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Abstract

Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTGexp) in
the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1)
explains the majority of the alternative splicing defects observed in the HSALR transgenic mouse model which expresses a
pathogenic range CTGexp. In the present study, we addressed the possibility that MBNL1 sequestration by CUGexp RNA also
contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1DE3/DE3

knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons
identified by microarray analysis with brain tissues from Mbnl1DE3/DE3 knockout mice and post-mortem DM1 patients.
Surprisingly, splicing-sensitive microarray analysis of Mbnl1DE3/DE3 brains yielded only 14 candidates for mis-spliced exons.
While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent
of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative
exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly
spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUGexp

RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly
other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain.
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Introduction

Myotonic dystrophy type1 (DM1) is a multi-systemic disorder

affecting skeletal muscle, heart, ocular lens, testis, and the central

nervous system (CNS). CNS involvement in adult-onset DM1 includes

visual spatial and attention deficits, dysexecutive syndrome, apathy,

avoidant behavior and excessive daytime sleepiness (review [1]).

Although neuropathological studies have revealed several morpholog-

ical changes [2,3,4], whether these changes contribute to the clinical

symptoms observed in DM1 remains to be determined.

DM1 is caused by the unstable expansion of CTG trinucleotide

repeats in the 39 untranslated region of the DM protein kinase

(DMPK) gene [5]. Recent evidence suggests that transcripts

containing expanded CUG repeats (CUGexp) accumulate in

nuclear RNA foci and exert toxic effects on a variety of cellular

regulatory pathways including splicing and transcription [6]. One

disease model that is supported by considerable experimental

evidence proposes that CUGexp RNAs cause sequestration and

inhibition of the RNA-binding protein MBNL1 [7]. In support of

this model, Mbnl1 knockout mice develop the muscle, eye, and

RNA splicing abnormalities that are characteristic of DM1 disease

[8]. In addition, we have reported a strong correlation in skeletal

muscle splicing changes between two mouse models of DM1, the

HSALR transgenic and the Mbnl1 knockout [9].

In the CNS of DM1 patients, mutant DMPK transcripts

accumulate in neuronal nuclei and sequester MBNL1 and

MBNL2 [10]. Although abnormal regulation of several alterna-

tively spliced exons has also been documented in the DM1 brain

[10,11,12,13], it is not clear if MBNL1 sequestration contributes to

aberrant splicing. Here we used splicing-sensitive microarrays to

detect mis-splicing in the Mbnl1DE3/DE3 knockout brain.
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Results

Splicing perturbations in the Mbnl1DE3/DE3 knockout
brain

To test directly whether loss of MBNL1 expression contributes

to aberrant splicing in the CNS, RNA was extracted from the

brains of age-matched males carrying homozygous Mbnl1DE3/DE3

knockout or wild-type alleles in the same (C57BL/6J) background

and analyzed on splicing-sensitive microarrays [9]. Experience

with this method indicates that differences in the log2 of the ratio

of exon skipping to inclusion (the skip/include ratio) between two

samples (sepscore) with an absolute value .0.3 can be validated by

RT-PCR. We observed 14 events in Mbnl1DE3/DE3 knockout mice

that exceeded this score (Table S1). We used RT-PCR to validate

a subset of alternative cassette exons identified by microarray

analysis and found four events (Sorbs1 exons 6 and 25, Spag9 exon

31, Dclk1 exon 19) that showed significant differences in splicing

between wild-type and knockout mice in both the hippocampus

and cerebellum (Figure 1A,B). Sorbs1 is particularly interesting

because it is expressed in multiple tissues and exon 25 is regulated

during postnatal development [9,14]. In heart, MBNL1 is a major

factor which regulates exon 25 splicing with nearly complete

inclusion in wild-type adult heart but only ,60% inclusion in the

Mbnl1 knockout heart. While this exon is also mis-spliced in the

Mbnl1 knockout brain, the effect of MBNL1 loss on this exon is

considerably less in both the hippocampus and cerebellum. This

modest effect of MBNL1 loss on other mis-regulated exons was

also apparent for Spag9 exon 31, Sorbs1 exon 6 and Dclk1 exon 19

(Figure 1B). Nevertheless, these exons are regulated during

developmental transition from neonatal (P6) to adult (P42)

forebrain (Figure 1A), which indicates other factor may play a

role in splicing regulation during this period.

Splicing microarrays also revealed mis-splicing of Camk2d, so we

further investigated splicing of this gene. Importantly, Camk2d

splicing is regulated during postnatal development with the major

isoforms all containing exons 14a and 17 with alternative splicing

of the exon 14b, 15 and 16 cassettes to generate several major

isoforms, including d1, d2, d3, d3.1, d4 and d9 (Figure 2). Previous

reports have indicated that the d1 isoform is the major splice

variant in the adult rat forebrain, while d4 isoform is expressed in

the neonatal rat forebrain [15]. We observed that in P1 whole

brain, P6 fore- and hindbrain, d1 and d9 are the major isoforms

while in adults (P42), exon 15 is preferentially spliced, so that in

addition to d1, d4 is also the major form in forebrain and both d4

and d3 are expressed in hindbrain. In accordance with other

splicing changes where immature splicing isoforms are expressed

in the adult tissues, splicing of the fetal d9 isoform significantly

increased in the hippocampus of Mbnl1 knockouts compared to

controls although the increase was modest and was not observed in

the cerebellum. While the d9 isoform increased, the d3 (+14b 215

216) isoform decreased in Mbnl1 knockout mouse hippocampus

compared with wild-type.

Aberrant splicing in human brain samples and
comparison with Mbnl1 knockout brain

To determine whether these mis-splicing events predicted from

the Mbnl1 knockout brain microarray data were also observed in

the human DM1 brain, we aligned affected mouse exons to the

human genome and found 12 exons that are conserved and

orthologous to MBNL1-dependent mouse exons (Table S2). We

examined all of these events in post-mortem human temporal

cortex and cerebellum. The most striking result in human DM1

brain was mis-splicing of SORBS1 exon 26 (orthologous to mouse

exon 25). In the temporal cortex, the average percentage of exon

26 inclusion in DM1 was ,40% while those observed in the

normal controls and in the disease controls were ,85% and

,90%, respectively (Figure 3A and B, upper). In the cerebellum,

exon 26 inclusion was also significantly decreased in DM1

compared with in disease controls, although this difference is

subtler than that in the temporal cortex. Both DCLK1 exon 19

inclusion and MPRIP exon 9 inclusion were significantly decreased

in DM1 temporal cortex (Figure 3A and B, middle and bottom),

whereas there is no difference in these splicing events between

DM1 and disease cerebellums.

In humans, the splicing of CAMK2D is also regulated in a tissue-

specific and developmental manner. We found that d9 was

expressed almost exclusively in human fetal whole brain (unlike

rodent brain), while d1 was predominantly expressed in adult

human temporal cortex samples (Figure 3C to E). In contrast, the

percentage of the d9 isoform was significantly increased in adult

DM1 temporal cortex compared to both disease and normal

controls. This increase was ,30% in DM1 temporal cortex

(Figure 3E), or apparently larger than that observed in the

hippocampus of Mbnl1 knockout mice (Figure 2), although we

could not conclude which of the following changes will have a

stronger impact: (a) an increase from 0 to ,2.5% in Mbnl1

knockout mice (Figure 2C), or (b) an increase from ,10% to

,30% in DM1 temporal cortex (Figure 3E). As a result of the

increase of d9, the percentage of d1 was significantly decreased in

the DM1 temporal cortex. In DM1 and disease control

cerebellums, d9 was a major isoform and there is no difference

between these two. Unlike mouse cerebellum, d3 isoform was not

observed in any groups of human brains.

Initially we did temporal lobe autopsy on human since a former

report showed splicing defects of several exons in this region [10].

We did hippocampus analysis on mouse because it is a key region

of the brain involved in learning and memory. We thought a

concern of regional difference between hippocampus and

temporal lobe may not be an issue since a report showed similar

tau pathology in hippocampus and temporal cortex [4] and we

have compared the splicing pattern of each exon in these regions

of mouse brain and found similar splicing defects of Sorbs1 exon 25

and Camk2d exon 14–16 (increased expression of d9) in Mbnl1

knockout mice (Figure S1). We also used cerebellum samples as a

reference region since no apparent cerebellar symptoms in DM1

patients and the lack of RNA foci in DM1 cerebellar cortex have

been reported [10]. Although we did not show a direct binding of

MBNL1 on these RNA by CLIP (cross linked immuno

precipitation), we identified several YGCY motifs in the upstream

and downstream introns of these alternative spliced cassettes

(Table S3).

We determined by Southern blot analysis the CTG repeat

number of the same brain tissues from which we took RNA for

RT-PCR (Table 1). Cerebral cortex showed greater CTG repeat

number and larger intra-tissue CTG length heterogeneities than

cerebellum, consistent with a previous observation [16]. The

comparison between the degree of aberrant splicing of each exon

and each shortest, median and longest CTG repeat number

showed no correlation (Figure S2). Several splicing defects have

been reported in DM1 brain and we confirmed some of them

(exon 4 of GRIN1, exons 3 and 12 of MAPT and exon 9 of APP) in

our human DM1 temporal cortex samples (Figure S3A).

However, our splicing microarray analysis did not detect any

mis-splicing of these exons in the Mbnl1 knockout model. RT-

PCR using each set of specific primer for these exons (Grin1 exon

4, Mapt exons 3 and 9, and App exon 7) also revealed no defects of

splicing (Figure S3B).

Novel Splicing Defects in Mbnl1 KO and DM1 Brain
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Discussion

In the present study, we found three novel splicing events, Sorbs1

exon 25 (exon 26 in human), Dclk1 exon 19, and Camk2d exon 14–

16 (exon 14–15 in human), altered both in DM1 and in Mbnl1

knockout brains. This is the first report of mis-splicing of

orthologous exons in brain tissues from human DM1 and Mbnl1

knockout mice, although mis-splicing of exons 3 and 12 (9 in mice)

of MAPT has been shown in human DM1 brain [10,13] and in the

CTG transgenic mouse brain [17]. In general, the Mbnl1 knockout

hippocampus and DM1 temporal cortex shared similar splicing

defects. We also confirmed similar splicing defects of some genes in

the hippocampus and temporal cortex of Mbnl1 knockout mice

(Figure S1). The expression of the fetal splicing isoforms in our

samples is consistent with other splicing abnormalities in which

fetal splice isoforms are expressed in adult DM1 patients and

model mice. Interestingly, only the increase in GRIN1 exon 4

inclusion in DM1 brain does not represent a return to a fetal

splicing profile (Figure S3), which may suggest that distinct splicing

factors regulate this splicing event. Our data did not demonstrate

directly that MBNL1 regulates the splicing of these exons.

However, we found many YGCY motifs that could potentially

serve as MBNL1 binding motifs (Table S3) [9].

In human cerebellum, aberrant splicing was less apparent and

only splicing of SORBS1 exon 26 was altered significantly, while

similar splicing defects were shown in the hippocampus and

Figure 1. MBNL1 splicing targets in the mouse brain. RT-PCR analysis of wild-type (wt, n = 3, 3–6 months of age) versus Mbnl1DE3/DE3 (ko, n = 3,
3–6months of age) brain splicing. (A) Representative PCR products. (B) Percent exon inclusion measured by phosphoimager analysis. Loss of MBNL1
expression results in reduced exon inclusion for Sorbs1 exon 25, Spag9 exon 31, Sorbs1 exon 6 and Dclk1 exon 19 in both the hippocampus (hp) and
cerebellum (cb). The inclusion of these exons is enhanced in the adult (P42) forebrain (fb) compared to the neonatal (P6) forebrain. Sorbs1 exon 25
splicing in the heart (ht) and Mprip splicing in the brain are included as positive and negative splicing controls. Both unpaired t-test and permutation
test were used for calculating p value (*p value,0.05, **p value,0.01). Averages and standard deviations were generated by unpaired t-test.
doi:10.1371/journal.pone.0033218.g001

Novel Splicing Defects in Mbnl1 KO and DM1 Brain
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cerebellum of the Mbnl1 mouse knockout model. One possible

reason for this modest splicing alteration in the cerebellum of

human DM1 is that fetal splicing isoforms of some genes are

already dominantly expressed in human adult cerebellum and thus

there is no room for any detectable difference of fetal isoforms

between DM1 and control samples (e.g. CAMK2D in which fetal

d9 isoform is almost exclusively expressed in both disease control

and DM1 cerebellums relative to fetal brain (Figure 3E)). Another

possibility is that MBNL1 may not be as efficiently sequestered in

RNA foci in the DM1 cerebellar nucleus because the CTG repeat

expansion is much smaller in the cerebellum than in the temporal

cortex (Table 1). One alternative possibility is that MBNL1

contributes less significantly to the regulation of splicing in human

cerebellum. This possibility is unlikely, however, for the following

reasons. First, both the immunohistochemistry and western

blotting displayed similar expression of MBNL1 in different

regions of the brain (Figure S4, Material and Methods S1).

Second, since our RT-PCR demonstrated similar splicing defects

in Mbnl1 targeted exons in both the hippocampus and cerebellum

of Mbnl1 knockout mice (Figure 1), it seems that the contributions

of Mbnl1 to these regions are similar.

Compared with Mbnl1 knockout skeletal muscle, where 246

events achieved sepscore values of .0.3 [9], we observed far fewer

splicing events that exceeded this score. Some exons previously

reported to be mis-spliced in the DM1 brain were not observed in

the Mbnl1 knockout brain. In addition, the extent of splicing mis-

regulation in the mouse model was significantly less than observed

for DM1 (Figures 1, 2, 3). A possible explanation for these smaller

splicing changes in Mbnl1 knockout mouse brain is that there are

species differences of splicing regulation between mouse and

human. However, transgenic mouse brains carrying over 700

CTG repeat have been reported to display splicing abnormalities

of Mapt, Grin1, Mbnl1, and Mbnl2 [17]. These results suggest that

the contribution of MBNL1 to developmental splicing transitions

in the brain is less significant than in skeletal muscle or that the

cellular complexity of the brain masks a larger effect of MBNL1

loss on particular cell populations. Three genes encode MBNL

paralogs in mammals, MBNL1, MBNL2 and MBNL3, and all of the

encoded proteins have been demonstrated to colocalize with

nuclear foci in DM1 cells [18]. In reconstruction experiments

using transfected cells, each MBNL protein can regulate

alternative splicing of pre-mRNAs that are misregulated in DM1

[19]. As MBNL3 is expressed predominantly in the placenta [18],

the likely candidate which may play a more significant role in

alternative splicing in the brain is MBNL2. While human MBNL1

is expressed primarily in skeletal muscle and heart, MBNL2 is

expressed at a similar level in the majority of tissues [18]. Thus, the

contribution of MBNL2 to splicing changes may be relatively high

in brain in contrast to skeletal muscle. It has been reported that

Mbnl1 knockout mice demonstrate cognitive and behavioral

abnormalities and normal spatial learning and memory [20]. This

relatively mild phenotype may correlate with the modest splicing

alteration. Regarding exon 31 of Spag9 and exon 6 of Sorbs1, we

found the significant difference between wild-type and Mbnl1

knockout, but not in human brains. This discrepancy may

contradict our hypothesis that the recruitment of MBNL1

contributes to the splicing defects in DM1 brains, but may be

explained by a difference of splicing regulation between mice and

human.

In vitro experiments suggested that a loss of MBNL1 or a gain

of CELF1 function could repress exon 3 inclusion but not exon 9

inclusion of Mapt, whereas CELF2 is a repressor of both exons

[21]. However, Mbnl1 knockout mice did not show any splicing

differences for these exons. This discrepancy about MBNL1

dependent regulation of the splicing of Mapt exon3 between in

vitro and mice experiments may also indicate that some redundant

factors function in this splicing regulation and loss of MBNL1

Figure 2. Spatial and temporal differences in the expression of
Camk2d. (A) Transcripts of Camk2d. (B) Representative PCR products.
Six spliced isoforms were detected by using primer pairs located in
exons 14a and 17. Right panel shows isoform switching from d9 to d4
during the fetal (P1, P6) to adult (P42) transition in whole brain (wb),
forebrain (fb) and hindbrain (hb) whereas the d9 isoform was
undetectable in adult hindbrain. Left panel shows a detectable increase
in the d9 isoform in Mbnl1DE3/DE3 hippocampus (hp) compared with
wild-type sibs. However, no d9 isoform could be detected in the
cerebellum of either wild-type or Mbnl1 knockout mice. (C) The
percentage of Camk2d isoform d9 to d1+4+9+3+2. Both unpaired t-test
and permutation test were used for calculating p value (n = 3, *p
value,0.05). Averages and standard deviations were generated by
unpaired t-test.
doi:10.1371/journal.pone.0033218.g002

Novel Splicing Defects in Mbnl1 KO and DM1 Brain
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Figure 3. Aberrant splicing events in Mbnl1DE3/DE3 brain are also observed in the human DM1 brain. We compared brain RNA from
normal control temporal cortex (control, tp, n = 4), disease control temporal cortex (disease, tp, n = 9), myotonic dystrophy type 1 temporal cortex
(DM1, tp, n = 12), fetal control whole brain (fetal, wb, n = 1), disease control cerebellum (disease, cb, n = 4), and DM1 cerebellum (DM1, cb, n = 5). (A)
Representative RT-PCR products detected with microchip electrophoretic separation using SV1210 software on the Hitachi SV1210 from exclusion
and inclusion of exon 26 of SORBS1 (upper), exon 19 of DCLK1 (middle), and exon 9 of MPRIP (bottom). (B) Graphical representation of RT-PCR analysis
depicting percentages of exon 26 inclusion of SORBS1 (upper), exon 19 inclusion of DCLK1 (middle), and exon 9 inclusion of MPRIP (bottom). (C)
Transcripts of CAMK2D. (D) Representative RT-PCR products from CAMK2D isoforms: d2(2exon14b2exon15), d9(2exon14b+exon15), and
d1(+exon14b+exon15) indicated by each arrow. (E) Graphical representation of RT-PCR analysis depicting percentages of d2 (upper), d9 (middle)
and d1 (bottom). Mann-Whitney U test was used for calculating the p value. Statistically significant differences (p,0.05) are indicated by an asterisk.
doi:10.1371/journal.pone.0033218.g003

Novel Splicing Defects in Mbnl1 KO and DM1 Brain
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alone is insufficient to change the splicing pattern of this exon in

the brain.

SORBS1 was identified as a Cbl-associated protein likely to

participate in insulin signaling [22]. The targeted exon encodes the

nuclear localization sequence (NLS) [23], suggesting that the

protein without an NLS is increased in the DM1 brain and might

not be able to function as a nuclear protein. Among the four types

of CAMK2 isoforms, the CAMK2D is expressed predominantly in

the suprachiasmatic nucleus, substantia nigra, and striatum in the

brain. Since each spliced isoform of CAMK2D has been reported

to show a distinct distribution pattern [24,25], the increase in d9

might cause abnormal localization. Interestingly, CAMK2D has

been reported to play an essential role in PER1 expression, which

is possibly involved in light-induced phase shifts [26]. Although

excessive daytime sleepiness and dysregulation of REM sleep

occur frequently in patients with DM1, it was reported that the

pathophysiologic basis is distinct from narcolepsy, as patients with

DM1 do not have a consistent defect of hypocretin release or

receptor splicing [27]. Possibly, aberrant splicing of CAMK2D

might be associated with excessive daytime sleepiness in DM1.

DCLK1 is a microtubule-associated kinase that can undergo

autophosphorylation and regulate microtubule polymerization

[28]. The fetus specific C-terminal splicing variant (exon 19

exclusion), which is expressed more in DM1 adult temporal cortex,

showed enhanced autophosphorylation activity and has been

suggested a possible role in migrating neurons [29]. Therefore, the

increase in the fetal variant of DCLK1 in DM1 brain may cause

an abnormal neuronal migration. MPRIP was initially identified

as an 116 kDa protein that interacts with RhoA [30]. In neuronal

cells, MPRIP is essential for neurite outgrowth and may act as a

scaffold to target the myosin phosphatase complex to the actin

cytoskeleton [31]. Although the difference between splicing

isoforms has not been reported, aberrant splicing of this gene

could give rise to abnormal neurite outgrowth in DM1 brain.

In this study, we detected three novel splicing targets which

were mis-regulated in both Mbnl1 knockout mice and human

DM1, two only in Mbnl1 knockout mice, and one only in human

DM1 brains. Since the brain is a heterogeneous organ consisting

of many different cell types, splicing events may be regulated in a

region-specific manner. Our studies support this interpretation

with distinct variations in the splicing of developmentally-

regulated exons observed in the hippocampus and cerebellum.

Our results suggest that at least some of the aberrant splicing

events in the DM1 brain result from the sequestration of MBNL1

by CUGexp RNAs. Additionally, it is also likely that other RNA-

associated proteins contribute to the aberrant splicing in DM1.

Thus, it will be important to investigate the splicing targets in

brain samples derived from other DM1 model mice, including

Celf1 transgenic, Celf2 transgenic and Mbnl2 knockout mice.

Materials and Methods

Ethics Statement
All experiments using mice were performed in accordance with

the guidelines of the University of Florida. The protocol was

approved by the University of Florida Institutional Animal Care

and Use Committee (Permit Number: #200903677). All exper-

iments using human samples were approved by the Ethics

Committee of Hyogo College of Medicine (Permit number: 93)

and written informed consent for specimen use for research was

obtained from all patients.

Splicing Microarray Detection
RNA samples from the brain of individual 12–14-week-old male

mice from the wild-type and Mbnl1DE3/DE3 lines (n = 4 for each

group) were compared. To identify MBNL1-dependent splicing

events, RNA from Mbnl1DE3/DE3 mice was compared to wild-type

mice in the C57BL/6J (N10) background. RNA samples were

processed for cDNA synthesis and hybridization to Affymetrix ‘‘A-

chip’’ oligonucleotide microarrays as follows. Total RNA was

primed with random hexamers and reverse transcribed. After the

reaction was completed, RNA was removed from the reaction by

alkaline hydrolysis and the cDNA was purified using Qiagen PCR

Quick Purification Kit. A typical reaction started with 5 mg of total

RNA usually yielded ,3 mg of cDNA. The cDNA was then

Table 1. Human samples analysed.

Patient no/sex Age disaese Sources
CTG repeats in
brain samples

C1/M 23 anormal temporal cortex

C2/M 22 anormal temporal cortex

C3/M 26 anormal temporal cortex

C4/F 78 bnormal temporal cortex

D1/F 69 PD temporal cortex

D2/F 84 MSA-C temporal cortex

D3/F 80 ALS temporal cortex

D4/M 53 ALS temporal cortex

cerebellum

D5/F 81 ALS temporal cortex

cerebellum

D6/M 70 ALS temporal cortex

D7/F 75 ALS temporal cortex

D8/F 61 ALS temporal cortex

cerebellum

D9/M 70 ALS temporal cortex

cerebellum

DM1/M 58 DM1 temporal cortex 3000–6000

DM2/M 69 DM1 temporal cortex 3000–6000

DM3/M 50 DM1 temporal cortex 2000–6000

DM4/F 56 DM1 temporal cortex 3000–5000

cerebellum 400

DM5/M 63 DM1 temporal cortex 1200–3000

DM6/M 59 DM1 temporal cortex 3000–9000

DM7/F 58 DM1 temporal cortex 3000–6000

cerebellum 2200–3000

DM8/F 58 DM1 temporal cortex 2000–8000

DM9/F 58 DM1 temporal cortex 2200–6500

cerebellum 300

DM10/F 66 DM1 temporal cortex 1900–3300

cerebellum 150

DM11/M 64 DM1 temporal cortex 2400–5200

DM12/F 73 DM1 temporal cortex 1900–4800

cerebellum 200

F1/F 21w cfetal whole brain

afrom Biochain,
bfrom Ambion,
cfrom Stratagene, PD; Parkinson’s disease; MSA-C; multiple system atrophy with
predominant cerebellar ataxia; ALS: amyotrophic lateral sclerosis.
doi:10.1371/journal.pone.0033218.t001

Novel Splicing Defects in Mbnl1 KO and DM1 Brain
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fragmented using DNase I in an empirically controlled reaction

that yields DNA fragments of 50–200 bases. This fragmented

cDNA was then end labeled using terminal deoxynucleotidyl

transferase and ‘‘DNA-Labeling-Reagent-1a (DLR-1a)’’, which is

a biotinylated dideoxynucleoside triphosphate. Labeled cDNA was

hybridized to arrays in standard Affymetrix hybridization buffer

for 16 hrs at 50uC. Arrays were washed, processed with anti-biotin

antibodies and streptavidin-phycoerythrin according to the

standard Affymetrix protocol.

Microarray Data Analysis
Analysis was done according to Sugnet et al. [32], who calculate

a ‘‘separation score’’ that measures the relative change in ratio of

alternative splicing events. The equation for sepscore is:

Separation score sepscoreð Þ~

Log2 mut skip=includeð Þ=wt skip=includeð Þ½ �

For each replicate set (each tissue from Mbnl1DE3/DE3 and wild

type), we estimated the log2 ratio of skipping to inclusion using

robust least squares analysis. We evaluated sepscore significance

by permuting the assignments of data points to replicate sets,

calculating the separation score for the permuted data, and

estimating the likelihood that the observed data came from the

permuted distribution. The microarray data have been deposited

in NCBI’s Gene Expression Omnibus and are accessible through

GEO series accession number GSE28640 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE28640). All data is MIAME

compliant and the raw data has been deposited in a MIAME

compliant database (GEO), as detailed on the MGED Society

website (http://www.mged.org/Workgroups/MIAME/miame.

html).

Target validation by RT-PCR for model mice
The sequences of primers used for RT–PCR assays of splicing

in mouse and human brain RNA are listed in (Tables S1 and S2).

To test mouse MBNL1 potential splicing targets identified by

splicing microarrays, we harvested hippocampal, temporal cortex

and cerebellar tissues from Mbnl1+/+ (n = 3) and Mbnl1DE3/DE3

(n = 3) mice (C57BL/6J background) ranging from 3–6 months of

age. RNA was isolated using TRI Reagent (Sigma) and cDNA

generated using 5 mg of RNA, oligo (dT)20 (Invitrogen) and

SuperScript III (Invitrogen) followed by digestion with 0.2 units/ml

RNase H (Invitrogen) at 37uC for 20 min. Splicing targets with

predicted alternately spliced cassettes were selected from micro-

array list and 5 ng of cDNA was PCR-amplified for 28 cycles

(95uC for 30 sec, 55uC for 30 sec, 72uC for 30 sec) by using

forward and reverse primers located in the flanking exons. Each

PCR reaction was spiked with 2.5 mCi of [a32P]-dCTP (Perki-

nElmer Life Sciences). PCR products were resolved on 10% non-

denaturing polyacrylamide gels followed by autoradiography using

Kodak BioMax MS film (PerkinElmer Life Sciences). Exon

inclusion was measured using a Typhoon 9200 imager and

ImageQuant TL software (GE Healthcare).

RT-PCR and Southern blot analysis for human brain
samples

Human temporal cortex and cerebellar tissues (n = 21) at

autopsy were analyzed (Table 1). RNA was extracted from each

sample by the ISOGEN procedure (Nippon Gene). The RNAs

used as normal controls were purchased commercially as follows:

human adult temporal cortex (3 male, 1female, 3 samples from

Biochain, 1 sample from Ambion) and 1 sample of human fetal

whole brain (Stratagene) (Table 1). The quality of RNA and the

PCR product were analyzed by capillary electrophoresis using a

Hitachi SV 1210 on a microchip (Hitachi Electronics Co., Tokyo,

Japan) [33]. We used the samples which meet the criteria that the

ratio of 28S/18S rRNA peaks was .0.8. The CTG trinucleotide

repeat expansion sizes of human brain samples were determined

by Southern blot analysis of genomic DNAs from each brain

region tissue of DM1 as described previously [34]. cDNA was

synthesized using the same method as for mouse samples except 1–

3 mg of RNA and random hexamers were used. cDNA equivalent

to 20 ng RNA was PCR-amplified for initial denaturation at 94uC
for 10 min and 35 cycles (94uC for 30 sec, 55uC for 30 sec, 72uC
for 30 sec) by using forward and reverse primers located in the

exons adjacent to the human exons orthologous to mouse exons

predicted by the microarray data (Table S2). We determined the

percentage of each peak by dividing each signal by the total signal.

Statistical analysis
Differences for the levels of exon inclusion for age-matched

genetically homogeneous mice were analyzed by unpaired t- and

permutation tests. The data for human samples were analyzed

using the nonparametric Mann-Whitney U test because the

backgrounds such as age and CTG repeat number of each sample

are regarded inhomogeneous and the data for these samples were

not always normally distributed.

Supporting Information

Figure S1 Sorbs1 exon 25 inclusion is decreased and
Camk2d d9 is increased to similar extent in the
hippocampus (hp) and temporal cortex (tp) of
Mbnl1DE3/DE3 (ko) mice compared with wild type (wt)
mice.

(TIF)

Figure S2 Comparison between the degree of aberrant
splicing and CTG repeat number in DM1 brain. There

was no significant correlation between each shortest, median and

longest CTG repeat number, and percent inclusion of each of the

exons which are mis-regulated. (A) Temporal tissues. (B)

Cerebellar tissues. Spearman rank correlation coefficient was used

for the analysis of correlation.

(TIF)

Figure S3 Some splicing defects which have been
reported in DM1 brain were not reproduced in Mbnl1
knockout brain. (A) Four splicing exons are mis-regulated in

our human DM1 temporal cortex (exon4 of GRIN1, exons 3 and

12 of MAPT, and exon9 of APP). Mann-Whitney U test was used

for calculating the p value. Statistically significant differences

(p,0.05) are indicated by an asterisk. (B) These exons are normally

spliced in the hippocampus (hp) of Mbnl1 knockout mice.

(TIF)

Figure S4 MBNL1 distribution and expression in re-
gions of mouse brain. (A) Immnunohistochemistry with anti-

MBNL1 antibody shows that MBNL1 is ubiquitously expressed in

the frontal cortex (top), hippocampus (middle), and cerebellum

(bottom) sections from wild-type (wt, right) but not in those from

Mbnl1 knockout (ko, left). (B) Western blot analysis shows a similar

expression of MBNL1 in the cerebellum, temporal cortex, and

hippocampus of a wild-type mouse. (Materials and Methods S1).

(TIF)

Materials and Methods S1 Supplementary Materials
and Methods for Muscleblind-Like 1 Knockout Mice
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(DOC)

Table S1 Separation score and primers for RT-PCR of
mouse brain.
(DOC)

Table S2 Primers for RT-PCR of human brain.
(DOC)

Table S3 YGCY motif searching list with sequences exons
aberrantly regulated in brains of Mbnl1 knockout mice
and DM1 patients. YGCY motifs are indicated by capitals.

(DOC)
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