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ABSTRACT: Allosteric signaling in proteins has been known for
some half a century, yet how the signal traverses the protein
remains an active area of research. Recently, the importance of
electrostatics to achieve long-range signaling has become
increasingly appreciated. Our laboratory has been working on
developing network approaches to capture such interactions. In
this study, we turn our attention to the well-studied allosteric
model protein, PDZ. We study the allosteric dynamics on a per-
residue basis in key constructs involving the PDZ domain, its
allosteric effector, and its peptide ligand. We utilize molecular
dynamics trajectories to create the networks for the constructs to
explore the allosteric effect by plotting the heat kernel results onto
axes defined by principal components. We introduce a new metric
to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.

■ INTRODUCTION
One of the most important characteristics of protein function
implicated in interaction domain regulation is protein’s
capacity for allosteric dynamics. Allostery or “different shape”
is an important set of intermolecular interactions characterized
by the coupling of conformational changes in tertiary and
quaternary structures upon ligand binding between distinct
interaction sites wherein the binding interactions of a ligand at
a distal site increase or decrease the affinity of a protein’s active
site toward a target ligand. Since its original articulation by
Monod et al. over 50 years ago,1 experimental and computa-
tional studies have expanded the operational scope of allosteric
phenomenon beyond pure changes in the conformational
landscape of the protein toward protein’s free energy landscape
dynamics.2−4 Thus, allosteric effector binding and the presence
in protein interactions result in equilibrium shifts toward more
energetically favorable preexisting ensemble state populations
in the free energy landscape, which is observably different from
the dominant population of states present in that effector’s
absence.3,4 In such a model, population shift modulates the
dominant population of preexisting residue interaction path-
ways operative in strain energy propagation across conforma-
tion upon allosteric perturbation. These allosteric strain-energy
propagation pathways (referred to as allosteric networks) are
composed of residues dynamically coupled with one another.
The forms of interaction between these residues can involve
combinations of both enthalpic and entropic components of
residue’s interactions.3 This is observed as the transmission of
an allosteric signal across coupled residue interactions to target
sites that disrupt, enhance, and modulate substrate binding.5

The role of nonbonded energetic interactions and,
particularly, side-chain electrostatic interactions has been
demonstrated to be significant to protein function,6 folding
stability,7 catalysis,8 and allostery.9 Moreover, recent studies
have reported redistributions in electrostatic networks to
energetically couple residue’s ligand-binding interactions to
distal regions in enthalpy-driven allostery10 with such long-
range electrostatic redistributions being a potentially universal
process underlying allosteric signal propagation both with and
without significant conformational change.10 As such, inves-
tigating the energetic and electrostatic basis underlying
redistributions in long-range residue interaction pathways
may prove to be crucial in understanding the nature of
population shift both in enthalpically and entropically driven
forms of allostery.
Although the existence of allostery has been known for

about half a century, how the allosteric signal propagates across
the protein remains difficult to ascertain. While analyzing the
structure based on its natural xyz coordinates is a natural and
obvious choice, it is difficult to differentiate small meaningful
changes from thermal fluctuations. To complicate matters, the
structures must first be aligned. This implies that changes
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furthest from the center of mass will be of larger magnitude
because of the radial effect. This can be overcome by making
local alignments in the area of interest, but how that should be
chosen may largely affect the results obtained and often is not
straightforward to choose.
Problems in linear algebra regularly deal with trans-

formations of vectors in one basis set to another. This study
postulates the idea that taking such a mindset and applying it
to the protein structure may perhaps be a useful vantage from
which to consider complex long-range dynamical structural
properties such as allostery. Kernels embody one such
transformation procedure, and the heat kernel in particular
lends itself to this study with the flow of the allosteric signal
being similar to the flow of heat in coupled bodies as one
would encounter in physics problems. We thus chose to adapt
this approach to our studies. In essence, the procedure seeks to
iteratively guess a transformation operator that maximizes the
variance of the data when projected into some basis set. We
surmised that this may be useful to understand the complex
dynamics of proteins.
To perform the studies, a small well-studied PDZ model

system was chosen. One interaction domain family, the
postsynaptic density-95/discs large/zonula occludens 1
(PDZ) domain, is considered to be the most studied system
for understanding single-domain allostery.10−15 PDZ domains
are crucial for organizing a great diversity of signaling
pathways16,17 and implicated in clustering proteins into
functional complexes at the plasma membrane18 in addition
to sorting, assembling, and anchoring multidomain interaction
complexes.19 Various studies on several PDZ domains,
including normal mode analysis,20 statistical coupling anal-
ysis,12,21,22 NMR relaxation,23 and site-directed mutational
analysis,14,24,25 have demonstrated PDZ’s capacity for allosteric
behavior. Structurally, PDZ domains are approximately 80−
100 amino acid residues long. They typically adopt a
topologically similar compact globular structure that consists
of six β-strands (β1−β6), a short α-helix (α1), and a long α-
helix (α2) (Figure 1). Typically, PDZ domains recognize
specific amino acids in the C-terminal ends of peptide or
protein motifs through a highly conserved carboxylate binding
motif sequence n-terminal to the β2 strand with the ligand
binding occurring in PDZ’s hydrophobic core between β2 and
α2.
The CRIB-Par6 protein provides a particularly interesting

model system for investigating the interplay of structural
rearrangements and the role of energetic communication
pathways contributing to PDZ domain ligand affinity allostery.
Par6’s PDZ2 domain functions as a key colocalizing adaptor,
whose binding to Par3’s PDZ3 domain and atypical protein
kinases (aPKCs) forms the Par3-Par6-aPKC complex at apical
cell junction sites, which is responsible for maturation of cell-
membrane junction sites through allosteric signal transduction
pathways underlying Par6’s binding dynamics and interac-
tions.26,27 When the PDZ is bound by its Cdc42 allosteric
effector, the structurally ordered CRIB motif (β0) becomes
dynamically coupled with the residues in alpha helix 1 (α1)
mediated by a dipeptide switch. This β1−β2 loop switch
transmits an allosteric activation switch to the ligand binding
pocket.28 This results in a 10-fold increase in binding affinity of
PDZ for its peptide ligand.13

As of now, Par6’s allosteric control mechanism involving
interdomain communication in which a flexible extra-domain
sequence (CRIB) upon effector binding regulates an intra-

domain process (PDZ ligand binding) is the only PDZ-domain
family protein wherein the carboxylate binding pocket is
remodeled from a deviant conformation to a recovered high-
affinity conformation in order to regulate C-terminal ligand
binding.29 Par6 allosteric dynamics therefore represent a
strikingly important evolutionary departure from known PDZ
domain functionality and allosteric mechanism, a functional
consequence of which could be shifting of a conformational
equilibrium of Par6 from high association with an internal
ligand to regulator C-terminal ligands, altering the activity and
localization of the par complex as a whole.13,30 Despite being a
prototypical example of functional communication between
domains, the basis of CRIB-Par6’s transmission of GTPase
binding signal28 and its ligand-selective nature29 remains
unexplained.
Rather than protein structure networks (PSNs) and contact-

networks, which merely encode edge presence between nodes
by a specified geometric distance threshold, we construct
locally-thresholded electrostatic interaction networks,31,32

which embed residues (nodes) connected by weighted edges
representing the level of electrostatic interaction between
residues. Such a methodology enables investigations into
longer-range forms of residue connectivity beyond covalent-
bond distance thresholds alone.33 As the allosteric dynamics of
residue interactions are implicated in the redistribution of
electrostatic interaction energy between distinct interaction
states, we investigate how each residue’s electrostatic
interactions are redistributed between distinct CRIB-Par6
ensemble states. Through our analysis, we demonstrate that an
allosteric shift toward CRIB-Par6’s high-affinity conformation
is associated with structure-wide redistributions in residues’
electrostatic network interactions functionally implicated in
PDZ-ligand binding.
In this study, we investigate the allosteric dynamics of

residues’ electrostatic interactions and their energetic redis-
tributions between CRIB-Par6 effector and ligand-binding
interaction states through a network theoretic approach. Four
constructs representing all liganded CRIB-Par6 interaction

Figure 1. Molecular structure and key features of CRIB-Par6 and its
PDZ domain. PDZ is comprised of five β-sheets (blue) and two α-
helices (purple). PDZ-domain ligand-binding pocket region is
highlighted in purple, while the semiCRIB motif region is highlighted
in yellow. PDB ID 1NF3.
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states produced in previously published work34 were analyzed
in this study. These states include the unbound (P), Cdc42
effector-bound (AP), VKESLV ligand-bound (PL), and
effector and ligand-bound (APL) states (Supplementary Figure
1). Through such approaches, proteomic interactions are
formalized into graph-based models wherein dynamic fluctua-
tions are mapped into a graph data structure with nodes
representing amino-acids and edges representing weights of the
measured dynamic properties.35 Across a variety of studies,
applications of network-based methodologies toward inves-
tigating allosteric dynamics have been capable of quantifying
global functional changes in protein structure,36−38 key
functional centers, and significant communication path-
ways.39−42 Moreover, molecular dynamics studies investigating
allosteric communication pathways in terms of side chain
energetic correlations18,43 and noncovalent energetic inter-
action networks33 of other PDZ domain proteins indicate an
energetic basis to PDZ’s allosteric coupling of incoming
binding signals between upstream regions proximal to the C-
terminal ligand recognition motif to distal regions.10 This
further demonstrated a “hidden” electrostatic basis for the
internal redistributions and the rewiring of pairwise energetic
interactions across PDZ structure, providing the basis of PDZ
dynamic allostery governing population shift. As such, the role
of electrostatic long-range communication and stability in PDZ
signal propagation events appears increasingly evident. Thus,
understanding the nature of energetic rearrangements,
particularly redistributions in long-range networks of electro-
statically coupled residues across Par6 structure upon Cdc42-
CRIB interactions involved with PDZ ligand selectivity,
provides an important point of investigating Par6 allosterism.

■ METHODS
Generation of Interaction State Constructs and MD

Simulations. MD-simulations were run on four proteomic
states accounting as a representative selection of ensemble
structures corresponding to different states of CRIB-Par6’s
possible effector and ligand interactions. These four CRIB-
Par6 states include the unbound 123 residue PDZ protein (P),
Cdc42 allosteric effector-bound (AP), VKESLV peptide
ligand-bound (PL), and allosteric-effector and ligand-bound
(APL) states. Genetic assays of carboxy-terminal peptide
libraries demonstrate that the intrinsic affinity of Par6 for this
VKESLV peptide ligand is significantly enhanced by the
addition of Cdc42.13 As such, the Cdc42-dependent manner of
Par6 and VKESLV interactions models the allosteric depend-
ent manner for Par6-PDZ ligand interactions. The four
interaction state constructs were modeled based upon the
crystal structure of PDBID 1NF3 and the NMR structure
PDBID 1RZX. The details of construct modeling have been
previously published.34 Simulation data utilized in this study
were derived from a previous study conducted by Thayer et al.
on a Markov state modeling (MSM) analysis of all-atom MD
simulations performed on these four Par6 constructs.34 Each of
the four MD simulations was carried out for a total of 0.4 μs
using AMBER12.44 Details on design of constructs, force field
parameters, equilibration process, and simulation stability and
convergence analysis have been previously published34 and
have been described in detail in the Supplementary
Information.

Locally Thresholded Interaction Networks. The
pairwise interaction energy network32,45 is a method adopted
to create representations of protein systems at the energetic

level. The nodes of such networks represent the residues of the
protein with edges representing the electrostatic interaction
between each residue pair. The degree of each node in the
network is equal to N − 1 where N denotes the total number
of residues within the protein. The weight of each edge
between each residue pair is calculated as the sum of all
electrostatic potential interaction energies between the pairs of
atoms in each residue. To quantify the magnitude of pairwise
interactions, we take the absolute value of each of these
interaction weights. Depending on the strength of the
computed electrostatic interaction energy, different edges will
have varying edge weights, with higher edge weights
representing a higher degree of energetic interactions between
residues.
Due to the computationally intensive nature of computing

the pairwise interaction energy network for every frame of a
simulation, we analyze the pairwise energies for a selected
subset of frames from each trajectory. For each interaction
state construct’s 400 ns-long trajectory with 5050 frames, one
frame out of every 100 frames starting from the first frame is
extracted at a regular interval. The collected samples were then
concatenated into a new trajectory consisting of 51 frames,
serving as the trajectory’s representation.
We were concerned that no precedent exists as to what

sampling frequency would be appropriate for the study and to
what extent the results may depend on this choice. To address
this, we also repeated the analysis at double the frequency (0.5
frames per ns equivalent to 100 snapshots per residue per
trajectory) and quadruple the frequency (0.25 frames per ns),
and for comparison, the purposely undersampled two frames
per ns with just 25 snapshots. This extended data set can be
found in the Supplementary Information Spreadsheet. We
discovered that the results were largely invariant to this choice
at least for this system. Thus we chose to focus on the 51-
frame sampling frequency in our main report as a reasonable
compromise between computational time and resolution of
results backed by the confidence instilled by this experiment.
Each of these concatenated trajectories is subsequentially fed

through the energy analysis protocol from CPPTRAJ. The
electrostatic interaction energy between every pair of CRIB-
Par6’s 123 residues is computed using a bash script that
performed the CPPTRAJ energy command with each pair of
residues. Subsequently, Python scripts were written to parse
the CPPTRAJ outputs into tensors of shape (T, (N, N)) where
T is the number of frames in the trajectory (T = 51) and N is
the number of residues (N = 123). Subsequently, the pairwise
interaction edge weights undergo a localized-normalization and
thresholding protocol.32 This procedure sparsifies the electro-
static network by normalizing the pairwise edge weights on a
per-node basis and picking all nodes above the threshold. This
process prunes edges where the local energetic environment
affects a residue’s energetic interactions less, simultaneously
emphasizing network regions where such environmental
energetic contributions significantly occur.31

Generation of Heat Kernels from Locally Thresholded
Interaction Networks. For each of the CRIB-Par6
interaction state constructs, we compute the heat kernel of
each 51 locally thresholded electrostatic interaction networks
through a protocol developed by the Thayer lab.31 The heat
kernels of each construct are stored as a (T, (N × N)) tensor
object. The heat kernel of a network46 is a function simulating
the diffusion of heat and/or information across the network
over a time parameter, measuring how information tends to
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“flow” within different communities of nodes and weighting
significant topological features of network structure. Calculat-
ing the (N × N) heat kernel matrix of a (N × N) weighted
network46 biases the topological properties encoded by the
network’s edge weights to further emphasize node connectiv-
ities, interactions, and the structure of the network at both
local and global scales.

Principal Component Analysis (PCA) on the Heat
Kernels. As embedding graph data in lower dimensional space
has proven to be a useful means toward graph character-
ization,31 we perform PCA on the heat kernels to capture the
most significant variations among nodes’ connectivities across
the heat kernels. To perform the PCA, each interaction state
construct’s 51 heat kernels are projected onto a shared set of
eigenbasis vectors. Thus, each construct’s 123 residues across
all sampled trajectory frames are represented by 51 node
embeddings in the shared PCA space, yielding 123 × 51 =
6273 total embeddings. We choose to project the heat-kernel
embeddings of each interaction state’s electrostatic networks
into R3 space across the top three eigenvectors with the highest
eigenvalues (Principal Components: PC1, PC2, and PC3) as
they account for the most significant variances in heat-kernel
values and thus network topology. The PCA heat kernel
embedding projections of all 123 residues across 51 frames are
stored in a tensor of shape ((N × T), D), where D equals the
number of PC dimensions (D = 3). Thus, embedding each
residue’s electrostatic dynamics with other residues across
simulation time into this shared low-dimensional space
provides insight toward the dynamics of node clusters and
associations in the context of residue’s energetic interactions
over the course of the simulation.

Calculation of Embedding Error. Once the heat kernels
for each system are embedded in PCA space, we perform
embedding error analysis on their node embeddings across
combinations of the four CRIB-Par6 interaction state
constructs. Embedding error analysis seeks to quantify how
different each residue’s electrostatic interactions as embedded
across the heat-kernel PCA projections of one CRIB-Par6
interaction state are to that residue’s interactions in a different
state. To calculate the embedding error for each residue
between two systems, we employ a calculation of the
Wasserstein distance metric implemented by the SciPy package
(Scipy.org). This metric, also referred to as the earth mover’s
distance, describes the minimum amount of “work” required to
transform one distribution U into another distribution V where
“work” is quantified as the amount of distribution weight that
must be moved and multiplied by the distance it must be
moved. For the set of samples composing distributions, x1, x2,
..., xn ∈ U and y1, y2, ..., yn ∈ V, the Wasserstein metric can be
formalized as:

l x y x yinf d ( , )i
U V( , )

= | |
×

where Γ(U, V) is the set of distributions on × , whose
marginal distributions are U and V.47 The Wasserstein distance
metric between two distinct constructs’ positional node
embedding distributions of a particular residue is calculated
across each of the three eigenbasis axes (PC1, PC2, and PC3)
and summed together, resulting in an “embedding error score”
for that residue. Thus, the larger a residue’s embedding error
score between two systems, the more distinct that residue’s
electrostatic interactions as organized over the temporal
dynamics of one CRIB-Par6 state are from its interactions in

another state. This process is iteratively performed on each
residue, resulting in a (1 × N) distribution of each residue’s
embedding error score between the two compared constructs.
Calculation of this embedding error score distribution across
all CRIB-Par6 residues between a pair of interaction states
forms the foundation of the explored pairwise and maximal
embedding error analyses, which are detailed in the Results
section.

Code Development. Algorithms implemented in the
methodologies were generated in Python 3.748 through Jupyter
Notebooks.49 See Supplementary Documentation for more
information on implementation.

■ RESULTS
Locally Thresholded Electrostatic Networks. To

capture residues’ electrostatic interactions across simulation
time, we generate locally-thresholded energetic networks for
each trajectory frame. Each of these pairwise interaction energy
networks45 encodes residues as nodes and the edge between
every pair of residues as the electrostatic interaction energy
between them. Due to the computational cost of calculating
these energetic networks for all simulation frames, we generate
the networks for a subset of 51 frames sampled regularly across
each interaction state construct’s trajectory. The MD
simulations are reported elsewhere and consist of 550 ns of
all atom solvated molecular dynamics simulation carried out in
the AMBER simulation package (REF Bharat). The edges are
weighted to account for the effect of each residue’s local
energetic environment on its interaction with every other
residue and thresholded to increase network sparsity. To
visually analyze each interaction state’s networks, we can sum
over the edge weights for all 51 frames to generate a single
network representation. We visualize the locally-thresholded
electrostatic network for all constructs utilizing the Gephi
software package50 (Figure 2). Nodes are colored and scaled
by degree where higher degree nodes are larger and more
yellow-shifted, while lower degree nodes are smaller and

Figure 2. Electrostatic interaction networks from PDZ MD
simulations. Pairwise electrostatic interaction networks obtained for
the P (a), AP (b), PL (c), and APL (d) interaction state constructs
were generated. Nodes are labeled by their corresponding residue
index and proportionally scaled according to their number of
incoming connections with highly connected nodes being larger and
more yellow-shifted. An edge between two nodes is scaled larger and
red-shifted as correlated with the magnitude of its corresponding
electrostatic interaction weight value.
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purple-shifted. The degree of a node quantifies the number of
connections (i.e., significant electrostatic interactions with
other residues) to other nodes/residues within the network.
Thus, residues with higher degree node embeddings display a
more “hub-like” relation to other nodes in the electrostatic
network. Edges between nodes are colored and scaled by the
magnitude of their edge weights. Noticeably, higher degree

residues tend to display edges with more significant electro-
static interaction energy weights.

Projection of Electrostatic Network Heat Kernels for
Embedding Analysis. By projecting each of the 51 sampled
trajectory frames’ electrostatic network heat kernels onto a set
of R3 eigenbasis vectors, we obtain an interpretable low-
dimensional representation of how residues’ electrostatic

Figure 3. Electrostatic kernel projections. The projection consists of 51 × 123 embedded node values where each residue has 51 individual node
embeddings mapped to PC1 and PC3. In total, there are 6273 embedded points. Color mapping represents the degree of node connectivity in the
protein system. The more yellow a node embedding, the higher that node embedding’s degree of connectivity. Embeddings at other sampling
frequencies can be found in the Supplementary Information. The heat kernel projections for the P (a), AP (b), PL (c), and APL (d) interaction
state constructs.

Figure 4. Pairwise embedding error analysis. (a) Distributions of residue embedding error score values for each of the six pairwise embedding error
comparisons between CRIB-Par6 interaction states. The x-axis represents the residue number, and y-axis represents the embedding error score
between the positional embeddings of the compared interaction states. CRIB-Par6 secondary structural elements corresponding to residue
positions are visualized with a line representation under the x-axis. (b) Average embedding error score values (shown above bars) across all residues
for each pairwise embedding error comparisons averaged across different sampling interval (SI) trials (SI = 25, 50, 100, and 200) with standard
error bars displayed. Colors of bar graphs are as in (a).
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interactions as embedded by the kernels are dynamically
structured across simulation time for each CRIB-Par6
interaction state construct. We generate a plot of the PCA-
embedded heat kernels across C1 and PC3 for each of the four
constructs, P, AP, PL, and APL (Figure 3). Each plot contains
123 × 51 = 6273 unique node embeddings, with each
embedding corresponding to a single residue’s electrostatic
interactions at a sampled frame. The shared PCA plots of the
electrostatic heat kernels are populated by node embeddings,
which are colored by each node’s degree in the electrostatic
network system. The level of compactness in node embedding
clusters within the shared PCA space reveals information about
the strength of the energetic relationships between node
embeddings and the residues they represent both across each
frame’s electrostatic interaction networks and the networks
across simulation time.

Pairwise Embedding Error Analysis (PEEA). The
primary aim of PEEA on the heat kernel projections is toward
extracting insight concerning both the time-evolving dynamics
of each residue’s electrostatic interactions in an interpretable
low-dimensional embedding of the electrostatic networks and
how those interactions differ between distinct CRIB-Par6
interaction states. The average embedding error, in other
words, is a way to measure the extent of change of the network,
as projected in the R3 PCA space, across all residues in the
graph. As such, we seek toward understanding the degree by
which each residue’s local and global electrostatic interactions
are restructured by different conditions of CRIB-Par6’s
interaction with its effector and ligand-binding partners. In
PEEA, we utilize an embedding error metric to quantify how
different each residue’s 51 node embeddings in one interaction
state construct are from its embeddings in other distinct
constructs.
To perform PEEA, an embedding error score value between

each possible pair of the four CRIB-Par6 systems, unbound
(P), AP, PL, and APL was calculated for each of the 123

residues. As such, for each residue, there are ( )4
2 6= different

embedding error score values resulting from the first
Wasserstein distance metric calculation between each combi-
nation of CRIB-Par6 systems. For reference throughout the
following results, the embedding error comparison/distribu-
tion between two distinct interaction state constructs “A” and
“B” is represented as “A_B”.
The embedding error distributions between both the three

possible pairs of CRIB-Par6 bound-to-unbound states (AP_P,
PL_P, and APL_P) and the three possible pairs of CRIB-Par6
bound-to-bound states (AP_PL, APL_PL, and AP_APL) are
calculated across all 123 residues of CRIB-Par6 (Figure 4a).
Moreover, we determined the top 10 residues with the highest
embedding error scores for each of the bound-to-unbound
CRIB-Par6 pairwise comparisons (Supplementary Figures 2−
7).
Subsequentially, the average embedding error score of all

CRIB-Par6 residues for each of these residue-wise embedding
error distributions is calculated (Figure 4b). Calculation of the
average embedding error for each pairwise comparison
quantifies the level by which the structure of electrostatic
network interactions across the entire CRIB-Par6 protein is
reorganized by differences in binding-conditions. The three
embedding error comparisons yielding the highest average
embedding error scores across all residues include APL_PL
(0.055), AP_PL (0.048), and APL_P (0.0422). Compara-
tively, those pairwise embedding error distributions yielding
the three lowest average residue embedding error scores across
CRIB-Par6 are the comparisons between the effector-bound
and unbound states (AP_P, 0.0346), effector-bound and
effector and ligand-bound states (AP_APL, 0.0267), and the
purely ligand-bound and unbound states (PL_P, 0.0228).

Applying Maximum to Embedding Error Analysis to
Assign Maximum Interaction State Embedding Error
Categories. While performing maximal embedding error
analysis (MEEA), a single distribution consisting of the
maximal embedding error score of each residue across all the
six pairwise system embedding error comparisons was created

Figure 5. Maximal embedding error analysis. (a) Maximum of embedding error score values taken from Figure 4a. The x-axis represents residue
number, and y-axis represents embedding error score value between the positional embeddings of the compared interaction states. The maximum
embedding error score of each residue is color-coded as in Figure 4. Out of six possible interaction state embedding error categories, only three
were maximal. CRIB-Par6 secondary structural elements are visualized under the x-axis. (b) Percent residue composition of constructs from panel
a. Coloration follows from panel a.
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to identify the two CRIB-Par6 interaction states, which yield
the maximal difference in each residue’s electrostatic network
embeddings (Figure 5a). A graph displaying the percent
composition of residue membership into each of these maximal
embedding error-scoring state comparisons is displayed in
Figure 5b and Table S1. Noticeably, the maximal embedding
error scores for 80.5% of all CRIB-Par6 residues is contributed
from the embedding error distribution calculated between the
Cdc42 effector-bound and VKESLV ligand-bound states
(APL_PL). The residues from this APL_PL maximal
embedding error group are distributed globally across Par6’s
structure (Figure 6a), including those in structural elements
such as the semiCRIB motif, the α1 and α2 helices, and the
PLGF peptide recognition site (P38-F41). The second largest
set of residues whose maximum embedding error scores
between interaction states is that between the purely effector-
bound and ligand-bound states (AP_PL), accounting for
17.1% of all residues’ maximal embedding error values.
Notably, approximately 48% of the residues from this
AP_PL maximum embedding error group occupy a local-
ization in the PDZ ligand binding region with a noticeably
contiguous occupation of residues 31−37 from this group
occurring within the β1−β2 loop region (Figure 6b). The last
embedding error comparison accounting for the remaining
2.4% of all residues’ maximal electrostatic heat kernel PCA
embedding scores occurs between the Cdc42 effector-bound
and Cdc42 effector-bound and VKESLV ligand-bound states
(APL_AP) with two of these three residues occupying the α1
helix.

■ DISCUSSION
Through the pairwise and maximal embedding error analyses,
we aimed to investigate the extent by which differences
between interaction states reorganize the electrostatic network
interactions between residues. By determining the specific

pairwise embedding comparison yielding the maximal
embedding error score for each residue, we aimed to identify
distinct sets of residues whose electrostatic network dynamics
are most restructured by those. Residues of the same maximal
embedding error group share the property of being most
reorganized in their electrostatic network interactions by the
same functional differences between two specific states.
The results of the pairwise and maximal embedding analyses

indicate that the vast majority of residues are electrostatically
modulated in their ligand binding interactions by the presence
of an allosteric effector. The residue composition (>80% of
CRIB-Par6 residues) attributed to the APL_PL category is the
highest of the three comparison groups, distributing globally
across CRIB-Par6’s structure (Figure 6a). Moreover, the
APL_PL embedding error comparison yields the highest
average embedding error score across all pairwise comparisons
(Figure 4b), indicating that the two constructs with the most
characteristically distinct organization of CRIB-Par’s electro-
static network interactions from one another occur between
two ligand-bound states differing by Cdc42-allosteric activa-
tion.
In the PDZ system, which was chosen in part because of its

conveniently small size, a study of the embeddings based upon
a battery of sampling frequencies (Sampling Interval Trial
Study and Supplementary Figures 8−13) revealed that at least
in this case, the result was fairly robust, even with as few as 25
snapshots per residue across the whole trajectory. We suspect
that a sampling frequency of one frame per nanosecond across
a converged trajectory, the level we chose to focus on, will also
be appropriate for other systems but of course remains to be
seen as other systems are explored. Repeating the analysis at
different sampling levels illustrates an approach for honing an
appropriate sampling level in subsequent studies that may
involve other biomolecular systems, particularly those of larger
size.

Figure 6.Mapping of maximal embedding error designation onto CRIB-Par6 structure. (a) Global distribution of maximal embedding error groups
across the protein. (b) Maximal embedding error group AP_PL dominates the β1−β2 loop region, which connects the β1 and β2 strands labeled in
Figure 1.
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Compared to other PDZ-containing proteins, Par6 is rather
unique that its PDZ binding domain assumes a low ligand-
binding affinity conformational substate when unbound. As the
difference in embedding is measured between the purely
ligand-bound (PL) and effector and ligand-bound constructs
(APL), the rather structure-wide occupation of residues with
maximal embedding difference between these two states may
imply an important role of Cdc42’s capacity to regulate the
electrostatics of ligand-bound interactions across the entirety
of the protein structure. Specifically, the rather global effect
that this difference has across CRIB-Par6 residues indicates
that the most significant electrostatic difference across all
interaction states is that between when the Cdc42 effector is
and is not present in ligand binding interactions. Such findings
are corroborated by evidence that Par6’s allosteric Cdc42
effector-bound state structurally aligns much more similarly to
the majority of known PDZ structures than its unbound
state.51 CRIB-Par6 is also unique among PDZ-domain
containing proteins as extra-domain interactions between
CRIB and the effector GTPase control CRIB’s allosteric
regulation of PDZ’s affinity for C-peptide binding28 and as
such, PDZ’s capacity to allosterically propagate a ligand-
binding signal.
Moreover, the role of CRIB interactions in the effector-

bound complex on increasing Par6-PDZ2’s ligand-affinity
mirrors the role of a3 in studies of PSD95-PDZ3.10,24 Removal
of the distal a3 helix region has been demonstrated to lower
the ligand-binding affinity of the PDZ3 domain, with more
recent studies attributing the ligand-binding allostery of a3-
containing PSD95 as mechanistically controlled by long-range
redistributions in side-chain electrostatic interactions.10 Sim-
ilarly, our analyses evidence that CRIB-PDZ interactions
enable the long-range reorganizations in electrostatic network
interactions across the PDZ domain, which facilitate ligand-
binding. Thus, understanding allosteric signal propagation as a
process of redistributions in long-range electrostatic inter-
actions establishes a common mechanistic basis between PDZ2
and PDZ3 ligand-binding activity. As such, the overwhelming
residue composition attributed to the APL_PL maximal
embedding error class evidence a structure-wide electrostatic-
basis for Cdc42’s role in causing an allosteric transition from a
deviant weakly-interacting PDZ conformation to a “restored”
active conformation that increases peptide-affinity by ∼10-
fold.13

In contrast to the APL_PL maximal embedding error group,
the set of residues whose maximal embedding error occurs
between the effector-bound and effector and ligand-bound
states (AP_APL) is composed of only 2.4% of all residues
(Figure 5b), the lowest residue occupancy of all three
maximum embedding error groups. As the maximum
embedding error score for these residues occurs between two
allosterically bound states where the ligand is and is not
present, the distinctively low percent residue composition of
the APL_PL group indicates that ligand presence or absence
has a very minimal impact on the electrostatic dynamics of the
already effector-bound complex. In the effector-unbound
complex, ligand presence has an even lower impact on
redistributing the electrostatic landscape of CRIB-Par6. This
is evidenced by findings that across all six possible pairwise
embedding comparisons, the lowest average difference in the
electrostatic network embeddings of all residues occurs
between the PL and P states (PL_P) with the average
embedding error between the APL and AP states (APL_AP)

being the second lowest (Figure 4b). Thus, rather than ligand
presence or absence being the determining factor in whether
the electrostatic dynamics of CRIB-Par6 residue interactions
are restructured, differences in effector presence appear most
significant.
At the outset of the project, we posited the idea of

considering the embedding error with PCA and heat kernels as
a new approach for obtaining information about allosteric
signaling in proteins, which we have tested for the PDZ system.
This methodology affords insight into which residues are
involved in significant electrostatic changes between the
constructs. The results of the embedding error analysis
between the APL and PL systems are perhaps of greatest
interest as they most clearly address the question of Cdc42’s
allosteric effect: how does the protein binding to the ligand by
itself differ from the protein binding to the ligand with the
assistance of the allosteric effector? Note that in our
methodology, each pairwise analysis between states had been
given equal opportunity to become the most prominent and
that this was found to be the greatest by maximal embedding
error falls out of the calculation directly. This suggests to us
that the method provides meaningful results in a way
unimpeded by the radial importance bias inherent to a global
root mean square distance-based measure, nor is it affected by
experimenter’s choice of residues for local alignment.
Furthermore, we observe that the residues from the APL_PL
maximal embedding distribute across the Par6 structure
(Figure 6a) connecting key structural elements known to
have functional importance, namely, the semiCRIB motif, the
α1 and α2 helices, and the PLGF peptide recognition site
(P38-F41). Connection with these previously described key
elements further corroborates the utility of our method. It
suggests that the signal traverses from the allosteric effector via
the helices to the peptide recognition site via electrostatic
communication.
Residues whose maximal embedding error was contributed

by embedding differences between the effector-bound and
ligand-bound states (AP_PL) display a characteristically
localized region of occupancy across the conformationally
dynamic β1−β2 loop and β2−β3 structural elements proximal
to the ligand-binding site (Figure 6b). The functional
importance of these regions to Par6 allostery is well
established. Structuring of the CRIB domain upon Cdc42
binding leads to significant dynamical changes among β1−β2
loop residues, restricting the loop region to a set of
conformations more suitable for binding to C-terminal ligands
and thereby lowering the entropic cost of association.29,30,52

Moreover, rearrangements of β2−β3 regions C-terminal to the
ligand binding site are implicated in PDZ ligand-binding
specificity of class I C-terminal peptides53 such as VKESLV.
While yielding the second highest percent residue composition
of the three maximal embedding error groups (17.1%),
meaningful interpretation of how the distribution of residues
from the AP_PL maximal embedding error category cannot be
interpreted as the effect of either Cdc42-binding interactions
or ligand-binding interactions alone. The AP and PL
interaction states differ by both effector (A) and ligand (L)
presence rather than the presence or absence of one or the
other in complex with CRIB-Par6 (P). Rather than
communicating the effect of a single binding partner on
redistributing residues’ electrostatic dynamics in an already
occupied state, these findings seem to address Par6’s allosteric
transition from the low-affinity to high-affinity state con-
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sequent of Cdc42-binding effects on ligand-binding effects.
Thus, alike to the PDZ3 domain protein, the electrostatic
redistributions between these AP and PL states evidence
ligand-binding allostery of CRIB-Par6’s PDZ2 domain as
viewed in terms of a population shift6 of specific electrostatic
interactions toward a high-affinity (effector-bound) state over a
low affinity state.
A theme in the allostery literature is to debate whether an

observed phenomenon is a cause or an effect. Considering our
results on the electrostatic networks, we can observe PDZ in
the allosterically activated free (AP) and allosterically activated
bound (APL) states, and nonactivated states, free (P), and
bound (PL). While the networks correlate with the allosteric
signaling, the constructs themselves are not sufficient to prove
that the signaling was caused by the electrostatics of the
protein nor can we rule out that it does. Ascertaining such
information from experiments will be exceedingly difficult, and
therefore, we believe computationalists have a unique vantage
to provide the insight into plausible means to test hypotheses.
Nonequilibrium dynamics simulation techniques may provide
insight.

■ CONCLUSIONS
In this study, we investigated the dynamics of residues’
energetic interactions between distinct CRIB-Par6 interaction
states to understand the role of energetic forces in PDZ
allostery. By employing an embedding error methodology to
quantify differences between residues’ energetic network
embeddings, we investigated how effector and ligand-binding
interactions allosterically restructure and redistribute residue−
residue interactions across CRIB-Par6’s protein structure. The
pairwise embedding and maximal embedding error analyses
provide new insight both into the importance of the
electrostatic network and the mechanism by which it occurs.
We observed that distinct differences in binding-state
interaction reorganize different sets of residues’ electrostatic
interactions most significantly. Our findings evidence that the
impact of Cdc42 allosteric activation on ligand-bound
dynamics results in the most substantial redistribution in
residues’ electrostatic interactions across all binding-state
differences, which we have been able to enumerate at the
residue level. The most substantial difference between any two
interaction states in how residue’s electrostatic interactions are
dynamically organized is that between ligand-bound states
differing by the presence or absence of the Cdc42 effector.
Furthermore, our analyses implicate the important functional
role of electrostatic redistributions in conformationally
dynamic regions for facilitating population shift during
allosteric transitions from low to high affinity states, again
which we have been able to pinpoint to the electrostatic term
and report at the residue level. Importantly, our findings point
toward an electrostatic basis underlying how residues’
dynamics may be functionally reorganized to facilitate changes
in ligand-binding affinity as we have shown in Figure 6. Such
findings may implicate viewing allosteric phenomena through
long-range electrostatic redistributions as providing an
essential framework through which allosteric dynamics can
be understood as redistributions in the energetic landscape
rather than purely entropic or enthalpic mechanisms alone.
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