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Abstract
The development and validation of computational macromolecular modeling and design

methods depend on suitable benchmark datasets and informative metrics for comparing pro-

tocols. In addition, if a method is intended to be adopted broadly in diverse biological applica-

tions, there needs to be information on appropriate parameters for each protocol, as well as

metrics describing the expected accuracy compared to experimental data. In certain disci-

plines, there exist established benchmarks and public resources where experts in a particular

methodology are encouraged to supply their most efficient implementation of each particular

benchmark. We aim to provide such a resource for protocols in macromolecular modeling

and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/

benchmarks) to guide the development of protocols for protein modeling and design. The site

provides benchmark datasets and metrics to compare the performance of a variety of model-

ing protocols using different computational samplingmethods and energy functions, providing

a “best practice” set of parameters for eachmethod. Each benchmark has an associated

downloadable benchmark capture archive containing the input files, analysis scripts, and tuto-

rials for running the benchmark. The captures may be run with any suitable modeling method;

we supply command lines for running the benchmarks using the Rosetta software suite. We

have compiled initial benchmarks for the resource spanning three key areas: prediction of

energetic effects of mutations, protein design, and protein structure prediction, each with

associated state-of-the-art modeling protocols. With the help of the wider macromolecular

modeling community, we hope to expand the variety of benchmarks included on the website

and continue to evaluate new iterations of current methods as they become available.
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Introduction
Structure-based modeling and design of biological macromolecules have become rich areas of
computational research and method development [1–5]. The accuracy of these modeling pro-
tocols on diverse applications can be assessed via use of increasingly available, high quality
curated experimental datasets [6–10]. Demonstration of the utility of a new prediction or
design method requires, at the very least, a proof-of-concept case that exhibits initial success.
Further widespread adoption of the method requires more extensive validation: demonstrated
success and careful evaluation of key limitations on multiple, diverse, test cases. This general
utility can be shown through the use of a suitable benchmark set.

Even though the compilation of these benchmarks is often essential to the creation of novel
computational methods, the successful application of a method can often overshadow the criti-
cal role of benchmarking during its development. Furthermore, the associated publication of a
new method may not contain a description of the dataset or statistical analysis in a format that
is readily usable for developers of alternate methods, creating additional obstacles for a direct
comparison. Organizations such as CASP [11] and CAPRI [12] create blind prediction tests for
problems in protein structure prediction, protein-protein docking, and other applications, but
many questions in the field of macromolecular modeling and design could also benefit from
canonical benchmarks such as those that exist for protein-protein docking [10,13]. To facilitate
rapid, iterative development, it is convenient to make benchmarks available for retrospective
testing (although it is essential to pay attention to issues of overfitting to a particular target
problem, even for large and diverse datasets).

Even in cases where an effective benchmark has been defined and the efficacy of a modeling
protocol has been measured and published, it may be difficult to reproduce similar results
post-publication as the method evolves. Protocols in large, complex software suites, such as
Rosetta, are highly dependent on core functionality. For example, a sampling algorithm may
yield varying results as changes are made to its accompanying score function. Regular bench-
marking to track changes in performance is desirable both when core functionality is altered
and when the specific protocol has been modified directly. To determine what constitutes the
best practice, a user needs access to current benchmarking results, or at the very least, clear
instructions on how to benchmark against the latest version of the protocol.

Here we present a web resource (https://kortemmelab.ucsf.edu/benchmarks) to address
some of the aforementioned difficulties associated with informative benchmarking. We define
the following criteria for a benchmark set in this resource: First, the scientific question or
modeling problem posed by the benchmark must be clearly defined. Second, the input dataset
should contain numerous, varied test cases that cover a broad range of possible inputs a user
might use in a protocol. Success is easier to find when only a small subset of potential test cases
is employed; a more general set indicates a correspondingly more generally useful method, and
ameliorates issues with over-fitting a method to perform well on a specific test case. To be suit-
able for comparison against predictions, this input data set should be made up of experimen-
tally validated data (we will refer to predicted data as “predictions” and experimentally
determined data as “experiments”). Third, instructions on how to run each computational
method should be provided with enough detail and clarity such that researchers other than the
developers of a given method are able to use the resource. Finally, each benchmark set should
be accompanied both by an appropriate set of defined metrics to quantify how successfully the
method addresses the modeling problem and by a set of analysis tools which, given input in a
defined format, computes these metrics.

We have used these guidelines to collect benchmark sets for commonly encountered prob-
lems in the following three areas (Fig 1): (1) estimation of energetic effects of mutations
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(protein stability (ΔΔG) and computational alanine scanning); (2) protein design predictions
(native sequence recovery, evolutionary profile recovery, sequence covariation recovery, and
prediction of recognition specificity); and (3) protein structure prediction (loop modeling). We
also present corresponding state-of-the-art Rosetta protocols, parameters and command lines
applicable to each problem. Each benchmark capture can be downloaded from the web
resource either as a self-contained zip file/bundle or as a version-controlled repository. Each
bundle contains the input data and documentation describing the given modeling problem,
explains how the accompanying methods solve that problem, lists the metrics we use to mea-
sure success, includes the Rosetta protocol, and provides analysis scripts to generate these met-
rics from output data. In the sequel, we describe the technical details of the website we have
created for open access and dissemination of benchmarking results.

(A) ΔΔG / Alanine scanning—predicting the energetic effect of point mutations on folding
or binding. REU: Rosetta energy units. The dashed line represents the best linear fit model
(y = 0.93x + 0.43). (B) Native sequence recovery—measuring the similarity between designed
and native sequences for a given structure. Boxplots compare fixed to flexible backbone design
performance, and designed residues that are identical to the native sequence are highlighted in
yellow. (C) Sequence profile recovery—measuring the similarity between designed and natural
sequence profiles of protein families. Boxplots compare fixed to flexible backbone design per-
formance in recovering the natural sequence profile. (D) Amino acid covariation—predicting
pairs of naturally covarying residues in protein families. Boxplots compare fixed to flexible
backbone design performance, and covarying pairs in the multiple sequence alignment are
highlighted in green and magenta. (E) Recognition specificity—predicting the tolerated
sequence space in a protein-protein interface. The sequence logos [14] visualize the similarities
and differences between the predicted and experimentally determined sequence profiles. (F)
Loop reconstruction—predicting the backbone conformation of loops in protein structures.
Here the scatterplot shows a minimum in the Rosetta energy landscape for the given loop, with
the five lowest energy models shown in yellow and the one closest to the experimentally deter-
mined (native) structure highlighted in red.

Benchmarks (Methods)
The web resource currently contains benchmark captures, Rosetta protocols, and performance
information for five different benchmarks, which we have grouped below in three different
areas (Fig 1): (1) tests estimating energetic effects of mutations, (2) design tests, and (3) struc-
ture prediction tests. Each subsection describes, for each benchmark, its purpose (the modeling
problem addressed), the benchmark dataset, a Rosetta protocol addressing the modeling prob-
lem, metrics of success, key results, and notes on limitations and caveats.

1. Tests estimating energetic effects of mutation
Protein stability (ΔΔG). Purpose of this test: The purpose of this benchmark is to predict

the change in stability (ΔΔG) of a monomeric protein caused by single point mutations (Fig
1A). The predicted stability change is given as the difference in predicted energy between the
modeled wild-type and mutant structures. The benchmark compares the predicted energy dif-
ferences against experimentally measured ΔΔG values in kcal/mol.

Benchmark dataset: In previous studies, protein stability prediction methods have been
benchmarked against multiple curated datasets: a set of 1030 mutants collected by Guerois
et al. [15]; a set of 2156 mutants collected by Potapov et al. [16]; a set of 1210 mutants collected
by Kellogg et al. [17]; and a set of 582 mutants collected by Benedix et al. [18]. The records in
these datasets mainly originate from the ProTherm database [7]—a large, manually curated
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Fig 1. Types of benchmarks and protocols currently included in the web resource. Tests estimating energetic effects of mutation (orange, A), design
tests (purple, B-E) and structure prediction tests (green, F).

doi:10.1371/journal.pone.0130433.g001
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collection of thermostability data from the literature—and are mostly single point mutations.
Our benchmark capture collects the Guerois, Potapov, and Kellogg datasets together and adds
a fourth dataset of 2971 point mutants from ProTherm. This last dataset is lightly curated; it
contains most of the single point mutations available in ProTherm excepting records where: (i)
there is no corresponding structure determined via X-ray crystallography with a resolution of
at least 2.5Å; (ii) there are multiple experimental ΔΔG values for an individual mutation that
differ by more than 2.5 kcal/mol in the experimental values; or (iii) the mutated protein is a
transmembrane protein.

ProTherm contains details of the publications from which the thermodynamic data origi-
nated. These explicit references were omitted in the previously published datasets mentioned
above but we have determined the source of the mutations for each record in the benchmark
capture and reformatted the datasets into a standardized format. This refactoring has allowed
us to determine the overlap between the datasets in terms of mutations and experimental
assays to a large degree. These refactored datasets are included in the benchmark capture.

Rosetta protocol: The benchmark capture currently includes scripts that can be used to run
the best-performing protocol described by Kellogg et al. as protocol 16 (see row 16 in Table 1 in
reference [17]). This protocol combines a soft-repulsive potential for conformational sampling of
side-chains with a standard hard-repulsive potential for minimization to achieve higher predic-
tion accuracy, following the observation that predictive methods are more accurate when the res-
olution of the force field is matched to the granularity of the sampling method. There are two
steps in the protocol. First, the input structure is minimized. Next, fifty pairs of wild-type and
mutant structural models are generated using the sampling strategy described above. The ΔΔG
value is calculated as the difference between the three best-scoring wild-type structural models
and the three best-scoring mutant structural models as measured in Rosetta energy units (REU).

Performance metrics: Three metrics are used for measuring the accuracy of the computa-
tional methods, each with a separate focus.

Pearson's correlation coefficient measures the linear correlation between experimentally
determined ΔΔG values and their corresponding computationally predicted values. The coeffi-
cient is invariant to the scale of the predicted values.

The mean absolute error (MAE) is defined as the mean of the absolute differences between
experimental and predicted ΔΔG values. MAE is sensitive to the scale of the predicted values
and is an important metric for protein design; high error reduces confidence in the predicted
stability of individual cases.

Finally, the stability classification accuracy or fraction correctmetric measures whether a
mutation is correctly predicted to be (de)stabilizing or neutral, for a given definition of what
constitutes a neutral mutation. Depending on this definition, it is possible to get a relatively
high value for this metric with a set of random predicted values. Therefore this metric, while a
useful metric for reporting whether a method can correctly classify the stability of a mutant,
should be considered alongside the correlation and MAE.

Key results: It has been previously reported that the latest Rosetta score function (Talaris)
improves the performance of the Rosetta ΔΔG protocol on the Kellogg dataset compared to the
older score function, termed Score12 [19]. We have tested the protocol on the three other
curated datasets and found that Talaris improves the correlation with comparable MAE values
for these datasets as well, compared to Score12. However, the performance measured by the
same metric differs significantly between the different datasets, suggesting that the datasets rep-
resent different levels of prediction difficulty. These data are presented on the website.

Notes: (i) We have made some modifications to the datasets from the original publications,
such as updating deprecated PDB identifiers and correcting PDB IDs, PDB residue IDs, and
ΔΔG values based on cross-referencing to the respective publications. We now attribute each
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record of a dataset with publications from which the ΔΔG values originate. This information
was not present in some of the published datasets. (ii) Neutral experimental ΔΔG values are
defined as values within +/-1 kcal/mol, as used by Kellogg et al. We define neutral predicted
ΔΔG values as values within +/-1 score unit which differs from their definition (see [17] sup-
porting information; neutral predicted is defined to be in the range [-3, 1.1]).

Alanine scanning. Purpose of this test: A frequent application of modeling methods is the
prediction of energetically important interactions (“hotspots”) in protein-protein interfaces. By
systematically mutating protein interface residues to alanine (“alanine scanning”) and measuring
the effect on binding, Wells and coworkers [20] showed that not all residues with interface con-
tacts, but only a smaller subset of ‘hotspot’ residues contribute significantly to the binding free
energy of human growth hormone to its receptor. Subsequent studies suggested that such hot-
spots may be a general characteristic of many protein-protein interfaces [21–23]. This benchmark
tests the ability of computational alanine scanning protocols to recapitulate the results of mea-
surements of changes in binding affinity (ΔΔG values) produced by experimental alanine scan-
ning. A computational protocol performing well on this test set can then be used for additional
applications, for instance, as a design tool to disrupt protein-protein interactions by mutations or
through targeting small molecules to hotspots, or to analyze the effect of disease mutations.

Benchmark dataset: The protocol has been benchmarked on a previously published set of
the energetic effects of 233 mutations to alanine in 19 different protein-protein interfaces with
known crystal structures [24].

Rosetta protocol: We have re-implemented a previously published alanine scanning proto-
col [24,25] in the current version of Rosetta to determine the current performance of this
method. Unlike the generalized ΔΔG protocol described above, which performs side chain opti-
mization and side chain and backbone minimization over the entire protein structure, the ala-
nine scanning protocol does not model perturbation of the backbone or side chains other than
the side chain of the residue replaced with alanine.

The ΔΔG of binding upon mutation to alanine is calculated using the following equation, in
which Rosetta total energy is used to estimate the ΔG of folding of each of the six terms:

DDGbind ¼ ðDGMUT
complex � DGMUT

partnerA � DGMUT
partnerBÞ � ðDGWT

complex � DGWT
partnerA � DGWT

partnerBÞ

Alanine scanning uses a version of Rosetta’s Talaris energy function with modified weights
intended for scoring mutations to alanine within interfaces, where the score term representing
repulsive electrostatic interactions is down-weighted.

The previously published protocol [24,25] is available via the Robetta webserver at http://
robetta.bakerlab.org/alascansubmit.jsp, which has provided more than 20,000 predictions to
date. The implementation described here will allow users to run predictions off-line and on
large datasets, and implement and test modifications to the protocol.

Performance metrics: Performance can be measured using the same metrics as in the gener-
alized case of the ΔΔG protocol described above, including the Pearson’s correlation of pre-
dicted ΔΔG values to experimental ΔΔG values, mean absolute error (MAE), and fraction
correct (see previous section for descriptions of these metrics).

Key results: Alanine scanning performance has not shown improvement when used with
modern Rosetta score functions and aggressive side chain/backbone minimization methods;
performance of the protocol described here is comparable to that shown in earlier publications
[24,25] and available on the Robetta server.

Notes/Limitations: (i) As the alanine scanning protocol does not perturb the protein back-
bone or side chains (other than the mutant residue), this protocol is not suitable for use on
mutations outside of the interface. A mutation outside of the interface will not change the
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predicted interaction energy without the use of a more intensive sampling protocol. (ii) As the
backbone structure of the wild-type crystal structure is assumed to be a close approximation of
the backbone structure of the mutant, this protocol is not useful in situations where this
assumption does not hold. This includes testing of many simultaneous mutations that may
result in larger structural rearrangements.

2. Design tests
Protein design methods are difficult to test rigorously because an ideal benchmark set would
contain both successful and unsuccessful designs, however, the number of cases where both
have been characterized functionally and structurally is small and not yet diverse enough. Until
the amount of available data of this nature greatly increases, other datasets, in particular the
diversity of sequences present in naturally evolved protein families or selected in large-scale
experimental screens, can provide informative benchmarks that have been used in the past to
assess and compare design methods [26,27]. In the following sections, we first focus on design
tests using evolutionary information, and then describe a benchmark testing prediction of pro-
tein recognition specificity using data from comprehensive phage display experiments. In each
case, we compare designed and evolutionary or experimentally selected sequences using met-
rics comparing not individual sequences (as the number of possible sequences is large and
hence the chance of an exact match at all sequence positions extremely small), but instead pre-
dicted and observed amino acid distributions.

2.1 Using evolutionary information
Purpose of this test. Evolutionary pressures on protein structure and function have

shaped the amino acid sequences of today's naturally occurring proteins [28]. Consequently,
the sequences of natural proteins are nearly optimal for their structures [29]. Natural protein
sequences therefore provide valuable information for evaluating the accuracy of computational
protein design in predicting sequences consistent with a given protein structure and function.
We expect that an ideal computational protein design method should be able to recapitulate
properties of naturally occurring proteins, including amino acid sequence preferences
(“sequence profiles”) and patterns of amino acid covariation. In particular the latter tests
whether computational protein design methods are capable of recapitulating the precise details
of specific residue-residue interactions in proteins.

Benchmark dataset. To evaluate to what extent protein design methods can recapitulate
properties of naturally evolved proteins, we first characterized amino acid sequence profiles and
amino acid covariation in 40 diverse protein domain families. Protein domains for this bench-
mark were selected from Pfam [30] based on the following criteria: (i) there is at least one crystal
structure of the domain available from the PDB; (ii) there were at least 500 sequences of the
domain family available from Pfam; and (iii) the domain had 150 or fewer amino acids. We
selected 40 structurally diverse domains that satisfied these criteria. Sequence profiles were calcu-
lated by determining the amino acid distribution at each position and amino acid covariation
was calculated for all pairs of amino acids using a mutual information based metric [31].

Rosetta protocol. We designed 500 sequences for each domain using a variety of protein
design methods that used the same energy function but differed in how they modeled protein
backbone flexibility. As a baseline, we performed fixed backbone protein design, which does
not allow the backbone to be moved. Flexible backbone design simulations were performed
multiple times using different temperatures and different types of backbone moves to assess
how the magnitude and mechanism of backbone variation affects the recapitulation of natural
sequence properties. The different types of backbone moves included Backrub, Kinematic
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Closure (KIC), small phi/psi moves and all atom minimization (Relax). We also tested fixed
backbone design using a soft-repulsive energy function. Additional details on the different
methods are described in [26] and Rosetta command lines are provided on the web resource,
along with a performance comparison.

Notes/Limitations. This benchmark makes the assumption that naturally occurring pro-
teins are optimized for stability given their particular three-dimensional structures used as
input. However, there certainly exist cases where proteins trade stability for function, such as
hydrophobic patches that act as protein-protein binding interfaces or charged residues in the
protein core used for catalyzing chemical reactions. We therefore expect to observe some dif-
ferences between naturally occurring sequences and sequences predicted by an accurate protein
design method (even if it were perfect). The benchmark assumes that methods that predict
more “native-like” sequences overall are more accurate and thus more useful for experimental
design applications [29]. In these applications, functional constraints, such as binding and
catalysis, are usually explicitly represented by including functional binding partners or specify-
ing certain key catalytic groups and their conformations.

Native sequence recovery
Performance metrics. Native sequence recovery [29] measures the ability of computa-

tional protein design to predict the amino acid sequence of a protein given its backbone confor-
mation (Fig 1B). This is simply calculated as the percent identity between the native sequence
and a designed sequence.

Key results. We found that adding a small degree of backbone flexibility prior to design
increased sequence recovery on average, however, further increasing the amount of backbone
flexibility led to worse sequence recovery scores. A possible explanation for this decrease in
recovery is that allowing more backbone flexibility resulted in sequences with a greater diver-
sity in their amino acid sequences and consequently greater divergence from the native
sequence. To confirm this, we calculated sequence entropy for the designed sequences and
found that structural variation is positively correlated with sequence diversity. These results
highlight a caveat with using native sequence recovery as a test of protein design accuracy,
which is that protein sequences can be very different from each other but still be consistent
with the same protein fold [32], and it is this sequence divergence that can be utilized to evolve
existing proteins for new functions.

Sequence profile recovery of protein families
Performance metrics. Sequence profiles represent the distribution of amino acids at each

position in a multiple sequence alignment of a protein family (Fig 1C). To compare natural
and designed sequence profiles, we computed the divergence between the amino acid distribu-
tions at corresponding positions in the natural and designed sequences, as described in [32].
Briefly, profile similarity is the product of two scores: (i) the estimated probability that two
amino acid distributions represent the same source distribution; and (ii) the a priori probability
of the source distribution. It is defined as:

Profile Similarityðp; qÞ ¼ 1

2
ð1� DJS½pkq�Þð1þ DJS½rkP0�Þ

where p and q are amino acid probability distributions at corresponding positions in natural
and designed sequences, r is the average of p and q, P0 is the background distribution, and D

JS

is the Jensen-Shannon divergence. Using this metric, positions in designed sequences receive
high profile similarity scores if both: (i) their amino acid distribution is similar to the amino
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acid distribution at the corresponding position in the natural alignment; and (ii) their amino
acid distribution is different than the background amino acid distribution.

Key results. We observed that backbone flexibility improved our ability to recapitulate
sequence profiles of naturally occurring protein families relative to fixed backbone design, and
that there exists an optimal magnitude of backbone flexibility (using Rosetta kT = 0.9 in “back-
rub” simulations, [26]) given that low or high temperature simulations performed worse than
medium temperature simulations. This analysis also revealed an important pathology in the
designed sequences, which showed an unrealistically high percentage of designed buried polar
residues when compared to the natural sequences. To overcome this problem, we repeated the
benchmark using a newer Rosetta energy function, Talaris [19] that has stricter definitions for
hydrogen-bonding geometries. We found that this decreased the percentage of buried polar
residues, including serine, threonine and histidine, although it remained higher than in the nat-
ural sequences (Fig 2 and S1 Fig). These results can be quite sensitive to the reference energies
in the applied energy function (which allow energetic evaluation of mutations). Existing auto-
mated tools [33] that reweight reference energy terms can be used to develop alternative energy
functions. Future improvements to sampling and scoring will be required to further reduce the
percentage of buried polar groups to levels found in naturally occurring proteins.

Amino acid covariation
Performance metrics. To evaluate how well a given protein design method could recapit-

ulate natural amino acid covariation, we designed 500 sequences for each protein domain in
the benchmark and calculated the covariation between all pairs of positions in the designed
sequences (Fig 1D). Covariation is calculated based on a mutual-information based metric

Fig 2. Comparison of occurrences of different amino acid residue types observed at buried positions between natural sequences and sequences
designed with two different Rosetta energy functions. Barplot showing the percent occurrence of each type of amino acid found at buried positions in
natural and designed sequences across 40 diverse protein families. Buried positions are defined as positions with greater than 14 neighboring positions,
where neighboring positions have C-β atoms within 8Å of the C-β atom of the residue of interest. The X-axis is sorted by the magnitude of improvement of the
Talaris energy function relative to the previous Score12 energy function with respect to the similarity to the natural percent occurrences.

doi:10.1371/journal.pone.0130433.g002
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described in [31]. The mutual information (MI) between each pair of columns in a multiple
sequence alignment, i and j, was calculated as the difference between individual entropies (Hi,
Hj) and the joint entropy (Hi,j):

MIi;j ¼ Hi þ Hj � Hi;j

The background mutual information due to random noise and shared ancestry is then sub-
tracted to obtain the product corrected mutual information (MIp) [34]:

MIpi;j ¼ MIi;j �
MIi �MIj

MI

whereMIj is the mean MI of position i with all other positions andMI is the overall mean

value. Next this value is converted to two Z-scores, one for each column, which are then multi-
plied together:

Zi�y ¼
MIpi;j �MIpi

sðMIpiÞ
�MIpi;j �MIpj

sðMIpiÞ

The final covariation score, called Zpx, is calculated as the square root of the absolute value
of Zi×y. (If Zi×y is negative, then Zpx is multiplied by-1.) This normalization was previously
shown to reduce sensitivity to potential misaligned regions in multiple sequence alignments,
which otherwise result in artificially high MI scores [31]. Similarity between natural and
designed covariation was calculated as the percent overlap between the highly covarying pairs
in the natural sequences and in the designed sequences. We considered pairs with covariation
scores greater than two standard deviations from the mean to be highly covarying [26].

Key results. We used this metric for quantifying the similarity of natural and designed
covariation in order to compare different flexible backbone protein design methods that varied
in either the magnitude or mechanism of backbone flexibility. As with sequence profile recov-
ery, we observed that backbone flexibility improved our ability to recapitulate naturally occur-
ring amino acid covariation relative to fixed backbone design, and that there exists an optimal
magnitude of backbone flexibility (in the range of kT = 0.6 to kT = 0.9 in Rosetta simulations).
We also found that flexible backbone design methods which incorporate backbone flexibility
via iteratively applying local backbone moves (e.g. Backrub [35] or Kinematic Closure [36])
performed better than Rosetta methods that globally alter the backbone of the entire protein (e.
g. Relax or AbInitioRelax) [26].

2.2 Using large-scale experimental data
Recognition specificity. Purpose of this test: “Sequence tolerance” refers to the concept

that a certain profile of allowed residues can accommodate the evolved structure and function
of a protein (Fig 1E). The computational sequence tolerance protocol attempts to predict the
allowed sequence profile in protein-protein interfaces. The predictions are tested for their abil-
ity to recapitulate the sequence specificity preferences of protein recognition domains that
have been determined by comprehensive phage display experiments. In contrast to the com-
parison to sequences of evolutionary families in the previous section, the experimentally deter-
mined profiles were selected primarily based on the same criterion (most stable binding) as in
the design simulations.

Benchmark dataset: The experimental data used for comparison in this benchmark set
come from phage display specificity profiles for naturally occurring PDZ domains [37], as well
as phage display profiles for peptide interactions with synthetic variants of the Erbin PDZ
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domain [37,38], comprising over 8000 peptide sequences tested against 169 natural and syn-
thetic PDZ domains total.

Rosetta protocol: There are two main computational steps: (i) the Rosetta Backrub applica-
tion [35] uses Monte Carlo sampling starting from a single input structure to create an ensem-
ble of near-native conformations; (ii) the sequence tolerance application [39,40] then uses a
genetic algorithm to sample and score a large number of sequences for each member of the
ensemble. An input file defines the sequence positions to be designed, and interactions within
and between different parts of the structure can be individually reweighted, depending on the
desired objective.

Performance metrics: The analysis scripts use Boltzmann weighting to generate a predicted
position weight matrix (PWM) for the specified sequence positions. This predicted PWM can
be compared to known sequence profiles via these metrics described in the previous sequence

tolerance publications [39,40]: (i) AAD, average absolute deviation, defined as 1
N

XN
i¼1

jEi � Pij

and (ii) Frobenius distance, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðEi � PiÞ2
s

, where E is the vector of experimentally

determined amino acid frequencies and P is the corresponding vector of predictions. (iii) AUC,
or area under the receiver operator characteristic curve, measures the ability of the predictions
to match the experimental values on a known scale, where 0.5 indicates random predictions
and 1.0 is perfect. (iv) “Rank top”measures the predicted rank of the most frequent experimen-
tally determined amino acid.

Key results: Recognition specificity performance with Talaris is comparable to the originally
published performance of the protocol with Score12 [39,40].

Notes/Limitations: (i) Although the sequence tolerance protocol is capable of generating
backbone flexibility, which improves performance, it still relies on known input starting struc-
tures. Mutations can be made to these starting structures in order to predict the recognition
specificity of experimentally characterized mutated proteins, but the additional mutation step
might reduce the overall performance of the protocol. (ii) The backrub phase of the protocol
must be run at a reasonable temperature (see protocol capture) to generate an appropriately
matching amount of backbone flexibility in the sequence tolerance step. (iii) Due to limitations
in the sequence space sampled by the genetic algorithm, it is not recommended to try and sam-
ple more than about 4–6 design positions simultaneously. (iv) Sequence profiles produced by
this method may accurately predict the most frequently observed amino acid at a design posi-
tion without containing enough total variation at that same position. (v) The performance met-
rics described above ignore potential co-variation in predicted or experimentally selected
sequences.

3. Structure prediction tests
Loop reconstruction. Purpose of this test: Being able to correctly model loop conforma-

tions (Fig 1F) is crucial because of their functional importance in many proteins, such as in
forming the complementarity-determining regions in antibodies or in controlling substrate
access and product release in enzyme active sites. However, since many loops in protein struc-
tures are flexible, loop modeling is computationally hard, because the many backbone degrees
of freedom (depending on the length of the loop) result in a vast conformational search space.
The purpose of this test is to reconstruct known native loop conformations, as observed in
crystal structures, in non-redundant benchmark sets of different loop lengths.
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Benchmark dataset: The Rosetta loop modeling benchmark [36,41] tests the ability of a pro-
tocol to reconstruct the backbone conformation of 12-residue loop segments in protein struc-
tures. The benchmark set consists of 45 non-redundant protein segments without regular
secondary structure, curated from two previously described datasets [42–47]

In each case, the given segment is deleted from the protein structure and then reconstructed
de novo, given a fixed backbone environment for the rest of the protein. All segment side chains
and those within 10Å of the segment are modeled based on a side chain rotamer library [48]
that does not include the native side chain conformations.

The long loops benchmark [41] analogously tests whether protocols are able to reconstruct
loop segments of 14–17 residues. This benchmark set consists of 27 non-redundant long loops,
extracted and manually curated from the dataset described in [49], by requiring at most five
residues within 6Å of symmetry mates in the crystal lattice to minimize the potential impact of
crystal contacts on loop conformations. De novo loop reconstruction and side chain optimiza-
tion are performed as described above for the standard loop modeling benchmark.

Rosetta protocol: Several protocols have previously been developed to reconstruct or predict
the backbone conformation of loops in protein structures. The CCD protocol in Rosetta [43]
uses insertion of fragments from proteins of known structure to sample the loop backbone
degrees of freedom, followed by torsion angle adjustments via cyclic coordinate descent (CCD)
to close the resulting chain break [50]. The kinematic closure (KIC) protocol [36] samples all
but six loop backbone degrees of freedom probabilistically from Ramachandran space. These
remaining three pairs of φ/ψ torsion angles are then solved analytically through kinematic clo-
sure to close the chain break [51]. Next-generation KIC (NGK) [41] adds four additional sam-
pling strategies to the standard KIC protocol: (i) the selection of pairs of φ/ψ torsions from
neighbor-dependent Ramachandran distributions; (ii) sampling of ω degrees of freedom; as
well as annealing methods that gradually ramp the weights of (iii) the repulsive terms; and (iv)
the Ramachandran terms of the Rosetta energy function to overcome energy barriers. All three
loop modeling protocols use Monte-Carlo simulated annealing for rotamer-based side-chain
optimization (“repacking”) of the loop residues and those within 10 Å of the loop, followed by
gradient-based minimization.

Performance metrics: With each loop modeling protocol, hundreds of models are generated
per benchmark case. Each model is then superposed onto the native structure (excluding the
reconstructed loop), followed by calculating the loop backbone heavy-atom root mean square
deviation (RMSD) of the model to the native loop conformation. The overall benchmark per-
formance of each protocol is then evaluated using two different metrics across the entire
benchmark set: (i) the median loop backbone RMSD of the lowest-energy model to the native
structure (or median lowest loop backbone RMSD of the 5 lowest-energy models, which is less
susceptible to stochastic fluctuations [33]); and (ii) the median percentage of models generated
that have a loop backbone RMSD below 1Å (sub-angstrom predictions).

Key results: With the Rosetta Score12 energy function (the standard before the switch to the
Talaris2013 energy function in revision 55274), only the KIC [36] and NGK [41] protocols suc-
cessfully sampled sub-angstrom loop conformations in many cases, achieving a median RMSD
across the entire 12-residue loop benchmark set of<1Å. NGK significantly outperformed stan-
dard KIC in the sampling of sub-Å loop conformations, with NGK reaching a median of 16.3%
sub-Å models compared to 4.3% for standard KIC [41]. Since the advent of the Talaris2013
score function [19,33], the CCD protocol now also achieves a median RMSD< 1Å on the
12-residue loop dataset. The median percentage of models with sub-Å RMSD is still signifi-
cantly higher for NGK (13.4%) than for standard KIC (6.4%) and CCD (1.8%). For the more
difficult sampling problem in the long loops benchmark, the sub-Å sampling performance of
NGK improved from Score12 (0.53%) to Talaris2013 (1.0%).
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Notes/Limitations: (i) Flexible loops are often better described by a conformational ensem-
ble rather than a single conformation, and some simulations indeed reveal several clusters of
different low-energy conformations. (ii) Crystal contacts can influence loop conformations,
and the absence of those contacts during modeling can result in predictions differing from the
crystallographic conformation. (iii) There are similar considerations for the presence of water
molecules, ions or other small molecules, which might influence loop conformations. (iv) For
the KIC and NGK protocols, the start and end points of loops are assumed fixed during the
simulations; this simplifies the sampling problem in the context of “native” loop endpoints (i.e.
taken from a crystal structure), but complicates the situation when the conformation of loop
endpoints may not be known exactly, e.g. when building loops in homology models. In these
cases, protocols that sample the positions of the endpoints or apply KIC moves over several
overlapping regions may be more suitable. (v) Modeling long loops is difficult for current pro-
tocols, due to the large conformational search space, which is apparent from the considerably
lower fraction of sub-angstrom models in the 14–17 residues loop benchmark. (vi) The KIC
and NGK protocols do not preserve protein secondary structure, due to probabilistic sampling
of φ/ψ torsions from Ramachandran space. Additional sampling constraints could be included
to preserve secondary structure.

Website Description
The benchmark captures are collected and presented online at https://kortemmelab.ucsf.edu/
benchmarks. The purposes of the website are to: (i) describe specific and well-defined problems
in computational modeling; (ii) describe and provide benchmarks which can be used to mea-
sure the success of methods designed to address these problems; (iii) publish the performance
of methods using parameters provided by experienced users; and (iv) act as a unified portal for
downloading the benchmark captures.

On the main benchmark page (Fig 3A), we describe each benchmark—its purpose, applica-
tion, and the currently considered datasets—and publish results of benchmark runs so that
users can quickly gauge the performance of different methods. Relevant command lines are
provided to promote best practice for each method when using the Rosetta software suite.

Each capture has been compiled as a version-controlled, publicly-accessible, open-source
archive (currently hosted on GitHub), containing both the associated benchmark datasets and
scripts to analyze benchmark output in a specific format. Execution scripts to run the bench-
mark using at least one computational method are provided. Both the analysis and execution
scripts are documented in detail within the capture, and this documentation can be viewed
online on GitHub. For convenience, these captures are available for download directly from
the web resource (Fig 3B).

As our intention is to provide a dynamic resource, it may be appropriate to refine or expand
certain datasets as new data become available in the future. Version control allows us to update
the contents while allowing users to track changes in the datasets or analysis metrics. Major
changes to repositories will be tagged and referred to in the website text. Following the philoso-
phy of the computer language benchmark projects [52,53], the parameters used for each
method should reflect the best practice. For this reason, they should be ideally contributed by a
developer or experienced user, and we encourage users to submit their methods, parameters,
and results for inclusion on the website.

We have aimed to provide rich, user-friendly datasets. For example, the protein stability
datasets are provided in both JSON and CSV formats. The former is readily integrated with
multiple programming languages and web frameworks whereas the latter is human-readable
and easily imported into spreadsheet applications. In both of these datasets, each record is now
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associated with experimental values taken from the literature—which we were able to deter-
mine using the rich source of data provided by the ProTherm database [7]—so that outliers in
the predicted set can be investigated using the original experimental data.

Discussion
We have presented our implementation of a benchmarking and protocol capture web resource
which currently describes five diverse benchmarks and their expected performance when tested
using a known best-practice methods from the Rosetta software suite. The web site functions

Fig 3. Benchmark and protocols capture website. Left: The website presents an overview of each benchmark and publishes the performance of different
methods using a set of standardized metrics. Parameters important to the protocol performance are also provided. Right: Each benchmark capture is stored
in a documented version-controlled archive. The most recent version can be downloaded directly from the website.

doi:10.1371/journal.pone.0130433.g003
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as an openly accessible, online, and version-controlled collection of a variety of benchmarks
and macromolecular modeling and design protocols, providing a summary of the evolution of
the protocols and indicating their expected performance on the associated benchmarks.

The web resource was motivated by previous work [52,53] which has fostered, and contin-
ues to foster, competition and innovation in computer language development through the
open communication of standardized benchmarks which allow for direct and fair comparison
between competing computer languages. In those projects, knowledge of the performance of
each language for the particular problem and the open communication of the most efficient
code is important for both software developers when choosing which language to use for a par-
ticular project and for the language developers so that they can identify parts of the language
for optimization. By providing both curated diverse datasets for benchmarking and analysis
scripts to generate a set of appropriate metrics, we hope that we can help developers to evaluate
new methods in informative ways, which is critically needed for continued progress in many
areas of structure-based modeling and design.

Supporting Information
S1 Fig. Comparison of occurrences of different amino acid residues (by polarity) observed
at buried and exposed positions. Each barplot shows the percent occurrence of each polarity
category of amino acid found in natural and designed sequences across 40 diverse protein fami-
lies. Yellow bars show the percent occurrence in natural sequences, red the percent occurrence
in sequences designed using Rosetta’s Score12 energy function, and blue the percent occur-
rence when designing with Rosetta’s Talaris energy function. Neighboring positions are defined
as any position with a C-β atom within 8Å of the position being investigated. For the purposes
of this figure, nonpolar amino acids are defined as: CGAVLIMFWP, polar: STYNQ, charged:
HRKDE. (A) Exposed positions are defined as positions with between 0 and 8 neighboring
positions. (B) Buried positions are defined as positions with greater than 14 neighboring posi-
tions. Using the Talaris energy function reduces the percentage of charged residues placed in
buried positions by 43% (from 10.5% to 6.2%), bringing the predictions closer to the native
sequence properties.
(EPS)
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