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Abstract

Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We
ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families
using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain
collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was
assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this
ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms
related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array
were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and
involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or
highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4
but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an
excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes
from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by
chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although
gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment,
gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further
development of gene ranking strategies using more carefully selected sources of information is warranted.
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Introduction

A wealth of information relevant to the genetics of complex

disorders is available via a wide variety of platforms such as gene

expression, protein-protein interactions (PPIs), biological path-

ways, and Gene Ontology (GO). It was hoped that the advent of

large scale genome-wide association studies (GWAS) would

eliminate the need to utilize this data as a means to uncover

susceptibility loci. However, psychiatric GWAS have shown that

there are likely many loci of small effect and few results are

significant after corrections for multiple testing [1,2,3]. Further-

more, the loci that do survive only account for modest proportions

of heritability. Therefore, novel methods are still needed to identify

additional causative loci. The use of multiple, existing sources of

information could increase statistical power to detect susceptibility

genes and minimize the risk of pursuing false positives in follow up

investigations. However, due to the large amount of information

plus heterogeneity among data sources, the task of combining such

information in an optimal way is complex and difficult, either

intuitively or manually.

Schizophrenia is a disorder that is particularly suitable to this

type of approach. While other complex disorders and traits such as

type 2 diabetes and height have been gathering a rapidly growing

list of replicated and validated susceptibility loci, several features of

schizophrenia will arguably make such success less likely. Although

its heritability is higher than many complex disorders such as type

2 diabetes, its prevalence is lower. This makes very large studies

with tens or hundreds of thousands of participants much more

challenging (albeit necessary in order to detect an effect). There is

also phenotypic and diagnostic heterogeneity which is arguably

less present in other complex disorders and which may reflect

genetic heterogeneity as well. Moreover, for schizophrenia, there is

increasing evidence suggesting a complex genetic architecture

comprising a mixture of rare highly-penetrant mutations such as

large deletions in gene NRXN1 [4] as well as common single

nucleotide polymorphisms (SNPs) [5]. Furthermore, well devel-

oped animal models or the availability of patient tissue are very

limited. However, there are multiple schizophrenia GWAS

available now, which can be used to evaluate hypotheses or

ranking procedures.

We have previously developed a procedure for gene ranking

based on a priori evidence and the results from a small validation

study were encouraging [6]. Here, we reported a modified ranking

procedure for complex diseases such as schizophrenia, applied it to

all genes residing in regions of linkage in the Irish Study of High

Density Schizophrenia Families (ISHDSF) sample, and performed

a larger evaluation of the method. To evaluate the utility of this

approach, we compared it with a gene selection approach based

on the well-established neurodevelopmental etiological hypothesis

of schizophrenia [7].

Materials and Methods

Ethics statement
This research was approved by the Institutional Review Boards

of Virginia Commonwealth University School of Medicine and the

Washington VA Medical Center. All subjects gave verbal assent to

participate in research, as this represented the ethical standard in

Ireland at the time these data were collected. This strategy was

specifically approved by the Health Research Board, Dublin.

Permission was received to use the data in this study, and the data

we de-identified prior to analysis.

Subjects and phenotypes
The Irish Study of High Density Schizophrenia Families

(ISHDSF) sample consists of 265 high-density schizophrenia

families with 1408 individuals available for genotyping [8]. All

participating individuals gave appropriate informed consent to the

study. The sample was divided into 4 concentric diagnostic

categories for analysis purposes, ranging from core schizophrenia

(D2, 625 affected individuals), through narrow spectrum (‘inter-

mediate phenotype’ D5, 804 affected individuals), broad (D8, 888

affected individuals) and very broad spectrum disease (D9, 1172

affected individuals). Phenotypic details of these subcategories are

given briefly in Thiselton et al. [9].

Linkage regions
We first limited the ranking to genes in regions with evidence for

linkage in the ISHDSF. These regions were obtained from an

autosomal genome-wide scan using over 4000 SNPs as part of the

Multicenter Genetic Studies of Schizophrenia (PI, Douglas F.

Levinson, MD) [10]. Regions were defined as genomic segments

with nonparametric linkage (NPL) maximum score of at least 2.0

and telomeric and centromeric boundaries of NPLs of 1.0. The

detailed genomic locations were provided in File S1. A bioinfor-

matics search of these regions yielded 3819 human protein-coding

genes.

Prior sources of information
For each of the 3819 genes, we obtained a separate p-value

pertaining to each of 3 domains: 1) gene expression, 2) protein-

protein interaction (PPI) subnetwork, and 3) high-throughput

literature search, as illustrated in Figure 1. First, the p-value for

fold-change in each gene’s expression level was obtained from the

Stanley Brain Expression Database (http://www.stanleygenomics.

org), which contains meta-analysis results using data from 12

different studies and 988 arrays. A False Discovery Rate (FDR)

procedure [11] was applied to the uncorrected p-values and used

to generate a corrected ranked p-value. Second, assuming disease

genes may be functionally connected, we identified the genes

whose proteins interact closely with proteins encoded by three

established schizophrenia susceptibility genes (DTNBP1 [12,13],

NRG1 [14,15], and AKT1 [9]) in the PPI network. A comprehen-

sive human PPI network was generated using human PPI data

retrieved from NCBI Entrez Gene (February 2007) which

summarizes interactions from multiple sources including HPRD

(http://www.hprd.org) [16], BioGrid (http://www.thebiogrid.org)

[17,18], and BIND (http://www.bind.ca) [19]. After removing

redundant and problematic interactions, 52,288 unique human

PPI pairs remained in the network. The program Pajek (http://

vlado.fmf.uni-lj.si/pub/networks/pajek/) [20] was used to deter-

mine the minimum number of steps between the proteins encoded

by DTNBP1, NRG1, and AKT1 and every other human gene in the

PPI network. Each of the 3819 genes was assigned a rank based p-

value based on the number of steps (lowest to highest). The

hypothesis is that a gene closer in the network to a probable

susceptibility gene is more likely to harbor susceptibility alleles.

Finally, high-throughput literature searching was performed using

a Perl script which automatically queried the PubMed database

(http://www.ncbi.nlm.nih.gov/pubmed/) for each of the 3819

genes along with 29 schizophrenia-related search terms that we

assembled (3819629 = 110,751 searches). These search terms

were divided into several categories: disease states (e.g., ‘‘schizo-

phrenia’’, ‘‘psychosis’’), neurotransmitters (e.g., glutamate, dopa-

mine), neuronal features (e.g., ‘‘dendrite’’, ‘‘axon’’), brain devel-

opment, and brain structures (e.g., ‘‘cortex’’). Genes were ranked
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according to the number of categories which yielded positive

‘‘hits’’, and assigned a ranked p-value.

Ranking and gene selection
For a final ranking of these genes, we summed the 2log10 of

their p-values on each of the three domains (gene expression, PPI

network, and literature search). Two subsets of the 3819 genes

were selected for tag-based SNP genotyping and association

analysis (see Figure 1). The first set was based on the commonly

accepted neurodevelopmental hypothesis of schizophrenia (‘‘hy-

pothesis-based’’) [7,21,22], where all genes with GO terms that

included ‘‘nervous system development’’ or ‘‘brain development’’

were selected. The second set was rank-based and included as

many top ranked genes as could be included on the custom array

based on the remaining unallocated SNPs. In practice, many of

the top ranked genes had already been selected by the hypothesis

procedure and were in the first set. This led to 125 of the 151 top

ranked genes being selected for genotyping with 52 being

exclusively highly ranked without being implicated in neurode-

velopment. In summary, among the 167 genes we selected for

genotyping, 73 were both highly ranked and involved in

neurodevelopment (category 1), while 42 and 52 genes were

exclusive to neurodevelopment (category 2) or highly ranked

(category 3), respectively.

SNP selection and genotyping
We then identified the genomic region of each candidate gene

based on gene annotation information in the UCSC Genome

Browser (UCSC hg17/NCBI Build 35, http://genome.ucsc.edu/).

For the genomic regions, we attempted to select all haplotype-

tagging genic SNPs within each gene using computer program

Tagger [23] (r2 = 0.8, minor allele frequency (MAF) = 0.1) and the

HapMap data (phase 2, http://hapmap.ncbi.nlm.nih.gov/).

Genotyping was conducted by Illumina, Inc. using a custom

iSelect array, which employs the Infinium assay. In total, genomic

DNA for 1128 individuals was submitted for genotyping. Average

genotyping completion rate across all SNPs was 99.97%. Of 1128

samples, 21 failed to yield usable genotypes. Genotypes were

examined for apparent Mendelian incompatibilities using PED-

CHECK v1.1 [24] and removed for entire families where

appropriate. After excluding SNPs failing quality control, 3725

SNPs were available for analysis.

Association analyses
Association analysis for categorical diagnoses of schizophrenia

was performed using PDTPHASE (UNPHASED v.2.404), an

implementation of the pedigree disequilibrium test (PDT) with

extensions to deal with uncertain haplotypes and missing data

[25,26]. The PDT is an extension of the transmission disequilib-

rium test (TDT) to examine general pedigree structures and is

similarly a test of association in the presence of linkage.

GWAS datasets
The International Schizophrenia Consortium (ISC) samples

were collected from eight study sites in Europe and the US [1].

The samples were genotyped using Affymetrix Genome-Wide

Human SNP 5.0 and 6.0 arrays. This data was initially analyzed

by ISC [1] and was used here for evaluation. A total of 3322

patients with schizophrenia, 3587 normal controls of European

ancestry, and a total of 739,995 SNPs were included in our

analysis. To account for potential population sub-structure

associated with collection sites, the Cochran-Mantel-Haenszel test

was used for a single marker association test [1].

We used two GWAS datasets from the Molecular Genetics of

Schizophrenia (MGS): The Genetic Association Information

Network (GAIN) dataset for schizophrenia and nonGAIN. The

GAIN dataset was genotyped using Affymetrix Genome-Wide

Human SNP 6.0 array. Our access to this dataset was approved by

the GAIN Data Access Committee (DAC request #4532-2)

through the NCBI dbGaP. For optimal comparison with the Irish

samples (ISHDSF) genotyped in this study, we used only the

GAIN samples of European ancestry. We performed quality

control (QC) as follows. For individuals, those with a high missing

genotype rate (.5%), extreme heterozygosity rate (63 s.d. from

the mean value of the distribution), or problematic gender

assignment were excluded. PLINK [27] was used to compute

the identify-by-state (IBS) matrix to pinpoint duplicate or cryptic

relationships between individuals. We retained the sample with the

highest call rate for each pair of samples with an identity-by-

descent (IBD) being greater than 0.185. Principle component

analysis (PCA) was performed using the smartpca program in

EIGENSTRAT [28] to detect population structure and to allow

removal of outlier individuals. Eight significant PCs with the Tracy

Widom test p-value,0.05 were used as covariates for logistic

regression (additive model). For genotyped SNPs, those with a

missing genotype rate .5%, MAF ,0.05, or departing from

Hardy-Weinberg equilibrium (p,161026) were removed. The

final analytic dataset included 1158 schizophrenia cases and 1377

controls and a total of 654,271 SNPs. The genomic inflation factor

(l), which was defined as the ratio of the median of the empirically

observed distribution of the test statistic to the expected median

and an indication of the extent of excess false positive rate [29],

was 1.04. This value indicates little (if any) inflation.

Figure 1. Flowchart of data process, algorithm for gene
ranking and selection, custom-based genotyping and associ-
ation analysis.
doi:10.1371/journal.pone.0067776.g001

Schizophrenia Gene Selection and Association

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e67776



The MGS - nonGAIN dataset was genotyped in the same

laboratory as the MGS -GAIN, but in different phases. Access to

this dataset was approved by dbGaP (DAC request #4533-3).

Similar QC and PCA processes were peformed as described for

GAIN. These processes retained 1068 cases and 1268 controls and

623,059 SNPs for subsequent analyses. Fifteen significant PCs with

the Tracy-Widom test p value,0.05 were used as covariates for

logistic regression (additive model) using PLINK. The genomic

inflation factor (l) was 1.04.

CATIE (Clinical Antipsychotic Trials of Intervention Effective-

ness) is a multi-phase randomized controlled trial of antipsychotic

medications involving 1460 persons with schizophrenia. CATIE

GWAS included 492,900 SNPs genotyped in a total of 738 cases

and 733 group-matched controls using the Affymetrix 500K two-

chip genotyping platform plus a custom 164K fill-in chip [30].

Access to this dataset was approved by the National Institute of

Mental Health (NIMH) Schizophrenia Genetics Initiative.

Imputation and meta-analysis
The three GWAS datasets, ISC, GAIN, and nonGAIN, were

genotyped on the same Affymetrix platform. To make the data

from these GWAS datasets comparable with our custom-design

SNPs, we conducted imputation analysis using the HapMap

genotyping data for CEU population (release 24) as reference

panel. We predicted the genotyping data for a total of 66 SNPs

involved in 22 genes using the tool impute2 [31]. Frequentist

association test was then conducted for SNP association using the

tool snptest [32] by the option ‘‘-frequentist 1’’, and a missing data

likelihood score test for the imputed genotypes by the option ‘‘-

method score’’.

We conducted meta-analysis of candidate SNPs using the

imputed data. We performed inverse-variance weighted meta-

analysis based on the fixed-effects model using the tool meta

(http://www.stats.ox.ac.uk/,jsliu/meta.html). This method com-

bines study-specific beta values under the fixed-effects model using

the inverse of the corresponding standard errors as weights.

Between-study heterogeneity was tested based on I2 and Q

statistics. SNPs having possible evidence of heterogeneity

(pheterogeneity,0.05) were removed.

Gene set simulations
In order to determine how often the observed enrichment in p-

values would occur, 100,000 simulations were performed where

the same number of genes was randomly chosen from the CATIE

and GAIN GWAS results. Then, p-values less than 0.05 and 0.005

for genotyped SNPs that mapped to the randomly chosen genes

were counted. Due to the great variation in gene size, SNP density

per gene, and difference in arrays used in each GWAS, the

number of SNPs in each iteration of the simulations could vary.

Therefore, we examined whether the observed number of SNPs

for the real set of ranked genes was similar to randomly selected

sets. The empirical significance for SNP count, minimum p-value,

and p-values below a given threshold were calculated both using

all simulations and restricted to those simulations where the SNP

count was not significantly different from observed. The empirical

significance was calculated using the number of simulations

greater than or equal to the observed plus one divided by the

total number of simulations as per North et al. [33].

Results

Figure 1 summarizes the data process, algorithm for gene

ranking and selection, custom-based genotyping and association

analysis. We analyzed 3725 SNPs covering 167 prioritized genes

whose genotypes were examined in 1107 individuals from the 265

high-density schizophrenia families using a custom Illumina iSelect

array. This gene list included 115 genes selected by neurodevel-

opmental hypothesis and 125 genes selected by gene ranking

algorithm – 73 were common between these two selection

categories (see Materials and Methods). The minimum p-value

among these 3725 tested SNPs was 0.000536 in gene PRKG1 (SNP

rs1904687). This gene was chosen as part of the neurodevelop-

mental hypothesis since it ranked only 954th of the 3819 genes.

Table 1 shows the genes with at least one SNP whose p-value was

,0.01 and their test category and rank. Results for all SNPs tested

are available in File S2. Although there were three SNPs with p-

values less than 0.001 in PRKG1, 247 SNPs were tested in this

large gene. Therefore, none of the SNPs were significant after

gene- or experiment-wide correction for multiple testing (Bonfer-

roni correction, which is a stringent correction). A False Discovery

Rate (FDR) analysis of all tests also supported this conclusion, with

a minimum FDR based q-value of 0.719.

A number of genes, including PRKG1, CNTN4, and PRKCE,

contained clusters of nominally significant SNPs (p,0.01): 17

SNPs in PRKG1, 9 SNPs in CNTN4, and 5 SNPs in PRKCE (see

File S2). Of these three genes, two were from the neurodevelop-

mental set exclusively and one (PRKCE) was from the combined

hypothesis and highly rank categories. Gene rank was not

correlated with the minimum p-value observed in the tested

genes. There was an enrichment of significant p-values in the

neurodevelopment group; however, surprisingly, the ranked genes

Table 1. Summary of genes with at least one significant
(p,0.01) SNP.

Gene Category Rank # SNPs Min p-value

PRKG1 2 954 247 0.000536

PRKCE 1 35 229 0.001321

CNTN4 2 645 381 0.001474

EMX1 2 549 2 0.001949

INSR 1 109 51 0.001975

XPO1 3 88 2 0.001978

VAV3 3 98 76 0.002273

UTRN 3 99 56 0.002886

SH3GL2 2 538 74 0.003219

NPAS2 3 96 55 0.003419

IL19 3 149 8 0.003559

EGFR 3 8 67 0.004041

NRP1 2 291 56 0.004202

HLA-DRA 3 144 11 0.004317

MAL 2 361 4 0.004592

CNTN6 2 862 146 0.005419

VAV2 1 132 66 0.006312

PPP2R2B 3 151 47 0.007685

IKBKB 1 65 4 0.008221

MGMT 3 78 52 0.008672

NOTCH1 2 439 15 0.009058

GRIA1 3 101 67 0.009981

Category 1: genes are both highly ranked and involved in neurodevelopment.
Category 2: genes are exclusive to neurodevelopment. Category 3: genes are
exclusively highly ranked (see details in Materials and Methods).
doi:10.1371/journal.pone.0067776.t001
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performed worse than randomly selected genes. A summary of the

number of genes, SNPs, and p-values by category is provided in

Table 2.

Comparison with published schizophrenia GWAS results
We compared the current results to two published schizophre-

nia GWAS datasets, the Clinical Antipsychotic Trials of Interven-

tion Effectiveness (CATIE) GWAS dataset [30] and the GAIN

dataset from Molecular Genetics of Schizophrenia (MGS) [2] (see

Materials and Methods). Simulated gene selection was used to

determine how often the observed enrichment would occur if the

whole genome was assessed. Lists of genes were randomly selected

100,000 times using the same numbers of genes selected in the

three selection categories (73, 42, and 52 for categories 1, 2, and 3,

respectively). Unfiltered simulation showed that the number of

SNPs per gene in the current study was significantly higher than

for randomly selected genes from either the CATIE or GAIN

study. Therefore, the tests for significant enrichment of p-values

below 0.05 and 0.005 are biased in the unfiltered simulations. To

reduce the bias, random gene sets were ranked based on the total

number of SNPs. Different rank filtering thresholds were tested

until there was no significant difference in total number of SNPs

between the observed and simulated sets. The rank filter

thresholds necessary to achieve non-significance were quite

different for the CATIE and GAIN studies with the top 500 and

10,000 being used respectively. The filtered simulations showed

the ‘neurodevelopment only’ category to be significantly

(p = 0.012) and marginally (p = 0.058) enriched for p-values less

than 0.005 in the CATIE and MGS-GAIN samples, respectively.

Further details of the simulation results are in Table 3.

Meta-analysis
In our SNP list, there were 66 SNPs with p,0.01. These SNPs

belonged to 22 genes. We examined them in a meta-analysis using

three schizophrenia GWAS datasets (ISC, GAIN and nonGAIN).

Using the inverse-variance weighted meta-analysis method, we

identified 3 SNPs in 3 genes that showed nominal significance

(p,0.05) (Table 4). None of them had significant heterogeneity by

heterogeneity test. These SNPs are rs2176348 in PRKCE (p-

value = 0.044), rs552551 in MGMT (p-value = 0.044), and

rs2616591 in CNTN4 (p-value = 0.048). Another SNP, rs2043534

in NPAS2, had marginal significance (p-value = 0.062). However,

none of these SNPs passed Bonferroni multiple testing correction.

We further examined the association signals of these SNPs using

the data from the Psychiatric Genomics Consortium (PGC), the

largest and most comprehensive cohort dataset for schizophrenia

association studies so far [34]. Among the 66 SNPs, 24 were not

available in the public release of the PGC dataset (https://pgc.

unc.edu/Sharing.php); thus, they could not be imputed due to the

lack of access to PGC’s raw genotyping data. For the 42 SNPs that

had p-values in the PGC dataset, we found that three were

nominally significant (p,0.05), including one SNP (rs2616591) in

Table 4. Of note, for the four SNPs that were significant or

marginally significant in the meta-analysis of our SNPs (Table 4),

two were available in the PGC dataset including SNP rs2616591

that had a small p value (1.6861023).

Discussion

In this study, we attempted to develop gene ranking strategies

based on either evidence from multiple domains (meta-analysis of

gene expression, proteins closely interacting with well-studied

schizophrenia susceptibility genes, and a systematic literature

search) or the neurodevelopmental hypothesis and then applied

them to the genes under linkage peaks in the Irish Study of High-

Density Schizophrenia Families. For the top ranked genes, we

tested their associations with schizophrenia using a custom

Illumina iSelect array. The association signals were further

evaluated using three GWAS datasets (ISC, GAIN, and non-

GAIN). Although none of the SNPs were robustly associated,

clusters of significant SNPs were found in several large genes

including PRKG1, CNTN4, and PRKCE. These genes were tested

not due to rank but as part of the neurodevelopmental hypothesis.

This category showed enrichment for significant association

signals, and simulations showed this enrichment is unlikely to be

due to chance.

There is additional evidence that makes the top results of

interest in addition to the reason they were originally tested.

CNTN4 (contactin 4) is a neural cell adhesion molecule whose

gene has been reported to be associated with autism and

developmental delay in multiple studies [35,36,37]. Interestingly,

another member of the contactin family, CNTNAP2, has been

found to be associated with both schizophrenia and autism [38].

PRKG1 and PRKCE are known as protein kinase cGMP-

dependent, type I and protein kinase C epsilon, respectively.

Although they are both protein kinases, they are functionally

distinct and activated via different mechanisms. PRKG1 is

dependent on cyclic GMP for activation while PRKCE is

activated by calcium and the second messenger diacylglycerol.

PRKG1 has previously shown its association with schizophrenia

with the 21st most significant SNP in the CATIE GWAS [30].

PRKG1 also interacts with RGS2 and GABRR1, which have

Table 2. Summary of genes and number of SNPs per test category.

Category # genes # SNPs Highly ranked Neuro-development
Mean p-
value SNPs with p,0.05 SNPs with p,0.005

Obs. Exp. Obs. Exp.

1 73 1271 Yes Yes 0.521 42 63.6 4 6.4

2 42 1525 No Yes 0.480 103 76.3 17 7.6

3 52 929 Yes No 0.488 63 46.5 2 4.6

1+2 115 2796 - Yes 0.498 145 139.8 21 14.0

1+3 125 2200 Yes - 0.507 105 110.0 6 11.0

All 167 3725 208 186.3 23 18.6

Category 1: genes are both highly ranked and involved in neurodevelopment. Category 2: genes are exclusive to neurodevelopment. Category 3: genes are exclusively
highly ranked (see details in Materials and Methods).
doi:10.1371/journal.pone.0067776.t002
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shown modest association with schizophrenia symptoms [39] and

schizoaffective disorder [40], respectively. Finally, PRKG1 can

attenuate beta-catenin expression [41], which is a known

downstream target of antipsychotics [42]. PRKCE interacts with

several proteins encoded by genes of potential relevance to

psychiatric disorders, including the glutamate decarboxylases

(GAD1, GAD2), NMDA receptors (GRIN2D, GRIN1), and a

metabotropic glutamate receptor (GRM5). PRKCE is also

activated by the stimulation of nicotinic receptors [43]. Although

these genes were not highly ranked, prior evidence makes them all

plausible candidates for schizophrenia. Therefore, each could be

chosen using expanded sources of prior information and a refined

ranking procedure.

There are several limitations to the current work that could be

potentially improved in future application. First, the primary

filtering of genes in the genome was done using linkage results

from the ISHDSF. Due to the large number of risk variants in

schizophrenia, there are likely to be many true associations outside

of these regions. The second limitation is the small number of

genes and minimum step approach used for the PPI network sets.

We used three well-studied genes (DTNBP1, NRG1, and AKT1) in

this work. More informative genes including microRNA genes

(e.g., miR-137 [34,44] and TCF4 [3,34]) were recently reported to

be associated with schizophrenia and could improve this

approach. Larger networks or results from more comprehensive

network analyses are probably superior; nevertheless, this work

proves the concept using more closely related genes in the PPI

Table 3. Comparison of ISHDSF rank and hypothesis based gene selection results to random gene selection in schizophrenia
CATIE and GAIN GWAS datasets.

Categorya Simulation Empirical p-value

Methodb Observed in ISHDSF CATIE GWAS GAIN GWAS

100,000c Top 500d 100,000c Top 10,000d Top 500d

All SNP count 3741 0.00097 0.194 0.066 0.659 0.998

min p-value 0.000582 0.618 0.896 0.787 0.879 0.964

# SNPs with p,0.05 208 0.0019 0.208 0.158 0.767 1

# SNPs with p,0.005 23 0.0258 0.234 0.241 0.614 0.924

1 SNP count 1271 0.079 0.655 0.389 0.806 0.892

min p 0.001975 0.729 0.872 0.859 0.920 0.956

# SNPs with p,0.05 42 0.586 0.914 0.887 0.976 0.986

# SNPs with p,0.005 4 0.556 0.836 0.780 0.895 0.934

2 SNP count 1525 0.0022 0.104 0.017 0.121 0.267

min p 0.000582 0.214 0.349 0.319 0.398 0.445

# SNPs with p,0.05 103 0.00042 0.032 0.017 0.102 0.232

# SNPs with p,0.005 17 0.00294 0.012 0.018 0.058 0.142

3 SNP count 929 0.088 0.591 0.358 0.707 0.822

min p 0.003559 0.797 0.926 0.883 0.932 0.972

# SNPs with p,0.05 63 0.049 0.427 0.264 0.558 0.719

# SNPs with p,0.005 2 0.701 0.896 0.837 0.914 0.954

aCategory 1: genes are both highly ranked and involved in neurodevelopment. Category 2: genes are exclusive to neurodevelopment. Category 3: genes are exclusively
highly ranked (see details in text).
bWe performed simulations by four methods: 1) based on the count of SNPs, 2) based on the minimum p-value, 3) based on the number of SNPs with p,0.05, and 4)
based on the number of SNPs with p,0.005.
c100,000 simulations (see text).
dTo reduce bias, simulations were filtered with top 500 or 10,000 SNPs being used (see Materials and Methods).
doi:10.1371/journal.pone.0067776.t003

Table 4. Four SNPs from the meta-analysis of 66 SNPs using GAIN, nonGAIN, and ISC GWAS datasets.

Gene SNP ID Chr. Position (bp) Allele Meta-analysis

p-value Beta s.e. pheterogeneity I2 pGAIN pnonGAIN pISC IHDS min p

PRKCE rs2176348 2 45798033 A/G 0.044 20.064 0.032 0.838 0 0.470 0.599 0.057 0.004

MGMT rs552551 10 131271915 C/T 0.044 0.073 0.036 0.29 19.15 0.996 0.797 0.011 0.009

CNTN4 rs2616591 3 2614861 C/T 0.048 0.088 0.044 0.481 0 0.347 0.061 NA 0.004

NPAS2 rs2043534 2 100847317 C/T 0.062 0.064 0.035 0.635 0 0.258 0.808 0.081 0.003

Chr.: chromosome. GAIN, nonGAIN and ISC are three GWAS datasets for meta-analysis. ISHDSF min p was the smallest p-value in the gene from the IHDS dataset (this
study). NA: this SNP was not analyzed in ISC due to missing genotyping data in samples.
doi:10.1371/journal.pone.0067776.t004
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network. Third, while our keyword-based literature search seemed

to be useful, it might include underpowered studies, negative

findings, or studies with methodological flaws or reported false

positive results. This is a common problem in literature mining,

which could be improved by careful manual check or advanced

literature mining technologies like natural language processing

(NLP). In our study, gene ranking was performed by the combined

evidence from three domains (gene expression meta-analysis, PPI

subnetwork, and literature mining). This strategy might help

reduce the noisy data from literature mining. Finally, besides the

well-supported neurodevelopmental hypothesis, we may test other

hypotheses or the candidate genes for samples with refined

characterization of phenotypic spectrum. For example, Green-

wood et al. [45] recently tested a set of schizophrenia candidate

genes in schizophrenia-related endophenotypes, suggesting both

converging and independent genetic pathways mediating schizo-

phrenia risk and pathogenesis.

There are several ways to improve or expand the gene selection

and prioritization approaches. First, we may develop a more

comprehensive data integration approach. This includes the

integration of data from multiple domains such as gene expression,

copy number variation (CNV), methylation, microRNA, associa-

tion results, etc. This has been demonstrated in our weight matrix

approach for evidence scores [46], as well as other approaches like

convergent analysis [47,48,49] and microRNA regulatory network

analysis [50]. Of note, TCF4 gene, along with three other genes

reported in the PGC meta-analysis (CACNA1C, CSMD1 and

C10orf26), has predicted miR-137 target sites [34]. This makes the

microRNA-mediated regulatory analysis promising in schizophre-

nia. In terms of the algorithm, we may apply Bayesian approach,

or a comprehensive network and pathway approach, to those

multi-domain datasets, since the underlying biological information

and regulation is expected to be much related in a complex

disease. For example, we recently demonstrated our network

approach in schizophrenia [51]. Such approach can be expanded

in future by including transcriptional (transcription factors,

methylation) and post-transcriptional (microRNA) regulation.

Second, with the rapid advances in high throughput technologies,

such as Exome chip or next-generation sequencing, we may

prioritize the candidate genes that show association signals

detected by both common and rare variants and that are involved

in disease-related altered genomic regions such as CNVs or

structural variants (SVs). This approach benefits from cross-

platform and cross-study validation.

In summary, we did not find compelling association evidence

for any individual gene selected either by evidence-based gene-

ranking or by the rank based on its relevance to the neurodevel-

opmental hypothesis. However, the neurodevelopmental set of

genes showed enrichment for significant associations when

examined en masse. Finally, several tested genes have additional

independent evidence not used in the ranking that make them

attractive candidates for further investigation.
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