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Abstract: COVID-19 was responsible for devastating social, economic, and political effects all over
the world. Although the health authorities imposed restrictions provided relief and assisted with
trying to return society to normal life, it is imperative to monitor people’s behavior and risk factors
to keep virus transmission levels as low as possible. This article focuses on the application of deep
learning algorithms to detect the presence of masks on people in public spaces (using RGB cameras),
as well as the detection of the caruncle in the human eye area to make an accurate measurement of
body temperature (using thermal cameras). For this task, synthetic data generation techniques were
used to create hybrid datasets from public ones to train state-of-the-art algorithms, such as YOLOv5
object detector and a keypoint detector based on Resnet-50. For RGB mask detection, YOLOv5
achieved an average precision of 82.4%. For thermal masks, glasses, and caruncle detection, YOLOv5
and keypoint detector achieved an average precision of 96.65% and 78.7%, respectively. Moreover,
RGB and thermal datasets were made publicly available.

Keywords: COVID-19; deep learning; supervised learning; object detection; keypoint detection

1. Introduction

In December 2019, an outbreak of pneumonia with unknown origins was reported in
Wuhan, China. After conducting several tests around the associated virus, it was concluded
to be a new variant of the existing coronavirus, associated with SARS-CoV. On 12 March
2020, the WHO declared a state of global emergency, considering it a pandemic, after nearly
125,000 cases were reported to be spread across more than 118 countries at that point. Since
then, strict measures were implemented worldwide to contain the spread of the virus and
reduce the chains of contagion, due to the virus’ high level of transmissibility and inherently
devastating effects, especially in people with chronic diseases, with weakened immune
systems, and with those of older age. These measures severely affected all sectors, from
the closure of the overwhelming majority of public establishments to bans on movement
on public roads. The main symptoms of this disease are fever, cough, headaches, fatigue,
and loss of taste, and its transmission through droplets released by the nose and mouth
required rules of physical distancing and the mandatory use of masks in all activities that
imply direct or indirect contact [1].

In this way, the need to develop advanced systems capable of monitoring people’s
behavior in an optimized way, especially in places that generate large concentrations of
people in small areas, thus reducing as much as possible the spread of the virus within
the community.

With the easing of restrictions, the levels of mobility and concentration of people,
especially in public spaces and shopping areas, began to gradually increase again. However,
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the persistent presence of the virus means that behavior must still be moderate and adopt
every precaution so that the number of infections and new infections remains at increasingly
lower values to return normality in a manner as accelerated as possible. The fact that many
people are asymptomatic to the disease also contributes to careless attitudes and negligent
behavior, mainly associated with not wearing a mask. These behaviors and risk factors
are imperative to monitor. Since this type of management is quite complicated to conduct
in terms of human resources (e.g., at the entrances to shopping areas, where there are
multiple entrance points and a large influx of people simultaneously), it is necessary to
adopt methodologies that allow this monitoring to be performed in a more simple and
optimized manner.

This article involves the presentation of the study and implementation of algorithms
that allow, in real-time, the identification of risk factors and behaviors, such as the detection
of the presence or absence of masks in people, as well as the precise measurement of their
body temperature, to identify risk factors regarding possible cases of virus presence. This
paper can be divided into two distinct modules: (A) detection of the presence or absence
of masks on people in places where its use is mandatory, and secondly, (B) a punctual
temperature measurement to detect situations where people are in a feverish state, one
that represents a key symptom of the SARS-CoV-2 virus. Moreover, such algorithmic
development is suitable to be implemented in an integrated system that allows to deploy a
product in the market for monitoring purposes.

The main contributions of the paper are as follows:

1. A methodology for the generation of hybrid datasets with added masks on top of real
samples from public datasets (Section 3.1.1);

2. An RGB dataset with added synthetic masks, on top of public datasets. MoLa RGB
CovSurv [2] was made publicly available.

3. An IR dataset with information on the presence of the caruncle, masks, and glasses.
MoLa IR CovSurv [3] was made publicly available.

4. State-of-the-art object detectors and keypoint face detectors were trained and evalu-
ated, using a hyperparameter genetic search algorithm, i.e., Evolve. Considering the
highest precision and lowest computational requirements, two models were selected.
YOLOv5 small was the best choice for the RGB and IR mask and glasses detection.
Moreover, a keypoint detector with a Resnet-50 backbone was selected for the caruncle
detection in IR images.

Using these algorithms, we can implement them in an embedded system, and using
the RGB cameras, we can install this as a monitoring system to assist with controlling
the entrance of crowded establishments. Furthermore, it replaces the in-person task of
measuring body temperature. The architecture description of the proposed solution can be
consulted in Figure 1.

Figure 1. Architecture description of purposed solution.

The paper is organized as follows. Initially, the state-of-the-art is presented regard-
ing deep-learning-based algorithmic solutions for the use-case at hand (i.e., RGB mask
detection and IR keypoint detection).
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In the implementation section, for the RGB mask detection, a public dataset collection
was made. Moreover, due to the lack of contextualized samples, a synthetic data generation
toolchain was developed to generate the MoLa RGB CovSurv dataset [2].

For the IR algorithmic development, the same procedure was used, and publicly
available datasets were used to create a pool of samples with extra label information (i.e.,
caruncle, mask, and glasses position). Moreover, a new MoLa IR CovSurv dataset [3]
was formed.

Several evaluations were performed for RGB and IR detection use-cases using the
generated datasets, where YOLOv5 was used as the main object detector, and a keypoint
detector, based on the Resnet-50 backbone, was used for the caruncle detection.

Finally, results are presented and discussed, making it possible to select the best
algorithms with the highest precision and lowest computational requirements.

Figure 2 summarizes the entire development pipeline of this article.

Figure 2. Two development pipelines are presented: (1) mask detection in urban surveillance;
(2) temperature measurement. For each pipeline, 3 identical steps are made: (1) a toolchain for data
generation is implemented (S3.1.1 and S3.2.1); (2) models are selected (S3.1.2 and S3.2.2); (3) datasets
are generated (S4.1.1 and S4.2.1) to evaluate each model (S4.1, S4.2.2, and S4.2.3).

2. Related Work

Human mask detection in a surveillance scenario requires an approach similar to
the ones used in object detection methodologies. There are several studies focused on
object detection, which can be applied to various topics, and which can be an approach to
consider in the task of mask detection. The authors [4–6] developed the R-CNN family of
algorithms to detect different regions of interest in the image while using a CNN to classify
the presence of the object in that region. More recently, the YOLO [7] object detection family
presented as YOLOv2 [8], YOLOv3 [9], YOLOv4 [10], and YOLOv5 [11], provide a more
accurate and faster method compared to the R-CNN family. Most recently, several object
detection algorithms were used for the sole purpose of mask detection in a COVID-19
context. Jiang et al. [12] proposed a one-stage detector, achieving state-of-the-art results
on a public face mask dataset. In the same context, Loey et al. [13] used YOLOv2 with
a Resnet-50 backbone with two publicly available medical masks dataset, reaching an
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average precision of 81%. Alternatively, the authors [14] used a single-shot detector with a
MobileNetv2 backbone for the sole purpose of detecting masks in a surveillance scenario.
Moreover, public datasets with real and synthetic samples were used for the algorithmic
development, allowing to achieve 92.64% accuracy, with 64ms of inference time.

For the detection of facial points, an important requirement for the detection of the
caruncle location in human faces, state-of-the-art algorithms were developed. The first
efficient algorithm for face detection in images was presented in 2001 by [15]. Later, in 2015,
the authors [16] presented a cascaded CNN model, i.e., using 3 distinct CNNs (12-net, 24-
net, and 48-net), in which a gradual analysis of the image is performed, and initially, several
small boxes are generated, which refer to certain facial elements; throughout the process,
dimensional adjustments and calibrations are made until the face is identified as a whole.
Sun et al. [17] presented an algorithm consisting of three levels of CNNs in cascade form
for the detection of the five main facial points: Left-Eye Center (LE), Right-Eye Center (RE),
Nose Tip (N), Left-Mouth Corner (LM) and Right-Mouth Corner (RM). It is a supervised
approach, and when the bounding box of a face is provided, the location of the respective
points is predicted. Haavisto et al. [18] presents a DBN-based algorithm to identify 15 facial
points based on grayscale images. Longpre et al. [19] presented an approach to predict
facial features in grayscale images. This algorithm consists of a mixture of convolutional
layers based on the architectures of CNNs LeNet and VGG. Upon reception of an image,
the goal is to return the coordinates (x,y) of 30 facial points. Agarwal et al. [20] presented
NaimishNet, an adaptation of LeNet architecture architecture for identifying facial features.

Several studies were already developed to monitor risk behavior in an attempt to
mitigate the spread of COVID-19.

The author [21] proposed a monitoring and warning approach to respect social dis-
tancing (SD), relying on vision systems, and it was effective at preventing the spread of
COVID-19 infectious disease. In this study, a real-time, vision-based system that can detect
SD violations and send nonintrusive audio-visual cues using recent DL models is presented.
A critical value of social density was defined, and they showed that the probability of
occurrence of SD violation can be kept close to zero if the pedestrian density is kept below
this value. The proposed system is also ethically fair: it does not record data or target
individuals, and no human supervisor is present during operation. The proposed system
was evaluated on real-world datasets.

The author [22] proposed a detection and diagnosis system using IoT-based smart
glasses that can automatically and quickly detect COVID-19 from thermal images. The
proposed design can perform face detection in case of suspected COVID-19 among crowds
that have high body temperatures. The design will add information on the visited location
of the suspected virus carriers through Google Location History (GLH) to provide reliable
data on the detection process.

The authors [23,24] evaluated the probability of the COVID-19 disease through sound
analysis. Ref. [23] proposed the study of voice (speech) signal processing in the process of
screening and early diagnosis of the COVID-19 virus, using Recurrent Neural Network
(RNN), and more specifically, its well-known architecture, Long Short-Term Memory
(LSTM), to analyze the acoustic characteristics of cough, breath, and voice of patients. The
presented study shows a low accuracy in the voice test compared to that of the cough and
breath sound samples. However, they highlight the possibility of increasing the accuracy of
voice testing by expanding the dataset and targeting a larger group of healthy and infected
people. Ref. [24] proposes a study that analyses cough sound. They present a reliable tool
that can differentiate between different respiratory diseases, which is very relevant in the
COVID-19 context.

The authors [25,26] present DL approaches for detecting or not face masks on individ-
uals. Ref. [25] proposes a system that restricts the growth of COVID-19 by tracking people
not wearing a face mask in a smart city network where all public places are monitored by
Closed Circuit Television (CCTV) cameras. While a person without a mask is detected, the
corresponding authority is informed through the city network. It uses a DL architecture
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trained on a dataset consisting of images of people with and without masks collected from
various sources. The trained architecture achieved 98.7% accuracy in distinguishing people
with and without face masks using previously unseen test data. Ref. [26] proposes the
implementation of a facial mask and social distancing detection model as an embedded
vision system. The pretrained models such as MobileNet, ResNet classifier, and VGG are
used in our context. People violating social distancing or not wearing masks were detected.
After the implementation and deployment of the models, the selected one achieved a 100%
confidence index.

3. Implementation
3.1. Urban Mask Detection
3.1.1. Synthetic Dataset Generation

Since the amount of data used is also a very relevant factor for obtaining reliable and
robust models, the need to develop a tool capable of generating synthetic images as a way
to increase the available data arose. This tool was developed so that a wide variety of
masks can be applied to public datasets, taking into account the position and orientation
of faces, mask placement zone, and mask usage probability (as shown in Figure 3). For
the generation of this synthetic dataset, it was decided to put synthetic masks on images
of public datasets; thus, to perform this task, the first step is to find the faces of people in
the images, and for this we used the method present in the open source library Dlib [27].
This method corresponds to a pretrained model based on HOG and SVM, which identifies
faces in images, returning an object for each face detected. This object is of the type
“rectangles”, formed by two tuples representing, respectively, the coordinates of the upper-
left and the lower-right corner points, which allow the formation of a rectangle around the
detected face. Next, a function is applied that converts these two tuples into a bounding
box. After extracting the bounding boxes associated with the faces present in the image,
another pretrained method is used from the dlib library. Given the input image and the
corresponding Region of Interest (ROI) (i.e., face detected by the previous method), the
method tries to locate the face keypoints of interest within that region. In this tool, the
detector estimates 68 2D points (x,y) associated with the other facial regions.

Figure 3. (a) Output of Get_Frontal_Face_Detected method of Dlib library. (b) Face location
of each of shape_predictor_68_face_landmarks. (c) Output of pretrained model application
shape_predictor_68_face_landmarks.

After the identification process of faces and respective facial keypoints, if more than
3 faces are identified in the image, 80% of the faces are randomly selected to be processed
with the application of a synthetic mask, while the remaining 20% of the faces will remain
unmasked. This methodology allows for an increase in the robustness of the algorithms to
be trained, since, in this way, the final dataset will not be formed only by images with or
without masks. For each of the faces to be masked, the type of mask is randomly selected,
whether or not a texture will be applied and, if so, which texture will be used. The models
of masks and some of the textures used can be seen in Figure 4a,b.
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Figure 4. (a) Mask templates used when applying them synthetically to detected faces. (b) Set of
examples among many mask textures applied with this tool.

Since not all the faces of the other datasets are in a frontal position in relation to the
camera that captured them, affine transformations are performed on the other facial points
obtained in the second step to understand which portion of the face is visible. For this
reason, and as shown in Figure 4a, different perspectives are available for each mask model,
according to the facial visibility. The samples in which this tool was used belong to the
already existing datasets listed in the Table 1. The use of different datasets, in addition to
increasing the number of samples, allows to enhance the algorithms to be trained, since
there are samples with different quality levels, occlusion, luminosity, background, and
number of people.

Table 1. Datasets where proposed tool was applied.

Dataset Description

Celeba ([28]) More than 200,000 images of faces. Images of just one person.

Coco ([29])
More than 320,000 images and more than 91 different objects, widely used
for object detection tasks. We only used images where people are present
in the most varied environments and contexts.

Helen ([30]) It consists of 2330 images of one or several people.

IMM ([31]) Consisting of 240 single-face images of 40 different people.

Wider ([32]) Over 32,000 images with different levels of scale and occlusion.

Group Images ([33]) More than 5000 images of groups of people.

After performing some tests of the tool on the different samples present in the datasets
listed in Table 1, it was concluded that the method associated with the dlib library for
detecting facial points was not very effective when the faces were not at a relatively frontal
angle; the identification of the faces happened, but they were considered as if they were
at a frontal angle, which led to poor applications of the synthetic masks. An individual
analysis was made of all the samples used to discard those in which the tool did not work as
expected. For these incorrect samples, the respective annotations of the other datasets were
used, in the cases where they were provided, to obtain the exact facial points for the correct
application of the synthetic mask. In situations where the samples were not accompanied
by annotations, another pretrained model was used, called MobileFaceNet [34], capable of
predicting more accurately the same 68 points associated with each face, even if they are
not visible in the image. Some final results obtained from the use of the tool can be verified
in the Figure 5.

For this dataset, two classes were considered, “With Mask” and “Without Mask”,
to which IDs were assigned “0” and “1”, respectively. As the object to be identified
is always the face of a person, regardless of the presence or absence of mask, the la-
bels associated to each image were based on the information provided by the method
get_frontal_face_detector applied in the first stage of the tool for applying synthetic masks,
which is responsible for identifying the faces present in a sample from the return of the
coordinates delimiting each of the objects found. Thus, it was only necessary to normalize
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this data according to the dimensions of each image. Finally, the MoLa RGB CovSurv
dataset was generated, and made publicly available [2].

Figure 5. Examples of samples subjected to application of synthetic masks from MobileFaceNet
tool. (a) Dataset Celeba. (b) Dataset Coco. (c) Dataset Helen. (d) Dataset IMM. (e) Dataset Wider.
(f) Dataset Group Images.

The number of labels associated with class “0” (face with mask) is approximately
55,000 and class “1” (face without mask) is 20,000. These labels are used for training
the selected algorithms. This imbalance is due to the fact that with the tool presented in
Section 3.1.2, masking was applied to 80% of the identified faces in each sample with more
than three identified in each sample, since, in real situations, the tendency is the presence
of a large majority of masks.

3.1.2. Model

To perform the mask detection task the YOLOv5 family will be used, specifically the
small, medium, large, and extra-large models, which differ in the depth of their layers, real-
time performance, and detection accuracy. Input image resolution was fixed at a 512 × 512,
with two classes output. Anchor boxes will be calculated automatically for the training dataset.

3.2. IR Temperature Detection
3.2.1. Dataset Generation

Another risk factor that may reflect the presence of the SARS-CoV2 virus is high
body temperature, which usually indicates a feverish state. Similarly to the previous
chapter, the need arises to collect samples that will be the base for training algorithms
capable of identifying, in a thermographic context, the presence of masks, goggles, and
facial areas where temperature measurement is carried out in a more reliable way. In
this case, it corresponds to the tear area present in each eye of the human being (more
specifically, the caruncle area [35]). These samples were obtained from public datasets, and
also from samples generated in laboratory. The latter were based on the availability of
30 volunteers to perform a series of recordings in different scenarios. These recordings,
using a thermographic camera (FLIR ADK [36]), consisted of the continuous movement
of approaching the camera up to a 30 cm distance, followed by the approximation of the
face, as a way of making the areas associated with the caruncle visible, for later analysis
and creation of labels for algorithm training. In Table 2 are described the existing datasets
formed by the thermographic images used in the training of the selected algorithms, and
that represent a large portion of the final dataset generated. In Figure 6, it is possible to see
some samples of these same datasets.
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Table 2. Thermographic datasets collected for training of mask, goggles, and caruncle zone detection
algorithms.

Dataset Description

IIITD In and Beyond Visible Spectrum Disguise
Database ([37])

Thermographic images of 75 different people, with and without
glasses, with and without mask.

UL-FMTV Database ([38]) Consisting of 18,210 thermographic images of samples of people with
and without glasses.

Terravic Facial Infrared Database ([39]) It consists of 22,784 thermographic images of 18 different people.

IRIS Database ([40]) Consisting of thermographic images of 31 different people, with
different lighting, expressions, and pose conditions.

Figure 6. Sample examples of other thermographic datasets used for facial point detection task.
(a) IIITD In and Beyond Visible Spectrum Disguise Database. (b) UL-FMTV Database. (c) Terravic
Facial Infrared Database. (d) IRIS Database. (e) Sample collected in laboratory.

For the mask and glasses detection component, the labels go through only the location
of the face in the image, whose classes to be identified by the selected object detection
algorithms are presented in Table 3. For the detection of the facial keypoints of interest, the
labels also included the identification of the face in each sample, with the addition of the
location of the two points associated with the caruncle of both eyes.

Table 3. Classes to be identified and their IDs, in the masks and goggles detection task, in the
thermography component.

Classe ID

Face_Mask_Eyes 0

Face_Mask_NoEyes 1

Face_NoMask_Eyes 2

Face_NoMask_NoEyes 3

The necessary labels were generated in a semiautomatic labeling process. In the first
stage, all the samples that make up the thermographic dataset were subjected to passing
through the pretrained models that constitute the first two steps used for the develop-
ment of the tool responsible for applying synthetic masks, get_frontal_face_detector and
shape_predictor_68_face_landmarks, whose functions include the identification of faces
and the location of the 68 points associated with the facial regions. As we are dealing with
thermographic images and some of them have masks and/or glasses present, these models
presented certain difficulties in identifying the desired information in most of the samples
constituting the dataset. Thus, for the samples with satisfactory results, the information
returned by the models was converted to the formats used by the different algorithms to
associate the labels to the respective images. In situations where the results did not meet
expectations, manual labeling was performed using the online tool V7Darwin [41] and



Sensors 2021, 22, 298 9 of 18

the labels to be identified in each image were generated one by one. Figure 7 shows two
examples where it is possible to consult the labels obtained automatically and manually.
With attention to Figure 7a, although the facial points associated with the mandible and
mouth region were poorly identified since a mask is present, the bounding box of the face
present as well as the points of interest (left- and right-caruncles) were well identified.
In this case, this information was taken into consideration for label formation. Finally,
the MoLa IR CovSurv dataset was generated and made publicly available [3]. Figure 8
shows the number of samples that make up the generated dataset, associated with each of
the classes to be identified. The great unbalance between class 1, associated with people
wearing a mask and wearing glasses, in relation to the other classes, is due to the fact
that both in the existing datasets collected, as well as in the people who volunteered to
make laboratory recordings, the presence of glasses was quite scarce. Classes 0 and 1 come
essentially from the recordings made, where the presence of mask predominates, while
classes 2 and 3 belong mostly to the datasets presented in Table 2.

Figure 7. Examples of samples where semiautomatic label technique was applied. (a) Automatic
Labeling. Red rectangle refers to bounding box of identified face, and green dots to respective facial
marks. (b) Manual labeling. Orange rectangle is associated to identified face, while orange and violet
dots refer, respectively, to points that identify right- and left-caruncles.

Figure 8. Number of labels associated to different classes existing in mask and glasses detection task.
Different classes can be consulted in Table 3.

3.2.2. Model

For the detection of masks and glasses in thermographic samples, object detection
models are highly contextualized. As such, YOLOv5 was selected for the evaluations, with
an input image resolution fixed at 512 × 512, and four classes output. For the caruncle
detection a keypoint detector, Ref. [42] was selected, with different backbones available
(i.e., Resnet-# and HrNetv2_w#), input image resolution was also fixed at 512 × 512, with
two heatmaps output.
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4. Experiments and Results

The objective of this section is to evaluate the algorithms used for the detection tasks
we have set ourselves. The algorithms trained for these tasks are the variants of the
YOLOv5 architecture (Section 3.1.2) and the keypoint detection algorithms (Section 3.2.2),
whose backbones correspond to architectures of the CNNs Resnet and HRNetv2 families.
All these tests were performed on a server with an Intel(R) Xeon(R) Gold 6140 CPU 2.30Ghz
processor, 128GB RAM, and NVIDIA Tesla V100-PCIE-16GB computing GPU.

4.1. RGB Detection
4.1.1. Dataset

For the RGB detection evaluations, MoLa RGB CovSurv dataset was used. Table 4
shows the description of each subset of the dataset used for mask detection.

Table 4. Description of each subset of dataset used to detect presence or absence of masks.

Subset of Dataset Description

Training Images generated from the datasets presented in the Table 1. Consisting of a
total of 40,972 samples.

Validation It consists of 758 real samples of people with and without mask. The dataset
used is presented in [43].

Test It consists of 3441 real samples of people with and without mask. The dataset
used is presented in [44].

The approach presented in Table 4 is unbalanced in quantitative terms and is justified
by the fact that the training images are generated in a synthetic way, so the best way to
obtain more reliable metrics is to validate and test the model with totally realistic images.

4.1.2. RGB Mask Detection

To reach the best precision model, the four YOLOv5 models were evaluated in an
iterative way: firstly, an Evolve technique was used to find the best hiperperameters, and
secondly, the obtained values in the final training were utilized (i.e., E#->E#.1). Table 5
shows the evaluations performed. The values of the finetune hyperparameters used in
tests E1, E2, E3, and E4 are predefined by the authors [11], obtained after performing a
medium model training of 50 epochs on the COCO dataset. To compare with our YOLOv5
family approach, we tested the face mask detection method, presented in [45], with our
test dataset [44], to compare the obtained metrics of both models. This method uses an
SSD framework, and it was trained on the dataset presented in [32]. To increase the speed
of the network, the authors used a lite backbone with only 8 convolutional layers. Like
our YOLOv5 models, the goal of this method is to detect faces and determine if they are
wearing masks.

Table 5. Tests performed using four object detection algorithms selected for mask detection task.

Trial Dataset Modelo Epochs Evolve Evolve-Epochs Hyperparameters

E1 30% Train, 30% Valid YOLOv5s 3 Yes 100 FineTuneParams

E1.1 100% Train, 100% Valid YOLOv5s 25 No 0 E1_EvolveParams

E2 30% Train, 30% Valid YOLOv5m 3 Yes 100 FineTuneParams

E2.1 100% Train, 100% Valid YOLOv5m 25 No 0 E2_EvolveParams

E3 30% Train, 30% Valid YOLOv5l 3 Yes 100 FineTuneParams

E3.1 100% Train, 100% Valid YOLOv5l 25 Não 0 E3_EvolveParams

E4 30% Train, 30% Valid YOLOv5x 3 Yes 100 FineTuneParams

E4.1 100% Train, 100% Valid YOLOv5x 25 No 0 E4_EvolveParams
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Table 6 presents the metrics obtained from performing the trials presented in Table 5,
based on the hyperparameters obtained by the “Evolve” method (see Table 7). The average
accuracies of each class can be calculated based on the analysis of the precision-recall curve,
presented in Figure 9 for each of the models (YOLOv5 and FaceMaskDetection-SSD).

Table 6. Metrics obtained from trials in Table 5. Bold lines represent results for the selected model.

YOLOv5

Hyperparameter Small (E1.1) Medium (E2.1) Large (E3.1) Extra-Large (E4.1)

Precision 71.01% 73.34% 82.77% 66.18%

mAP_0.5 82.38% 81.92% 83.25% 81.43%

mAP_0.5:0.95 46.52% 46.17% 45.96% 45.05%

Recall 81.98% 81.19% 77.68% 81.67%

Table 7. Values assigned to main hyperparameters after performing Evolve technique on YOLOv5
models for trials in Table 5.

YOLOv5

Hyperparameter Small (E5) Medium (E6) Large (E7) Extra-Large (E8)

lr0 0.0107 0.0049 0.00438 0.00417

lrf 0.24 0.17 0.0657 0.139

Momentum 0.98 0.98 0.98 0.924

Weight_Decay 0.00044 0.00031 0.00047 0.0004

Box 0.0291 0.0209 0.0224 0.0779

Cls 0.222 0.243 0.2 0.403

Figure 9. Presentation of Precision-Recall curves of models. In legend of each model, you can see
average accuracies obtained for each class.

4.2. IR Detection
4.2.1. Dataset

For the IR detection evaluations, MoLa IR CovSurv dataset was used. Table 8 presents
the training, validation, and test subsets that form the final dataset used for training the
mask and glasses object detection algorithms.
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Table 8. Description of each subset of dataset used for mask and goggle detection in a thermo-
graphic context.

Subset of Dataset Description

Train 12,254 samples

Validation 3501 samples

Test 1750 samples

For the keypoint detection algorithms associated with the human caruncle, the dataset
used in this task is constituted by a 70% fraction of the MoLa IR CovSurv dataset, used for
mask and glasses detection, presented in Table 8, from which only the samples that present
visible caruncles were selected, regardless of the presence or not of mask. Table 9 describes
the subsets of this same dataset.

Table 9. Description of each subset of dataset used for detection of the human caruncle area in
thermographic context.

Subset of Dataset Description

Train 8602 samples

Validation 2456 samples

Test 1229 samples

4.2.2. Mask and Glasses Detection

As in Section 4.1.2, for the detection of masks and glasses in IR images, the four
YOLOv5 models were evaluated in an iterative methodology. Table 10 describes the
different trials performed to obtain the models used in the mask and goggles detection
component. For tests E5, E6, E7, and E8, the hyperparameters presented by the authors [11]
were used.

Table 10. Tests performed for four object detection algorithms selected for masks and glasses
detection task using thermographic dataset.

Trial Dataset Model Epochs Evolve Evolve-Epochs Hyperparameters

E5 100% Train, 100% Valid YOLOv5s 3 Yes 100 FineTuneParams

E5.1 100% Train, 100% Valid YOLOv5s 20 No 0 E5_EvolveParams

E6 100% Train, 100% Valid YOLOv5m 3 Yes 100 FineTuneParams

E6.1 100% Train, 100% Valid YOLOv5m 20 No 0 E6_EvolveParams

E7 100% Train, 100% Valid YOLOv5l 3 Yes 100 FineTuneParams

E7.1 100% Train, 100% Valid YOLOv5l 20 No 0 E7_EvolveParams

E8 100% Train, 100% Valid YOLOv5x 3 Yes 100 FineTuneParams

E8.1 100% Train, 100% Valid YOLOv5x 20 No 0 E8_EvolveParams

Table 11 presents the metrics obtained from performing the tests presented in Table 10,
based on the hyperparameters obtained by the “Evolve” method (see Table 12). The average
accuracies of each class can be calculated based on the analysis of the precision-recall curve,
presented in Figure 10 for each of the models (YOLOv5).
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Table 11. Metrics obtained from trials in Table 10. Bold lines represent results for selected model.

YOLOv5

Metrics Small (E5.1) Medium (E6.1) Large (E7.1) Extra-Large (E8.1)

Precision 81.86% 83.15% 85.23% 91.19%

mAP_0.5 96.65% 96.43% 96.53% 98.34%

mAP_0.5:0.95 71.33% 72.85% 72.60% 75.99%

Recall 96.39% 95.76% 96.78% 97.97%

Table 12. Values assigned to main hyperparameters after performing Evolve technique of the
YOLOv5 models, for the trials in Table 10.

YOLOv5

Hyperparameter Small (E5) Medium (E6) Large (E7) Extra-Large (E8)

lr0 0.0033 0.00334 0.00376 0.00424

lrf 0.114 0.1 0.121 0.141

Momentum 0.972 0.98 0.968 0.959

Weight_Decay 0.00037 0.00031 0.00028 0.00026

Box 0.0385 0.237 0.0269 0.0273

Cls 0.299 0.265 0.214 0.2

Figure 10. Presentation of Precision-Recall curves of models. In the legend of each model, you can
see average accuracies obtained for each class.

4.2.3. Caruncle Detection

Table 13 shows the different tests performed for the task of detecting the area of the
caruncle area of each eye. For the same model, 6 backbones were evaluated to select the
highest performing and lowest computational requirements model.
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Table 13. Trials performed for different algorithms selected for human caruncle detection task.

Trial Backbone Epochs Learning Rate

E9 Resnet-50 5 0.002

E10 Resnet-101 5 0.002

E11 Resnet-152 5 0.002

E12 HrNetv2_w18 5 0.002

E13 HrNetv2_w32 5 0.002

E14 HrNetv2_w48 5 0.002

Table 14 shows the results of the tests of Table 13. Normalized Mean Error (NME)
is associated to the average error of the distance between the estimated points and the
ground-truth points previously labeled, relative to the training samples. The “Inference
Time” column refers to the time that each algorithm needs to analyze an image from the
test dataset, presented in seconds. The column “Precision” refers to the accuracy of the
algorithm on the test dataset within a margin of 5 pixels; that is, if the distance between
the facial points calculated by the algorithm and the previously labeled facial points
(groundtruth) is smaller than 5 pixels, a correct prediction is considered. Its calculation is
given by the ratio between predictions considered true positives and all predicted positives.

Table 14. Results obtained for each trial performed in human caruncle detection task. Bold lines
represent best selected results for each model.

Trial NME Inference Time (seconds) Precision Average Error (pixels)

E9 0.0945 0.024 78.68% 3.89

E10 0.1012 0.04 78.44% 3.86

E11 0.1029 0.057 77.46% 3.92

E12 0.0905 0.107 82.1% 3.35

E13 0.0975 0.103 79.78% 3.77

E14 0.0971 0.104 79.05% 3.66

5. Discussion

In Section 4.1, the object detection algorithms, YOLOv5 family and FaceMaskDetection-
SSD, are evaluated ore precisely to detect the presence or absence of masking. Although all
the algorithms of the YOLOv5 family presented good results, the method to be used for the
mask detection task is the Small model of the YOLOv5 architecture. This choice is justified
by the fact that the different metrics obtained do not change substantially, since more layers
were added along the remaining deeper models, and the task does not present a high
degree of complexity since it is intended to detect only two distinct classes (with or without
mask). Considering the inference times obtained are: 0.032 s for the Small model, 0.045 s
for the Medium model, 0.062 for the Large model, and 0.089 s for the Extra-Large model.
Thus, the best choice was to select the lightest model (Small), with 82.38% of mAP_0.5.
Figure 11b shows qualitative results obtained on different samples, based on the inference
of the selected model. The FaceMaskDetection-SSD method shows a 36.4% of mAP_0.5
when inferred on our test dataset. This may be because the model was trained on 7971
samples, which is a significantly lower number than our dataset. Hence, its inference
capability on our test dataset is much lower. Furthermore, the FaceMaskDetection-SSD
model has a lower complexity than our lighter model, YOLOv5s, with 1.01 M and 1.9 M
parameters, respectively. Section 4.2 presents models capable of detecting the facial points
of interest (using a thermographic camera) to be able to carry out effective temperature
measurements as a way to screen for the potential presence of the SARS-CoV2 virus.
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This task is composed of two distinct steps: in the first step, and given that temperature
measurements are not possible with the presence of glasses, object detection algorithms
capable of detecting not only the presence of this object, but also the presence of masks
were implemented (Section 4.2.2). In the second step, for the glasses and mask detection
component, the algorithms forming the YOLOv5 architecture were selected, while for the
face points detection component (Section 4.2.3), algorithms whose Backbones are made up
of CNNs that are part of the Resnet and HrNetv2 architectures were selected. The results
obtained by the different algorithms for both steps are quite satisfactory in the sense that
these results experience practically no improvement with the use of deeper algorithms,
since the number of classes and face points to be identified is quite low, in conjunction with
the use of a highly uniform dataset whose samples are quite similar. Since the goal was
to achieve high precision and low computational requirements, this led to the choice of
the Small model for the glasses and mask detection aspect (corresponding to E5.1, with a
precision of 81.86% and an inference time equal to the selected model for mask detection,
0.032 s), and the model with Backbone Resnet-50 (corresponding to E9, with a precision
of 78.68% and an inference time of 0.024 s). Figure 11a shows qualitative results from the
inference of the algorithms chosen for both tasks.

Figure 11. (a-I - a-VI) Examples of results obtained in images, from inference of selected algorithms
for mask and glasses detection components and detection of zone corresponding to human caruncle.
(b-I - b-VI) Examples of results obtained in images, from inference of selected YOLOv5 algorithm for
mask detection.

6. Conclusions

This article presents a system capable of detecting behaviors and risk factors of people
within the scope of the COVID-19 pandemic, and more specifically, the implementation of
algorithms for the detection of masks in public spaces, as well as the punctual execution of
temperature measurements for the detection of possible cases of fever. Initially, a search was
carried out associated with the existing state-of-the-art algorithms suitable for performing
the proposed tasks. The selected algorithms belong to the themes of object detection and
Keypoint Detection. The first task was mask detection in RGB images. As a basis for
training the selected algorithms in this component, it was necessary to create a dataset and
generate the respective labels. Regarding the dataset and given that the number of existing
samples in this area is still scarce, a tool capable of applying synthetic masks to RGB images
was developed, using pretrained models capable of locating the faces present and their
respective facial points. Based on this information, a mask is subsequently applied within
the existing types and textures to the facial points where it should be placed. The labels
associated with this dataset were automatically sourced from the pretrained models used.
Subsequently, using this dataset, multiple algorithms based on the YOLOv5 architecture
were evaluated. After the training and respective evaluation of the results obtained, all
models obtained good results, however, the Small model was the selected one (with a



Sensors 2021, 22, 298 16 of 18

precision of 71.01%). This choice is justified because the obtained metrics are very similar
despite the use of different and deeper models, mainly due to the fact that the required
degree of complexity is not high because it is only intended to detect two different classes.
Another reason is the balance between precision and real-time performance of the Small
model regarding the other tested models.

For the temperature measurement component, it was also necessary to create a dataset
consisting of thermographic images and generate the respective labels. In this case, algo-
rithms were implemented both for mask and goggles detection, and for the detection of
facial points associated with the human caruncle area, where the temperature measurement
is performed with greater accuracy. The labels were originated in a semiautomatic way, i.e.,
based on the pretrained models enunciated in the previous task, as well as from manual
labeling, image by image. For the mask and glasses detection task, the models coming
from YOLOv5 architecture, associated with the object detection theme, were also tested,
while for the face points detection task, algorithms were implemented, associated with the
keypoint detection theme, which differ from each other in the present Backbone and whose
constitutions correspond to variations of CNNs Resnet and HRNetv2. Respectively, the
YOLOv5 Small algorithm was chosen (with a precision of 81.86%) as well as the algorithm
whose Backbone is formed by the Resnet-50 architecture (with a precision of 78.68%). These
choices, like the mask detection component, were based on the commitment between the
obtained metrics and the real-time performance.
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