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ABSTRACT

Cardiovascular disease (CVD) is considered a primary driver of global mortality and is 
estimated to be responsible for approximately 17.9 million deaths annually. Consequently, a 
substantial body of research related to CVD has developed, with an emphasis on identifying 
strategies for the prevention and effective treatment of CVD. In this review, we critically 
examine the existing CVD literature, and specifically highlight the contribution of Mendelian 
randomization analyses in CVD research. Throughout this review, we assess the extent 
to which research findings agree across a range of studies of differing design within a 
triangulation framework. If differing study designs are subject to non-overlapping sources 
of bias, consistent findings limit the extent to which results are merely an artefact of study 
design. Consequently, broad agreement across differing studies can be viewed as providing 
more robust causal evidence in contrast to limiting the scope of the review to a single specific 
study design. Utilising the triangulation approach, we highlight emerging patterns in 
research findings, and explore the potential of identified risk factors as targets for precision 
medicine and novel interventions.

Keywords: Mendelian randomization analysis; Precision medicine; Triangulation; 
Cardiovascular diseases

INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality and morbidity worldwide, 
contributing to over 17.6 million deaths annually.1) However, while the proportion of CVD 
cases has grown by approximately 14.5% globally over the period 2006–2016, this does 
not reflect a uniform increase in CVD cases geographically. For example, in contrast to the 
global increase in CVD cases, Organisation for Economic Co-operation and Development 
(OECD) member countries have shown an average reduction in CVD related mortality by 
approximately 42% from 1985–2005.2) Korea specifically has shown a faster decrease in CVD 
mortality than the OECD average at 182 cases per 100,000 population.2) Many explanations 
for diverging trends in CVD incidence exist, ranging from differing intervention strategies on 
modifiable risk factors such as smoking, to differing country-specific configurations of non-
modifiable risk factors, such as age or genetic predisposition. These patterns have served to 
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motivate CVD research, with the primary aim of identifying novel and effective targets for the 
clinical treatment and prevention of CVD.

The proliferation of studies including large-scale genetic data has had a profound impact 
upon CVD related research. Through genome-wide association study (GWAS), conducted 
with increasingly large sample sizes, it has been possible to identify candidate genetic variants 
associated with CVD related illness. Further, the emergence of Mendelian randomization 
(MR) approaches has presented the possibility for causal relationships to be estimated whilst 
controlling for residual confounding, a persistent concern in observational analyses. These 
developments have, in tandem, allowed for novel genetic drug targets to be identified and 
previously identified risk factors to be re-evaluated from differing perspectives. Genetic studies 
can be valuable in identifying groups predisposed to health outcomes, whilst MR focuses on 
estimating the causal contribution of life-long exposure to modifiable risk factors.

In many cases studies aim to elucidate the causal mechanisms underlying CVD, highlighting 
key aspects of the aetiology of CVD related illness which are suitable for intervention. 
However, owing to strengths and limitations unique to a given study design, it is often 
difficult to infer causality based on a single study. This motivates the triangulation-based 
approach to evidence evaluation, proposed by Lawlor et al.,3) which focuses upon agreement 
in research findings across studies of varying design. If each study design is subject to 
differing and unrelated forms of potential bias, substantial agreement in research findings 
across multiple different studies limits the extent to which findings are the result of bias 
specific to study design.3) Alternatively, observed differences in research findings can 
indicate the presence of one or more study-specific features which introduce bias into 
estimates of association.

In this review we critically evaluate the contribution of studies using observational, genetic, 
and MR study designs within a triangulation framework, exploring the extent to which 
patterns are observable with respect to identified risk factors for CVD. In particular, we 
focus upon the role of MR as a novel source of evidence in CVD research and highlight recent 
developments in the MR literature which warrant further attention. Finally, we link identified 
risk factors to the development of precision medicine and novel interventions, highlighting 
key areas which warrant attention in future CVD research.

CARDIOVASCULAR DISEASE AND THE KOREAN 
POPULATION
CVD represents a range of illnesses related to cardiovascular health including, but not limited 
to, hypertension, coronary heart disease (CHD), myocardial infarction (MI), heart failure, 
and stroke. It has been estimated that approximately 80% of CVD cases are preventable, and 
a wide range of potential modifiable risk factors for CVD have been previously identified.4) 
Historically, studies identifying CVD related risk factors have utilised samples of European 
ancestry, making it difficult to generalise research findings internationally. However, 
the emergence of large-scale cohort studies in non-European populations provides an 
opportunity for replication in populations of differing ancestry. One such study is the Korean 
Cancer Prevention Study-II (KCPS-II) Biobank, which as a blood-based cohort with long-term 
follow-up provides valuable information with respect to modifiable risk factors and genetic 
determinants of CVD.5)
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The Korean Cancer Prevention Study-II Biobank
KCPS-II Biobank is a large blood-based cohort study comprised of 156,701 participants 
(94,840 men and 61,861 women) recruited from 18 health promotion centres across South 
Korea from 2004–2013.5) Participants underwent a health assessment including a self-
complete questionnaire and medical examination, collecting data related to social status, 
health status, behaviour, physiology, and serum measures. Long-term follow-up; specifically, 
for cancer incidence, hospital admissions, and cause-specific mortality, was obtained using 
linkage to subsequent medical examinations at health promotion centres across South Korea. 
Further details available in a previously published cohort profile.5)

The inclusion of blood-based measures presents a valuable opportunity to elucidate the 
causal mechanisms behind CVD in the Korean population. Such measures allow for lipid 
concentrations, such as low-density lipoprotein cholesterol (LDL-C), to be examined within 
the context of CVD, and crucially, subsequent genotyping of KCPS-II Biobank participants 
allows for genetic determinants of CVD to be evaluated. The availability of genetic data in a 
non-European sample allows for candidate genetic variants implicated in CVD incidence to 
be re-evaluated and facilitates the application of MR approaches. Throughout this review, we 
relate key findings to the Korean population where available and highlight emerging research 
relevant to East Asia.

OBSERVATIONAL ANALYSES OF CARDIOVASCULAR 
DISEASE
Previous research has drawn attention to several risk factors for CVD related illness identified 
using observational analyses. Such studies include large-scale population based studies, in 
particular the Framingham Heart Study, the CArdiovascular research using LInked Bespoke 
studies and Electronic health Records (CALIBER) programme, and studies using Kaiser-
Permanente data.6-10) Further details regarding each study are provided in the web appendix.

Lipids
There is a substantial body of research linking serum lipids to the onset of CVD.11-13) Observed 
changes in lipid levels arising from migration and interventions, and the subsequent impact on 
incidence of CVD initially suggested that total serum lipid levels could serve as an indicator of 
CVD risk.14)15) Subsequent observational analyses have shown evidence of a positive association 
between LDL-C and CVD.16-18) However, the relationship of high-density lipoprotein cholesterol 
(HDL-C) and triglycerides with respect to CVD remains controversial. Initially, HDL-C was 
found to be protective against CVD; however, subsequent studies have highlighted that this 
may not universally be the case.19)20) Rather, functionality of high-density lipoprotein may be 
more important, with high levels of HDL-C becoming pro-inflammatory only under specific 
conditions.21)22) Triglycerides have also been found to be a useful biomarker for CVD, but this 
could likely be due to their association with causal risk factors such as apo CIII.23)

These observed relationships between lipids and CVD have largely been replicated in East 
Asia and Korea specifically.14)24) Using data from KCPS-II Biobank Jung et al found LDL-C 
to be a strong predictor of stroke, warranting inclusion in a general risk score comprised of 
several traditional risk factors.25) Using a similar approach, Jee et al.26) found LDL-C to be 
highly predictive of CVD using data from the Korean Heart Study. Strong associations were 
also found for HDL-C and triglycerides, adjusting for LDL-C.
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Alcohol consumption
Alcohol has been implicated as a risk factor for CVD related illness for decades. In 1974, 
Klatsky et al.27) identified a positive association between alcohol consumption and MI using 
data from the Kaiser Permanente Health Plan in California. This case-control study also 
found alcohol to be a risk factor independent of smoking status.27) However, whilst alcohol 
appears to be causally linked with many forms of CVD, the range of associations has been 
shown to be diverse across CVD related illness.28) Subsequent analyses using electronic health 
records from CALIBER have found heavy drinking to be associated with increased risk of 
coronary death and ischaemic stroke, whilst participants not consuming alcohol appear 
to be at greater risk for angina, MI, and ischaemic stroke.8) Such findings seem to suggest 
a protective effect of alcohol in low doses, though such an interpretation remains highly 
controversial.29)30)

Several explanations have been suggested for observed disagreement in research findings, 
such as in the case of MI. Studies using electronic health records often determine drinking 
status using proxy measures, and may lead to problems of misclassification.31) This differs 
markedly from the case-control design of the Kaiser Permanente Health Plan Study for 
example, which used questionnaires to determine levels of alcohol consumption.10)27) The 
divergence in association estimates with respect to alcohol and CVD related illness could also 
be due to residual confounding, whereby alcohol appears protective due to its correlation 
with an unobserved factor protective for CVD risk.

In the Korean population, several studies have identified alcohol as a risk factor for CVD 
related illness. Yoon et al.32) find alcohol to be positively associated with metabolic syndrome, 
and subsequent onset of CVD. Regarding the protective effect of mild alcohol consumption, a 
systematic review and meta-analysis conducted by Park et al found no evidence of an inverse 
association between alcohol and CVD in the Korean population.33)

Smoking
Smoking has been identified as a risk factor for CVD, with a positive relationship between the 
number of cigarettes smoked and CVD related illness.34)35) The effects of tobacco smoke have 
been shown to extend to second-hand smoking, whilst smoking cessation has been shown 
to substantially reduce CVD risk.34)36) Previous work stemming from the Korean Life Course 
Health Study and Korea Medical Insurance Corporation Study has identified smoking as a 
major independent risk factor for a range of CVD related illness, including ischaemic heart 
disease, CVD, and atherosclerotic CVD.37)38) Further, the effects of smoking on atherosclerotic 
CVD has been found to be independent of low-cholesterol levels.37) Further studies have 
echoed these findings within East Asia and Korea, finding strong evidence of a connection 
between smoking behaviour and CVD risk.39)40)

Obesity and C-reactive protein
Increases in adiposity, and obesity specifically, have been argued to be an independent 
risk factor for CVD and all-cause mortality.41) Using body mass index (BMI) as a measure of 
adiposity, it has been shown that higher levels of BMI increase risk of CVD related illness.42)43) 
Obesity has been implicated in the development of atherosclerosis and MI.44)45) Adiposity has 
also been shown to be positively associated with ischaemic and haemorrhagic stroke.44)45) 
Higher levels of BMI during childhood have also been shown to increase CHD risk in later 
life.46)47) The relationship between obesity and CVD has been found to hold in East Asian 
populations, and specifically in Korea.48) For example, Choi et al.49) find evidence of a positive 
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association between obesity and weight change with respect to CHD in Young Korean adults 
using data from the Korean National Health Insurance Service.

In recent years, much attention has been given to the role of C-reactive protein (CRP) in the 
development of CVD.45)50) Whilst CRP has been identified as a biomarker for CVD related 
illness, it has not been clear whether CRP is causally relevant in the development of CVD, and 
consequently whether it would serve as an effective drug target.50)51) It has been suggested for 
example, that CRP could serve as a mediator in relation to LDL-C.52) Alternative assessments 
of the role of CRP emphasise that CRP may simply be correlated with true risk factors of 
CVD.53) As a consequence, while CRP is useful in predicting onset of CVD, the efficacy of 
interventions aimed at reducing CRP is unclear from observational studies alone.51)

Physical activity
There is growing evidence linking physical activity to CVD, and specifically CHD events.54) 
Sedentary individuals have been shown to have an increased risk of CVD related illness, 
though this could likely be driven by correlations between physical activity and alternative 
risk factors for CVD, such as obesity.55) However, whilst this relationship appears to hold 
regardless of gender, there is much debate over exercise guidelines and defining at-risk 
groups using arbitrary thresholds. An apparent dose-response relationship between physical 
activity and the reduction of CVD risk is suggested by previous research, but individuals at 
extreme levels of inactivity appear to be at a disproportionately high risk for CVD.56) These 
findings have been confirmed by several studies specific to Korea, though the extent to 
which physical activity is causally associated with CVD risk independent of risk factors such 
as obesity is uncertain.39) Using data from the South Korean health insurance system, Kim et 
al.57) find evidence of an inverse association between physical activity and CVD, independent 
of adiposity, smoking, and alcohol consumption.

Hypertension
Elevated blood pressure levels are widely accepted to be a risk factor for CVD events, based on 
findings from observational analyses.58)59) However, while both systolic blood pressure (SBP) 
and diastolic blood pressure (DBP) seem to have a continuous, independent, and positive 
association with CVD, it is important to highlight the difficulties in using an arbitrary 
threshold to classify hypertension cases.60) It has been argued that regional and demographic 
differences in blood pressure levels should be taken into account, in particular with respect 
to age where young adults exhibiting multiple risk factors may fail to reach high risk levels, 
owing to the strength of age as a risk factor for CVD. In East Asian populations, hypertension 
has been shown to be positively associated with CVD risk.61)62) Lawes et al.61) found evidence 
of an association between hypertension and CVD through a pooled meta-analysis of studies 
specific to the Asia-Pacific region. In Korea specifically, Son et al.63) observe a positive 
association using data from the Korean National Health Insurance system.

Type 2 diabetes
In observational analyses, diabetes and glucose intolerance have been shown to increase the 
risk of CVD related illness, especially in female populations.6)64)65) It is important to note, 
however, that type 2 diabetes is associated with many risk factors of CVD related illness, 
including lipids, adiposity, and hypertension as previously discussed.66) As a consequence, 
it can be difficult to estimate the independent contribution of type 2 diabetes to CVD whilst 
controlling for potential confounding variables. Insulin resistance and metabolic syndrome 
have also been suggested as potential mechanisms for risk factors related to CVD, though 
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there is much debate surrounding definitions of metabolic syndrome and its efficacy as 
an aggregate measure relative to assessing individual risk factors.6)67) A number of studies, 
including the Asia Pacific Cohort Studies Collaboration (APCSC) meta-analysis project, 
show evidence of a strong positive association between diabetes mellitus and stroke in Asian 
populations, including Korea.68-70)

GENETICS AND METABOLOMICS OF CARDIOVASCULAR 
DISEASE
The emergence of large-scale genetic data has heralded a paradigm shift in epidemiology, 
allowing for genetic analyses contributing to our understanding of the aetiology of disease. 
Identifying genetic variants directly associated with a disease can illuminate potential drug 
targets, as well as highlight genetic predisposition to disease onset. Further, the existence 
of genetic variants simultaneously associated with both a disease outcome and previously 
identified risk factors can lend support to findings obtained from observational analyses.

In 2007, the first GWASs were published for CHD, identifying a locus on chromosome 9p21 
to be robustly associated with CHD (p=5×10−8).71-73) GWASs of CVD have since contributed 
to the identification of approximately 70 susceptibility loci, as shown in Table 1. A number 
of these loci can be linked to risk factors previously identified, for example, approximately 
20% are located near genes with known roles in lipid metabolism and 5–10% are located near 
genes associated with blood pressure.
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Table 1. Genetic variants from genome-wide association studies associated with CVD
Chr/SNP Af Gene Risk factor Study (year)
1/rs11206510 T (0.82) PCSK9 LDL-C Myocardial Infarction Genetics Consortium (2009),
1/rs17114036 A (0.91) PPAP2B - Schunkert et al. (2011)
1/rs17465637 C (0.74) MIA3 - Schunkert et al. (2011)
1/rs599839 A (0.78) SORT1 LDL-C Schunkert et al. (2011)
1/rs4845625 T (0.47) IL6R IL-6 CARDIoGRAMplusC4D Consortium (2013)
1/rs6666258 C (0.29) KCNN3 - Ellinor et al. (2012)
1/rs3903239 G (0.44) PRRX1 Height* Ellinor et al. (2012)
2/rs6544713 T (0.30) ABCG5/ABCG8 LDL-C Schunkert et al. (2011),
2/rs6725887 C (0.15) WDR12 Adiposity* Schunkert et al. (2011),
2/rs515135 G (0.83) APOB Lipids*,† CARDIoGRAMplusC4D Consortium (2013)
2/rs2252641 G (0.46) ZEB2 - CARDIoGRAMplusC4D Consortium (2013)
2/rs1561198 A (0.45) VAMP5VAMP8-GGCX Adiposity* CARDIoGRAMplusC4D Consortium (2013)
3/rs2306374 C (0.18) MRAS Adiposity* Erdmann et al. (2009) and Schunkert et al. (2011)
3/rs4642101 G (0.65) CAND2 - Sinner, et al. (2014)
4/rs7692387 G (0.81) GUCY1A3 Hypertension CARDIoGRAMplusC4D Consortium (2013)
4/rs1878406 T (0.15) EDNRA - CARDIoGRAMplusC4D Consortium (2013)
4/rs17087335 T (0.21) REST-NOA1 Height/Adiposity* Nikpay et al. (2015)
4/rs6817105 C (0.13) PITX2 - Ellinor et al. (2012)
5/rs2706399 G (0.51) IL5 - IBC 50K CAD Consortium (2011)
5/rs273909 C (0.14) SLC22A4-A5 Height/Adiposity CARDIoGRAMplusC4D Consortium (2013)
6/rs12526453 C (0.67) PHACTR1 - Schunkert et al. (2011)
6/rs17609940 G (0.75) ANKS1A Adiposity/Height* Schunkert et al. (2011)
6/rs12190287 C (0.62) TCF21 - Schunkert et al. (2011)
6/rs3798220 C (0.02) LPA, SLC22A3, LPAL2 LP(a)/LDL-C Schunkert et al. (2011)
6/rs10947789 T (0.76) KCNK5 Height* CARDIoGRAMplusC4D Consortium (2013)
6/rs4252120 T (0.73) PLG LP(a) CARDIoGRAMplusC4D Consortium (2013)
6/rs13216675 T (0.69) GJA1 - Sinner, et al. (2014)
7/rs10953541 C (0.80) BCAP29 - Coronary Artery Disease C4D Genetics Consortium (2011)

(continued to the next page)

https://e-kcj.org


The discovery of genetic variants simultaneously associated with CVD outcomes and LDL-C 
provides evidence of a potential role of LDL-C in CVD development. However, it should be 
noted that several studies report variants associated with LDL-C, HDL-C, and triglycerides 
simultaneously (denoted lipids in Table 1). In these cases, it is not possible to clearly 
distinguish which lipid fraction is potentially driving the association between the variant and 
CVD. Hypertension and adiposity are also linked with several of the genetic variants, further 
supporting evidence from observational analyses. In Table 1, we include height as a risk 
factor as it is a component of BMI.
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Chr/SNP Af Gene Risk factor Study (year)
7/rs11556924 C (0.62) ZC3HC1 Hypertension/Height Schunkert et al. (2014)
7/rs2023938 G (0.10) HDAC9 Hypertension/Height* CARDIoGRAMplusC4D Consortium (2013)
7/rs3918226 T (0.06) NOS3 Adiposity/Height/Hypertension Nikpay et al. (2015)
7/rs3807989 A (0.40) CAV1 - Ellinor et al. (2012)
8/rs2954029 A (0.55) TRIB1 Lipids† CARDIoGRAMplusC4D Consortium (2013)
8/rs264 G (0.86) LPL Lipids† Stitziel et al. (2016)
9/rs4977574 G (0.46) 9p21.3 - Schunkert et al. (2011)
9/rs579459 C (0.21) ABO LDL-C Schunkert et al. (2011)
9/rs111245230 C (0.04) SVEP1 Hypertension Stitziel et al. (2016)
9/rs10821415 A (0.42) C90rf3 Height/Adiposity Ellinor et al. (2012)
10/rs2505083 C (0.38) KIAA1462 - Coronary Artery Disease C4D Genetics Consortium (2011)
10/rs1746048 C (0.87) CXCL12 - Schunkert et al. (2011)
10/rs1412444 T (0.42) LIPA - Coronary Artery Disease C4D Genetics Consortium (2011)
10/rs12413409 G (0.89) CYP17A1, NT5C2 Hypertension/Adiposity Schunkert et al. (2011)
10/rs10824026 G (0.15) SYNPO2L Hypertension Ellinor et al. (2012)
11/rs974819 T (0.32) PDGFD - Coronary Artery Disease C4D Genetics Consortium (2011)
11/rs964184 G (0.13) APOA1-C3-A4-A5 Lipids† Do et al. (2015, 2013)
12/rs10840293 A (0.55) SWAP70 Hypertension Nikpay et al. (2015)
12/rs3184504 T (0.44) SH2B3, HNF1A Lipids†/Adiposity/T1D/Hypertension Schunkert et al. (2011)
12/rs11830157 G (0.36) KSR2 - Nikpay et al. (2015)
12/rs10507248 T (0.73) TBX5 - Sinner, et al. (2014)
13/rs4773144 G (0.44) COL4A1, COL4A2 Hypertension Schunkert et al. (2011)
13/rs9319428 A (0.32) FLT1 - CARDIoGRAMplusC4D Consortium (2013)
14/rs2895811 C (0.43) HHIPL1 - Schunkert et al. (2011)
14/rs1152591 A (0.47) SYNE2 Height Ellinor et al. (2012)
15/rs3825807 A (0.57) ADAMTS7 Smoking Schunkert et al. (2011)
15/rs17514846 A (0.44) FURIN-FES Hypertension CARDIoGRAMplusC4D Consortium (2013)
15/rs56062135 C (0.79) SMAD3 Adiposity Nikpay et al. (2015)
15/rs8042271 G (0.9) MFGE8-ABHD2 Height Nikpay et al. (2015)
15/rs7164883 G (0.16) HCN4 Adiposity* Ellinor et al. (2012)
16/rs2106261 T (0.17) ZFHX3 - Ellinor et al. (2012)
17/rs216172 C (0.37) SMG6-SRR Adiposity Schunkert et al. (2011)
17/rs12936587 G (0.56) PEMT, RASD1, SMCR3 - Schunkert et al. (2011)
17/rs46522 T (0.53) UBE2Z, GIP Height/Adiposity Schunkert et al. (2011)
17/rs7212798 C (0.15) BCAS3 - Nikpay et al. (2015)
18/rs663129 A (0.26) PMAIP1-MC4R Adiposity/Lipids*,† Nikpay et al. (2015)
19/rs116843064 G (0.98) ANGTPL4 Lipids† Stitziel et al. (2016)
19/rs1122608 G (0.77) LDLR LDL-C Do et al. (2015)
19/rs2075650 G (0.14) APOE Lipids†/CRP/Adiposity IBC 50K CAD Consortium (2011),
19/rs12976411 A (0.91) ZNF507-LOC400684 - Nikpay et al. (2015)
21/rs9982601 T (0.15) MRPS6, SLC5A3, KCNE2 Hypertension Myocardial Infarction Genetics Consortium (2009)
22/rs180803 G (0.97) POM121L9P-ADORA2A - Nikpay et al. (2015)
Af = allele frequencies; CAD = coronary artery disease; Chr = chromosome; CRP = C-reactive protein; CVD = cardiovascular disease; HDL-C = high-density 
lipoprotein cholesterol; IL = interleukin; LDL-C = low-density lipoprotein cholesterol; SNP = single-nucleotide polymorphism.
*Risk factor is not directly associated with lead SNP but is associated with one or more SNPs within gene region; †SNP is associated with 2 or more different lipid 
fractions (LDL-C, HDL-C, and triglycerides).

Table 1. (Continued) Genetic variants from genome-wide association studies associated with CVD
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It is important to emphasise, however, that the extent to which genetic analyses can support 
observational studies is dependent upon heritability of a given risk factor. Adiposity and 
height are, for example, highly heritable traits as opposed to behavioural risk factors such 
as smoking. As such, the absence of genetic studies supporting observational analyses 
does not necessarily invalidate observational findings. This could for example explain the 
lack of genetic variants associated with CVD and physical activity. In related work using 
data from KCPS-II Biobank, Jung et al utilise a genetic risk score to predict CVD incidence, 
comparing the accuracy to a score using traditional risk factors.25) They found that combining 
information using both scores substantially improved predictive accuracy, suggesting there 
may likely be a strong genetic component to CVD in the Korean population.

Technological advances in measuring metabolites have facilitated analyses focusing 
specifically upon role of metabolites in disease onset and progression. As an emergent 
field, metabolomics focuses upon molecular changes which occur in different disease 
states, elucidating the underlying biological mechanisms behind disease and allowing for 
effective biomarkers to be identified.74-76) As disturbances in cardio-metabolic processes often 
accompany CVD, it has been possible for metabolite profiling to be applied to CVD in order 
to evaluate the potential role of metabolites.74)75)

Such studies have provided evidence linking a range of metabolites present in plasma levels 
with CVD. For example, metabolomic studies of heart failure using mouse models have 
highlighted the coordinated downregulation of branch chain amino acids (BCAAs) in failing 
hearts.75)77) Whilst these findings have been replicated in humans, metabolomic studies typically 
rely upon serum metabolite measures, which may suffer from issues related specificity.78) 
However, despite these limitations a number of potential biomarkers for CVD have been 
identified. These include phosphatidylserine, C16-sphingosine, N-methyl arachidonic amide, 
N-(2-methoxyethyl) arachidonic amide, linoleamidoglycerophosphate choline, lysoPC (C18:2), 
lyso-PC (C16:0), lyso-PC (C18:1), arachidonic acid, and linoleic acid.79-82)

MENDELIAN RANDOMIZATION AND CARDIOVASCULAR 
DISEASE
Mendelian randomization: overview
MR is a causal inference approach which corrects for bias resulting from residual 
confounding.83) Such bias occurs when variables serving as joint determinants of the exposure 
and outcome of interest are omitted from analyses, resulting in associations between the 
omitted variables and the outcome being erroneously attributed to the exposure. MR corrects 
for residual confounding by employing genetic variants as instrumental variables (IVs).83) In 
their seminal work, Smith and Ebrahim83) demonstrate how genetic variants can serve as IVs 
and illustrate how the same principles can be applied within medical research. This has led to 
the rapid development of formal statistical approaches, which allow for causal relationships 
to be identified.84-90)

Conventional MR analyses rely upon three central assumptions for unbiased effect 
estimation. Firstly, genetic instruments must be strongly associated with the exposure of 
interest (IV1).91) Candidate instruments are typically identified using GWAS, with the extent 
to which an IV explains variation in an exposure of interest referred to as instrument strength. 
Second, genetic instruments are required to be independent of unmeasured confounders of 
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the exposure and outcome (IV2).91) The use of genetic variants as instruments is particularly 
useful in this case, as the random assortment of alleles at conception restricts the range of 
possible associations which can occur. Third, genetic instruments must be independent of the 
study outcome when conditioning on the exposure of interest (IV3).92)93) Associations which 
violate assumption IV3 are referred to as horizontal pleiotropic pathways, inducing bias in the 
direction of pleiotropic association.93) The assumptions of MR are illustrated in Figure 1.

Mendelian randomization: current methods
Initially, MR was conceived at a point where a relative paucity of genetic data was available, 
owing to the scarcity and expense of GWASs. Consequently, early MR studies typically 
featured small sample sizes, selected genetic instruments informed by candidate gene 
studies, and utilised individual level data. However, the recent proliferation of GWASs 
and emergence of large-scale biobank projects such as the China-Kadoorie Biobank have 
served to motivate the wide-spread application of MR, including methods leveraging 
publicly available GWAS summary data.84)85)94) The availability of GWAS summary data with 
increasingly large sample sizes is advantageous in allowing for candidate instruments to 
be identified using separate non-overlapping samples. This improves the power to detect 
suitable instruments, as well as limiting bias due to winner's curse; occurring when a genetic 
variant is observed to be associated with a phenotype of interest purely by chance.

The increase in publicly available GWAS summary data has also motivated the development 
of myriad MR approaches which are able to furnish MR estimates without requiring access 
to individual level data. These methods utilise association estimates and standard errors for 
each genetic instrument with the exposure and outcome using separate samples, calculating 
a Wald ratio estimate for each genetic instrument.84)94) The Wald ratio, calculated by dividing 
the instrument-outcome association by the instrument-exposure association, serves as an 
MR causal effect estimate using a single genetic instrument. Summary level MR methods 
then typically evaluate the set of Wald ratios within a meta-analytic framework, through 
methods such as inverse-variance weighted (IVW) and MR-Egger regression.84)94)

The emergence of large-scale biobanks has also prompted the development of a range of 
individual level data approaches to MR. This allows researchers to incorporate more information 
into estimates of causal effect, such as allowing the inclusion of additional variables for 
adjustment and incorporating gene-by-environment interactions and non-linear models.95)96)

Mendelian randomization applications to cardiovascular disease
To assess the contributions of MR to studies focusing on cardiovascular health, we conducted 
a systematic review using PubMed and Web of Science. Using a comprehensive search strategy 
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Figure 1. A directed acyclic graph illustrating the Mendelian randomization assumptions. G represents a 
genetic instrument, X and Y are the exposure and outcome of interest respectively, and U denotes one or more 
unmeasured confounders of the exposure and outcome. In the diagram, the bold arrow from G to X indicates 
the association between the instrument and exposure necessary to satisfy assumption IV1. The dashed arrows 
indicate associations which would, if non-zero, invalidate the second and third MR assumptions (IV2–3).
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(see web appendix), we identified MR studies where CVD, coronary artery disease (CAD), CHD, 
heart disease, MI, or stroke served as an outcome during the period 2003–2019. All identified 
publications underwent a 3-step review of title, abstract, and full text based on predefined 
inclusion criteria. We excluded meta-analyses, review papers and studies incorporating 
interventions, as well as animal and laboratory studies. For each eligible study, we extracted the 
lead author's name, journal name, publication year, and study population. We identify a total of 
126 eligible MR studies, conducted from 2003–2019, as shown in Figure 2.

Lipids
Several MR analyses have focused on the role of serum lipids, and specifically LDL-C, in the 
development of CVD. LDL-C has consistently been shown to be positively associated with 
CAD, CHD, ischemic stroke, and MI in MR analyses.97-101) Triglycerides have also been shown 
to be positively associated with CAD, CHD, and MI.97)102) It is interesting to note, however, 
that the observed inverse association between HDL-C and CVD has not been shown to hold 
in MR studies particularly in relation to CHD and MI.102-104)

As previously discussed, a concern when assessing the role of lipid fractions is the correlation 
between LDL-C, HDL-C, and triglycerides. In the context of MR, using such variants as an 
instrument for a single lipid fraction would likely result in bias in cases where additional lipid 
fractions are independently causal with respect to CVD, as this would violate the third MR 
assumption (IV3). Studies using variants specific to HDL-C have not found evidence of an 
association with CVD related illness, though this could potentially be due to a lack of enough 
statistical power.103)

A potential solution to this problem is the application of multivariable MR methods, which 
allow for multiple risk factors to be adjusted for provided they independently explain 
sufficient variation in each exposure.90) Several studies have implemented this research 
design, finding evidence of a positive association between LDL-C and CVD outcomes, whilst 
HDL-C does not appear to have a substantial effect.105)106)

Alcohol consumption
MR studies have also supported the observed link between alcohol consumption and CVD 
outcomes. Findings from the China-Kadoorie Biobank, comprised predominantly of Chinese 

100https://e-kcj.org https://doi.org/10.4070/kcj.2019.0293

Precision Medicine and Cardiovascular Health

Total relevant papers (n=126)

Outcome not CVD (n=357)

Not MR study design (n=580)

Animal/cell/intervention (n=7)

Review/meta-analysis (n=41)

Not accessible (n=35)

Papers identified by search strategy (n=1,146)

Figure 2. A flow chart showing the selection process for relevant papers.
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participants, have shown a positive association between alcohol and subtypes of stroke 
using both MR and observational approaches.30) This observed association between stroke 
outcomes and alcohol consumption has also been replicated in European populations.107)

Alcohol consumption has also been linked to wider CVD outcomes in a number of MR 
studies including Korea specific populations.30)108)109) For example, several studies have 
utilised gene-by-environment MR approaches to examine the association between alcohol 
and CVD in East Asian populations, leveraging gender-specific differences in drinking 
behaviour.108)110) In an analysis using data from the Korean Genome and Epidemiology Study 
(KoGES), Cho et al.108) find evidence of an association between alcohol consumption and 
cardiovascular health. Findings from Jee et al.111) using data from KCPS-II Biobank also find 
evidence of an association between alcohol and hyperuricemia in males using data from 
KCPS-II Biobank.

Obesity and C-reactive protein
The relationship between adiposity, often measured using BMI, and CVD has also received 
substantial attention in the MR literature. CAD, for example, has been found to be positively 
associated with adiposity in a number of studies.112-116) Importantly, differing measures of 
adiposity have often been included such as waist-to-hip ratio, so as to limit the extent to which 
the findings are an artefact of selecting BMI as the primary measure of adiposity.113)117) Adiposity 
has also been found to be a risk factor for many CVD related diseases, including stroke and 
CHD.118-120) In MR analyses focusing upon the role of CRP in the development of CVD related 
illness, there appears to be no substantial evidence of causal association.121-124) Such findings 
provide support for the use of CRP as a biomarker, rather than a target for intervention.

Type 2 diabetes
Whilst many MR studies focus upon diabetes as an outcome rather than a risk factor, 
several studies suggest diabetes and glucose are risk factors for CVD related illness. Altered 
glucose levels have been found to be associated with CAD independent of adiposity and are 
thought to be a mechanism through which diabetes causes CAD.112)125) Diabetes has also been 
estimated to be positively associated with CHD and large artery stroke.126)127)

Finally, it is important to emphasise that where a binary exposure is evaluated within a 
summary MR framework a subtle difference in interpretation is required. Essentially, the 
effect estimate is not the effect of the disease itself, but rather the phenotypic effects of 
general liability to that disease.128)

Smoking, physical activity, and hypertension
At this point there is a relative gap in the MR literature pertaining to smoking, physical 
activity, and hypertension as risk factor for CVD. Studies conducted in European populations 
have found evidence of a positive association between SBP and CVD events, confirming 
findings from observational analyses.129) In a Norwegian population, smoking has been 
found to be a risk factor for several potential downstream risk factors of CVD, though a direct 
association between CVD and smoking was not examined.130) Unfortunately, there appears 
to be insufficient evidence from MR related studies to explore the role of physical activity 
in CVD.131) As with genetic analyses, MR studies are reliant upon risk factors being highly 
heritable, which translates to instrument strength. In the case of behavioural risk factors, it is 
often not possible to identify genetic variants which can explain a enough proportion of the 
variance of a given risk factor to provide a sufficiently precise estimate of causal effect.
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PRECISION MEDICINE AND FUTURE DIRECTIONS

By assessing findings of CVD analyses using a range of study designs, it is possible to identify 
several relationships which are consistently present. The relationship between LDL-C and 
CVD remains strong across observational, genetic, and MR analyses, and across populations 
of differing ethnic background. However, similar agreement across studies assessing the 
protective effects of HDL-C is not present. There are 2 likely explanations for why this is 
the case. In the first instance, the observed association between HDL-C could be due to 
residual confounding, such that one or more risk factors are highly correlated with HDL-C 
but omitted from the analyses. However, as it is common practice to control for LDL-C when 
estimating the effects of HDL-C, identification of the omitted risk factors remains unclear. 
A second possibility is that the assumptions of the MR approach may be violated, leading 
to biased estimates. This could be the case where, for example, genetic instruments are 
simultaneously correlated with both HDL-C and LDL-C.

The example of LDL-C illustrates the potential to detect effective drug targets, such as 
the use of statins in lowering CVD related illness. Statins are medicines which specifically 
aim to lower serum LDL-C and have been shown to effectively reduce risks of CVD related 
illness. In the previous analyses, evidence for a relationship between LDL-C was found using 
observational, genetic, and MR methods, and the agreement across these studies of differing 
design highlight the therapeutic effectiveness of statins in retrospect.

A further related drug target demonstrated by genetic studies is the development of 
monoclonal antibodies against PCSK9.132) PCSK9 is a liver protease that targets low-density 
lipoprotein receptors for lysosomal degradation. Subsequent MR analyses have confirmed 
genetic findings, highlighting the therapeutic potential of targeting PCSK9.133) These findings 
have led to recommendations for low-density lipoprotein lowering with PCSK9 inhibitors to 
be provided for high-risk patients with LDL-C levels ≥70 mg/dL on maximally tolerated oral 
therapies.134) Two additional targets, CYP2C9 and VKORC1, have also been identified in GWASs, 
showing an association with inter-individual variability in warfarin dose.135)136) This suggests 
that genes in the warfarin metabolism pathway are associated with dose variance.135)136) 
Though these studies were performed in Japanese populations, additional studies confirmed 
these variants for personalized warfarin treatment in different ethnic groups.137)

Recent research has highlighted the potential for Lp(a) as a potential drug target for 
lowering CHD risk.138) MR analyses focusing on Lp(a) find evidence suggesting that 
pharmacologically lowering Lp(a) concentration by approximately 100 mg/dL can potentially 
reduce CHD risk by as much as 25%.138) However, the efficacy of Lp(a) as a drug target is 
somewhat controversial, with randomized controlled trials (RCTs) finding no substantial 
benefit using treatments specifically targeting Lp(a) with respect to cardiovascular 
events.139-141) The disagreement in findings between MR and RCT studies is explained in part 
by the limited suitability of LP(a) targeting drugs to individuals with high concentrations 
of LP(a). As such treatments are best suited to individuals with very high levels of Lp(a), 
with diminishing returns as Lp(a) concentration declines.138) This is encapsulated by the 
risk of CHD being estimated to be linearly proportional to the absolute difference in Lp(a) 
concentration across study samples.138)

Like the example of LDL-C, obesity and adiposity have been shown to be consistently 
associated with CVD across varying types of study. Increased BMI has been estimated to be 
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positively associated with CVD independent of LDL-C, which is conventionally controlled for 
in observational analyses. Simultaneous associations between adiposity and CVD outcomes, 
as illustrated in Table 1, also support the existence of a causal association in conjunction with 
findings from MR analyses. However, it is important to highlight that substantial divergence 
in study findings with respect to CRP suggest drugs targeting CRP specifically will be unlikely 
to be effective.

The protective effects of low doses of alcohol with respect to CVD are not found to be 
consistent across different study designs. MR analyses performed using alcohol consumption 
as an exposure find evidence of a positive association between alcohol and CVD, although 
there are currently only a relatively small number of relevant studies. It seems possible that 
consumption of only small amounts of alcohol is negatively correlated with alternative risk 
factors, for example adiposity or type-II diabetes, which are driving the observed protective 
effect of alcohol through confounding bias. Further studies evaluating the causal impact of 
alcohol consumption would prove invaluable in elucidating the potential pathways between 
alcohol consumption and CVD.

There are, however, gaps in the MR literature which warrant further examination. For 
example, smoking, physical activity, and hypertension have all been previously identified 
to be risk factors for CVD related illness. However, conducting a systematic review of MR 
studies highlights a notable gap in the literature with respect to these risk factors. Several 
studies have considered these risk factors as part of wider studies related to cardiovascular 
health, in particular work by Burgess et al.138) and Carter et al.142) However, more work 
focusing on replicating MR findings is required.

Considering smoking, one potential issue is the limited number of genetic variants 
associated with smoking behaviour. In MR analyses, and particularly 2-sample summary 
analyses, the relative weakness of genetic variants as instruments for smoking behaviour 
results in a lack of sufficient precision to detect causal associations. However, this issue can 
be effectively addressed with the growing sample sizes of studies with genetic data, and the 
subsequent increases in precision afforded to researchers.

CONCLUSIONS

In this review we have critically examined research identifying risk factors for CVD using 
observational, genetic, and MR study designs. By assessing findings across multiple 
study designs, each with independent sources of bias, it is possible to identify consistent 
relationships which appear to be robust to the limitations of each research methods. This 
strengthens the extent to which such findings can be robust and serve as potential targets for 
precision medicine. We identify LDL-C, alcohol, and obesity as notable risk factors, as well as 
several candidate risks which warrant further attention.
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