show different responses to the same regulators.
At the same time, these cells are mostly quiescent in the adult
brain with a low neuron production rate in contrast to the
high proliferative rate of the embryonic NSCs. Additionally,
neuronal maturation is accomplished at a slower rate in
the adult brain than in the embryo. Although the reason
for these differences is not clear, it has been reported that
the acceleration of the maturation rate sometimes leads to

the aberrant integration of newborn neurons in the adult
hippocampus [7]. It has been suggested that, besides intrinsic
differences, changes in the microenvironment surrounding
neural stem cells during both development and adult life
modulate their biological response [7].

During early embryogenesis, NSCs are not specifically
localized and are instead organized as a single layer of
proliferating neuroepithelial cells in the neural tube. Early
in the neural tube formation, cells at the junction of the
tube form the neural crest cells, which migrate out of the
tube to form the neurons and glia of the peripheral nervous
system as well as other non-nervous system cells, such as
melanocytes, chondrocytes, and craniofacial osteocytes [86].
Neuroepithelial cells in the neural tube divide symmet-
rically, generating two identical daughter cells. Once this
population has increased, they switch to a new form of
asymmetrical division, producing two distinct daughter cells,
the typical self-renewing stem cell and the neuroblast, with
the former transforming into radial glial cells (RGCs) that
exhibit neuroepithelial and glial proteins, extending a long
cell process towards the outer neural tube region or pial
surface (Figure 1(a)). As brain development proceeds, the
proliferation of RGCs and neuroblasts generate several layers
that surround the interior face of the neural tube, leading
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Figure 2: Neural stem cell niche in the adult dentate gyrus and subventricular zone. (a) Sagittal section view of an adult rodent brain showing
the two main restricted regions where active adult neurogenesis is present, the dentate gyrus in the hippocampal formation and the lateral
ventricle, from which type A cells migrate to form the rostral migratory stream (RMS) toward the olfactory bulb. (b) Neural stem cell niche
in the subventricular zone (SVZ).Three types of progenitor cells are found close to the ependymal cell layer in the SVZ: a population of radial
glia-like cells (type B cells) have the potential to serve as adult neural stem cells (NSCs) and generate transit-amplifying nonradial NSCs
(type C cells), which later give rise to neuroblasts (type A cells).The SVZ includes several ECM components (yellow), called fractones (inset),
which make contact with all the cell types, including the blood vessels and astrocytes in this region. (c) In the adult subgranular zone (SGZ),
a population of radial glia-like cells (type 1 cells), along with nonradial glia-like cells (type 2 cells), generate neuroblasts. These neuroblasts
then migrate into the granule cell layer and mature into neurons. CSPG, chondroitin sulfate proteoglycan; FGF2, fibroblast growth factor 2;
GCL, granular cell layer; ML, molecular layer.

to the first local neural niche called the ventricular zone
(VZ) (Figure 1(b)). The neuroblasts and glioblasts with high
proliferating capacity also termed intermediate progenitor
or “transit-amplifying progenitor cells” (TAPCs) generate
postmitotic cells that finally differentiate into neurons and
glial cells. In the forebrain region, the TAPCs accumulate
above the VZ, forming a second germinal zone, the sub-
ventricular zone (SVZ) (Figure 1(c)). All these populations
are also in close contact with cells of nonneural origin,
such as endothelial cells from the blood vessels, microglia,
and pericytes [5, 87]. Interactions among all these cells,
together with the temporal and spatial synthesis of soluble
and insoluble factors during CNS development, result in

the establishment of the intricate neural network that will
support the function of this system in postnatal life [88].

After the embryonic phase of CNS development, some
NSCs populations remain in specific neurogenic niches
throughout the lifespan of the brain. Two specific and well-
described neurogenic regions remain in the adult brain
after the embryonic phase, the subgranular zone (SGZ)
in the dentate gyrus (DG) of the hippocampus and the
subventricular zone (SVZ) of the lateral ventricles (Figure 2).
While the neurogenesis in these neurogenic sites results
in the generation of new neurons in the brain, there are
differences in the type of neurons generated. Neurogenesis
produces dentate granule cells in the SGZ of the DG of
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the hippocampus, while neurogenesis in the SVZof the lateral
ventricles produces interneurons thatmigrate to the olfactory
bulb (Figure 2(a)). The production of mature neurons in
these neurogenic sites comprises several steps that resemble
embryonic neurogenesis.

Neurogenesis of the adult SVZ begins with the activation
of quiescent radial glia-like cells (termed type B cells) in the
subventricular zone in the lateral ventricle and continueswith
the proliferation of transit-amplifying progenitor cells (type
C cells), resulting in an increase in the neuroblast population
(typeA cells) or glia (oligodendrocytes or astrocytes) (Figures
2(a) and 2(b)). In the rostral migratory stream (RMS), type
A cells form a chain and migrate toward the olfactory bulb
through a tube formed by astrocytes. Upon reaching the
olfactory bulb, immature neurons leave the RMS andmigrate
radially toward the glomeruli, where they differentiate into
different subtypes of interneurons that, finally, are synapti-
cally integrated [89] (Figure 2(a)). Type B cells are in close
contact with the ependymal cell layer through a thin apical
process and with SVZ vasculature through a basal process.
This structural polarity allows type B cells to be in simultane-
ous contact with both vascular and cerebrospinal fluid (CSF)
compartments [7] (Figure 2(b)). In other cases, hippocampal
neurogenesis in the DG begins, as in SVZ neurogenesis, with
the proliferation of radial (type I cell) and nonradial (type
II cell) precursors that give rise to intermediate progenitors,
which in turn generate neuroblasts (Figures 2(a) and 2(c)).
Unlike in SVZ neurogenesis, immature neurons are not
required to migrate long distances in order to initiate the
differentiation process. The new immature neurons move
into the inner granule cell layer and differentiate into dentate
granule cells in the hippocampus.Within days, newborn neu-
rons extend dendrites toward the molecular layer and project
axons through the hilus toward the CA3. New neurons follow
a stereotypic process for synaptic integration into the existing
circuitry [89].

Besides the classic neurogenic sites, there is evidence
indicating the presence of other neurogenic sites in the
brain that are more evident after injury or growth factor
stimulation, such as the walls of the third and fourth ventricle
and the circumventricular organs. All of these sites are close
to blood vessels [90], although their detailed characterization
and contribution after brain damage are still the subject of
intense study.

3. Neural Stem Cell Niche:
Characteristics and Relevance

The anatomical distribution of many stem cells has been a
troublesome task due to the low accessibility and restricted
areas where they are located. Currently it is accepted that the
tissue areas where stem cells lie are specializedmicroenviron-
ments with specific cellular, chemical, and physical properties
[2].

As mentioned above, embryonic and adult NSCs are
influenced by their microenvironment. The microenviron-
ment concept is related to the presence of extracellular
matrix proteins and soluble factors such as hormones and
growth factors in the extracellular space (some of which are

summarized in Table 1). However, these are not the only
factors that can influence the biology of the NSCs. It has been
evident that interactions with neighboring cells are also a
relevant modulator of the biology of these cells in both the
embryo and the adult. Endothelial cells, astrocytes, ependy-
mal cells,microglia,mature neurons, and the progeny of adult
neural stem cells are additional regulators of the fate of the
NSCs. All of these elements in the cellular microenvironment
constitute the neurogenic niche that anatomically houses
stem cells and functionally controls their development in vivo
[90]. As excellent and extensive reviews have been published
on the neurogenic niche [5, 88, 91–94], this section is only
a brief summary, which includes examples of the different
factors that could be taken into account in biocompatible
substrate design.

Theneurogenic niche determineswhether aNSCs divides
or remains as a quiescent cell as well as whether it survives,
dies, proliferates, migrates, or differentiates into different
neural cells [6, 95, 96]. During the development of the
CNS, the VZ of the neural tube is mainly comprised by the
proliferative cells of the neuroepithelium. Segmentation and
regionalization of the neural tube modify and restrict the
neurogenic areas during the developmental stages, leading to
a niche that is spatially, chemically, and cellularly variable [97,
98]. During the changes, stem cells and progenitors in the VZ
and SVZ remain in contact with specific extracellular com-
ponents such as growth factors, ECM components, and cells
that modulate their division and differentiation. During the
development of the neocortex, for example, neuroepithelial
cells proliferate to form several layers of cells surrounding the
lumen of the neural tube. Asmentioned above, the inner cells
transform into RGC, whose asymmetric divisions generate
self-renewing cells that stay in the VZ, and progenitor cells
that migrate to the SVZ. After several divisions, the progeni-
tors go from the SVZ to their destination through radial and
tangential migration and differentiate into neurons and glia
[5, 96, 99]. Several transcription factors, proteins related to
cell polarity, such as cadherins and nectin, as well as signaling
components are all activated in a complex that promotes the
dissolution of cell adherens junctions and the reorganization
of the actin cytoskeleton to favor progenitor migration [100].

The vascularization of the neural tube is closely related to
neural development. The timing of angiogenesis is similar to
the neurogenesis. The RGCs secrete several growth factors,
such as vascular endothelial growth factor (VEGF), trans-
forming growth factor beta two (TGF𝛽-2), and fibroblast
growth factor two (FGF2), which, in turn, induce vascu-
lature development, while the growth factors secreted by
endothelial cells, such as VEGF and Jagged-1 (a Notch
ligand), influence neurogenesis [5]. Furthermore, nonneural
cells are also involved in establishing and supporting the
neurogenic niche [5]. For example, it has been shown that,
during brain development, pericyte cells synthesize the sonic
hedgehog (Shh) protein, which plays an important role in the
proliferation of the neuroepithelial cells that conform the VZ
[101].

In the postnatal and adult brain, the main neurogenic
niches in the SVZ and the DG play a role in maintaining
the balance between stemness and NSCs differentiation.
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The vasculature also emerges as an important and integral
component in the adult stem cell niches of both the hip-
pocampus and SVZ [102, 103]. There is increasing evidence
showing a dense network of blood vessels in the hippocampus
that spans beneath the RGCs and dorsal to the SVZ in the
lateral ventricles. This network is closely associated with
the NSCs (including the TAPCs) and has long processes
oriented along the neuroblast chain and within the microglia
cells [104]. It has been shown that vasculature interactions
promote the neuroproliferation and neuroprotection of the
NSCs and the migration of astroglial cells through the
secretion of regulatory factors in an autocrine or paracrine
manner [5, 105]. Transcriptome analysis of endothelial cells
of the CNS shows the presence of several factors involved in
neurogenic niche [106]. VEGF and TGFbeta1 are synthesized
and secreted by endothelial vascular cells in the SVZ [36]
and VEGF is also secreted by NSCs in the hippocampal
neurogenic niche [107].

A great variety of factors active in the NSCs niche
modulate the components of this site, with some of them
preventing terminal differentiation and preserving the NSCs
pool. A highly conserved secreted protein with a determinant
role during the dorsoventral patterning of the neural tube,
Shh, is an example of such a factor. Its mutation during
embryo development leads to a reduction of telencephalon
and diencephalon [108] and its ectopic expression increases
the generation of oligodendrocytes [109]. On the other hand,
Shh is involved in maintaining the pool of progenitor cells in
the postnatal brain [110].

Another factor, Notch1, is a transmembrane protein of
the Notch family of proteins playing a variety of roles during
development. Notch1 induces the expression of transcrip-
tional repressor genes such as Hes1, leading to the repression
of proneural gene expression and the maintenance of the
NSCs [105]. The importance of the Notch signaling require-
ment has been shown in inducible knockout mice where
stem cell self-renewal and expansion are disrupted leading
to neural stem cells depletion [105]. Bone morphogenetic
proteins (BMPs), members of the TGF𝛽 superfamily first
identified by their role in bone induction [111], and the highly
conserved Wnt proteins are all secreted proteins identified
as morphogens due to their concentration dependent role
during development. However, they also play a critical role in
maintaining adult NSCs niches, activating the proliferation
of type B astrocytes, the transit-amplifying type C cells in the
SVZ, and neurogenesis in the SVZ [7].

The basal lamina and ECM provide both structural shape
andmechanical support for the developing and adult nervous
systems [93]. These components of the neurogenic niche
act as a scaffold for the incorporation of a variety of ECM
molecules and growth factors. Some of the most important
ECMs that play a role in the regulation of the biology of the
NSCs and progenitors cells are laminin, collagen IV, nidogen,
perlecan, the glycoprotein tenascin C, the chondroitin sulfate
proteoglycans (CSPG), and the heparan sulfate proteoglycans
(HSPG) [112].

Laminin is an ECM heterotrimeric protein located in
the lateral ventricular wall of the SVZ. In the mammalian
brain and spinal cord, the basal lamina in the neurogenic site

forms branches, or “finger-like processes,” called fractones,
that extend from the ependymal cells and blood vessels.
Laminin and its receptor 𝛼6𝛽1 integrin have been detected
in these structures in the NSCs of the SVZ that lie near the
vascular cells [87]. Additionally, heparan sulfate, collagen IV,
nidogen, and perlecan have been described as components of
the fractones that make contact with the transit-amplifying
cells, suggesting that, in combination with growth factors,
these structures have a role in adult neurogenesis. Specifically,
HSPG, CSPG, and perlecan bind to growth factors such as
FGF-2, a potent mitogenic factor for the NSCs, suggesting
that these ECM components promote growth factor activity
in the NSCs niche [113].

Secreted by type B cells, the astrocytes surrounding
migratory type A cells, and the RGC in embryos, tenascin
C is a major component of the ECM in the adult SVZ
[114]. Tenascin C regulates the expression of EGF receptors
in the embryonic NSCs and has been reported to alter cell
response tomitogenic growth factors by enhancing sensitivity
to FGF-2 and promoting EGF acquisition [115, 116]. Tenascin
C also regulates oligodendrocyte precursor proliferation,
while the isoform tenascin R induces the maturation of
oligodendrocyte precursors [114].

Reelin is a large ECM glycoprotein that plays an impor-
tant role not only in neuronal migration during cortex
development [117] but also in the NSC niche, where it is
expressed in the SGZ in adult hippocampus and regulates
NSCs maintenance and migration [82, 118].

Proteins that act as neuronal guidance factors are also
associated with the regulation of the adult neurogenic niche.
The Eph/ephrin receptor-ligand complex is large class of
membrane associated receptors and ligands that are involved
in axon guidance [119] and mediate the cell-to-cell signaling
that promotes the proliferation of the NPC in the SVZ [119,
120]. Netrins are a laminin-related family of proteins that
act as a guidance cue for neuronal projection and have a
role in inducing the migration of NSCs during cerebellar
development [121]. Recently, Netrin-4 was found to interact
with components of the ECM in a complex that is able
to control the proliferation of the adult NSCs and their
migration to the mouse olfactory bulb [122].

Altogether, this evidence suggests that ECM components
and soluble proteins regulate the biology of the NSCs in the
neurogenic niche.

4. Biocompatible Substrates for Mimicking
the Neural Stem Cell Niche

The growing body of evidence supporting the influence
of the extracellular environment on stem cells raises the
question as to whether in vitro culture conditions have the
optimal characteristics for growing stem cells outside the
body. Evidence is beginning to show that constructing in
vitro microenvironments that incorporate some of the niche
elements where stem cells lie in vivo could be advantageous
to the understanding of stem cell biology and possible
applications in regenerative medicine [2, 90, 123–125].
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Evidence has shown that extracellular environmental
characteristics such as protein composition, protein anchor-
ing density, stiffness, and topography are important param-
eters to consider [2, 126]. Polymeric biomaterials can be
designed andmodified to obtain compatibility characteristics
with cells and tissues and to provide substrates, cells, and
proteins. Compatible materials can be functionalized to
provide bioactive proteins and peptides that signal cells to
attach, proliferate, or differentiate and can modulate physical
characteristics such as stiffness or topography, even at a
nanometric scale [93, 127].

There are two main approaches for the use of bioma-
terials: as delivery vectors for proteins and growth factors
with important effects in stem cell biology and as scaffolds
for the manipulation of cell characteristics or for improving
viability. More recent studies are using both approaches to
designmore accurate scaffolds or substrates, such as bioactive
polymers with multivalent ligands, or 3D substrates with
several crosslinking densities that are functionalized using
active peptides [3, 93, 128, 129].

5. Bioactive Factors Coupled to
Compatible Substrates

As mentioned before, in vivo growth factors are coupled
to the ECM of the neurogenic niche, thus forming site
specific regions of active factors. Growth factors are coupled
by electrostatic interactions with ECM proteins such as
glycosaminoglycans, which are one of the most abundant
components of the ECM, thus regulating growth factor
accessibility to cells [130].

Polymeric materials are usually inert and do not have
chemical interactions with either cells or proteins, a prop-
erty which improves biocompatibility in that it impairs the
adsorption of nonspecific proteins, avoiding the recognition
by innate immunity system [131, 132]. However, bioactive
peptides or proteins can be coupled to polymeric materials
to support cell adhesion, viability, stemness, or differentiation
and can be used as either delivery vectors or scaffolds through
the coupling of specific cell adhesion proteins or peptides in
2D or 3D cultures [123, 128, 133–135].

The use of biomaterials for the delivery of growth factors
offers the possibility of controlling the place and rate of
delivery and avoiding unspecific or pleiotropic effects. An
important issue to consider is whether to deliver growth
factors by releasing them or coupling them to the polymer. It
has been shown that EGF, covalently attached to a substrate,
leads to a greater expansion of human NPC as compared
to soluble EGF [136], while platelet derived growth factor
(PDGF), coupled to an agarose hydrogel, induces NPC
differentiation into oligodendrocytes. However, the degree
of the expression of myelin oligodendrocyte glycoprotein
(MOG) is higher when the NPCs are exposed to soluble
PDGF [137]. Covalently linked growth factors cannot be
internalized by cells, meaning that their activity and function
could be disrupted. Some actively released scaffolds are being
developed in response to these problems, such as the heparin
functionalized poly(ethylene glycol) (PEG) hydrogels [138,
139] and fibrin gels with growth factors coupled via heparin

binding [140]. In this latter approach, the simultaneous
release of neurotrophin-3 (NT-3) and PDGF improved neural
induction and decreased astrocyte differentiation, indicating
that a biomimetic scaffold could be designed to use several
growth factors with specific kinetic release and dosages [129].

The potential of biomimetic scaffolds that provide and
expose cells to growth factors for in vivo application has
been recently shown using hyaluronic acid gels function-
alized with ephrin B2 and Shh. Interestingly, a multivalent
polymer was designed to cluster ephrin receptors which
substantially increased the quantity of new neurons formed
in an adult neurogenic zone, such as the hippocampus, and
in nonneurogenic zones, such as the cortex and striatum.
Neurogenic activity was also induced in geriatric rodents,
with decreased neurogenesis in the hippocampal region [3].
Although there remain many aspects to consider before the
clinical application of this strategy, it is evident that the
characterization of neurogenic niches and their application
in compatible bioactive materials could be a promising
approach.

Cell-material interaction is crucial for the modulation of
cell behavior. Polymeric materials can also be functionalized
to expose peptides, adhesion molecules, or chemical groups
that mimic those in cells and the ECM and exert their
function through specific ligand-receptor recognition, or
electrostatic interaction. The Arg-Gly-Asp (RGD) tripeptide
motif present in ECM components, such as laminin, can
modify adult hippocampal NSCs proliferation and differ-
entiation [126, 141], with –SO

3
H exposed groups favoring

the differentiation of embryonicNSCs into oligodendrocytes,
while –NH

2
exposed groups induce neuronal differentiation

[142]. Functionalized polymers can be used as scaffolds
to improve NSCs transplantation and thus support their
survival and integration into brain tissue, especially when
large tissue deficits are present, such as after traumatic brain
injury, cerebral ischemia, or a transected spinal cord [1, 143,
144].

6. Stiffness, Topography, and
Neural Stem Cells

The physical properties of the extracellular environment
also influence stem cell behavior. Stiffness is defined as the
resistance of a material to deformation when force is applied
and is mainly related to material composition and structure,
while topography refers to the tridimensional shape and relief
of a material, in this case at micro- or nanoscale.

Evidence has shown that physical properties can modify
cell behavior and modulate stem cell differentiation capa-
bilities by modulating gene expression, integrin clustering,
the formation of cell adhesion, and cytoskeleton regulation
[8, 145–147].

Although brain stiffness has been difficult tomeasure and
despite the variation in the data reported according to the
technique used, it has been accepted that the brain is one
of the softest tissues of the body. Brain stiffness can change
according to age and the area of the brain. The adult brain
is stiffer than the juvenile brain (∼0.040 kPa in postnatal 10
rat brain samples versus ∼1.2 kPa in adult rat brain samples).
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Interestingly, most of the cortical subregions are stiffer than
the dentate gyrus and CA1 regions in the hippocampus
[148]. These differences are related to the water, protein,
and lipid content. Water content significantly decreases with
age, while lipid and protein content increase [148]. Another
important factor is the composition of the ECM, as sulfated
glycosaminoglycan increases with age [97]. In a developing
brain, there are also important changes in their mechanical
properties, with, for example, a gradual increase in stiffness
in the VZ and SVZ being closely related to neurogenic stage,
neuron maturation, and ECM composition changes during
development [97, 149].

Previous studies have demonstrated that mechanical
properties of the substrate, in conjunction with cell adhesion
ligands, can preserve the undifferentiated state of human
embryonic stem cells [150] or induce differentiation in sev-
eral cell phenotypes depending on the degree of stiffness
[145]. In the case of neural stem cells, Leipzig and Shoichet
(2009) have shown that softer substrates comprising photo
cross linkable methacrylamide chitosan (MAC) hydrogels
functionalized with laminin induce higher proliferation and
neuronal differentiation levels for the NPCs obtained from
the SVZ region of the forebrains of adult rats. In contrast,
the proliferation rate decreases for the NPCs in stiffer gels,
which differentiate preferably into oligodendrocytes [151].
Similarly, studies using NPCs from adult rat hippocampi
showed higher proliferation rates for the NPCs in hydrogels
of ∼0.1 to ∼0.5 kPa than in softer substrates (∼0.01 kPa),
reaching a proliferation peak at 1 to 4 kPa. In addition,
the NPCs preferentially differentiate into the neural phe-
notype in soft substrates (∼0.1–0.5 kPa), while glial phe-
notypes are predominant in stiffer substrates (∼1–10 kPa)
[152]. Notably, the influence of soft substrates in neuronal
differentiation is maintained in 3D cultures when the NPCs
from adult hippocampi are grown in alginate hydrogels
[153].

An interesting fact is that NPCs reach high proliferation
and neuronal differentiation levels in substrates with low
stiffness that are similar to those reported for brain tissue.
However, the influence of soft gel substrates on embryonic
NPC differentiation seems to be different, in that it has
been shown that glial differentiation is enhanced in soft
polydimethylsiloxane gels (PDMS), while neuronal differen-
tiation is not affected by soft gels, as previously described
[154]. These differences could be attributed to the origin or
stage of development of the NPCs, or even the characteristics
of the substrate, as reported previously by Trappmann et al.
(2012) [147].

The effects of substrate stiffness can be mediated by the
modulation of gene expression, as reported earlier using
mesenchymal stem cells (MSCs). When MSCs are grown for
longer periods of time on stiffer substrates, the proosteogenic
genes are expressed in a nonreversible way. However, when
they are grown for short periods of time on the same
substrate, the MCSs are still able to reverse the expression of
proosteogenic genes and begin to express neurogenic genes,
which shows evidence of a sort of mechanical memory that
could have important implications for the way stem cells are
being grown and expanded in vitro [8].

The micro- and nanoscale topography of a substrate have
been shown to be another important factor for the manipu-
lation of stem cell behavior. Topography can be altered, using
pillars, grooves, pits, or fibers to modify cell orientation and
cytoskeleton arrangement.Themicroscale distribution of cell
adhesion points and, therefore, themanipulation of cell shape
has been shown to be crucial to the direction of MSC dif-
ferentiation toward osteogenic or adipogenic lineage. These
effects are mediated by actin-myosin tension [155]. Fiber
diameter can also influence NSCs differentiation; laminin-
coated electrospun polyethersulfone (PES) fiber meshes of
283 nm increased oligodendrocyte differentiation by 40%,
while 749 nm fibers increased neuronal differentiation by
20% as compared with culture plates [156]. Aligned fiber
substrates of 480 nm upregulate neuronal differentiation
through the induction of Wnt/𝛽 catenin signaling, which
is a crucial pathway during neurogenesis in embryos and
adults and is more favorable to the survival of neuronal
cells as compared to the oligodendrocytes [124]. It has also
been shown that micropatterned substrates with aligned
microgrooves functionalizedwith laminin align the direction
of hippocampal NSCs growth and facilitate their differentia-
tion into neurons when they are cocultured with astrocytes
[157].

Although the multiple approaches to the physical and
chemical manipulation of biocompatible substrates show
their capability to manipulate NSCs behavior, there are still
several characteristics that must be considered, such as the
complexity of the interrelation of multiple signals and how
these can affect NSCs behavior depending on their origin and
the intrinsic stem cell characteristics.

7. Conclusions

The study of the numerous elements present in the neuro-
genic niche and how they interact with stem cell behavior
contributes to understanding the importance of extrinsic
signals for NSCs destiny. This knowledge is being used
to mimic the neurogenic niche for in vitro and in vivo
applications. Although the results obtained up to now
show promise, a more accurate biomimetic substrate for
in vitro studies and regenerative medicine is still a long
way off. Several factors must be taken into account, such
as the soluble factors and ECM components present in
the niche and the physical properties of the substrate. The
type and the origin of the stem cells intended to provide
a niche must also be considered. The ideal biomimetic
scaffold should, therefore, incorporate some of the main
factors that control stem cell behavior. Multidisciplinary
approaches to developing the most accurate niche-like sub-
strates and to understanding their biological implications
are a fascinating field that will help develop stem cells
knowledge.
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