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Abstract: Systemic infections with pathogenic or facultative pathogenic bacteria are associated with
activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting
system. Bacterial proteins leading to platelet activation and aggregation have been identified, and
while platelet receptors are recognized, induced signal transduction cascades are still often unknown.
In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Strep-
tococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to
cellular receptors or form pores, which can result in disturbance of physiological functions of platelets.
Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and
platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More
importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneu-
molysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction
due to killing by toxins and potential treatment interventions protecting platelets against cell death
are summarized.

Keywords: Streptococcus pneumoniae; platelet killing; platelet activation; pore formation; surface
proteins; toxin; pneumolysin; Staphylococcus aureus; MSCRAMMs

1. Introduction

Platelets are anucleated, discoid shaped cells of the blood with a size of 2–4 µm in
diameter [1]. Platelets are derived from megakaryocyte (MK) shedding in the bone marrow
and the lungs [2,3]. Hence, their translation repertoire is limited to stable MK-derived
mRNA [4]. Important platelet functions contribute to coagulation and closure of vascular
damage occurring during, e.g., microbial infections. The main players during this processes
are the surface expressed group of platelet glycoproteins. They are expressed in high
numbers such as, e.g., integrin αIIbβ3, which is highly abundant on the surfaces of platelets
and megakaryocytes and is involved in the crosslinking/aggregation of single platelets
after activation [5]. Integrin αIIbβ3 is the fibrinogen receptor but also interacts with other
extracellular matrix (ECM) proteins containing an RGD-like motif such as von-Willebrand-
Factor (vWF), thrombospondin-1 (TSP-1), or fibronectin [6]. Platelet factors playing a role
in hemostasis and infection are stored in different cytoplasmic granules. These granules
undergo exocytosis upon platelet stimulation/activation and release their content into the
circulation or granule proteins re-associate to the platelet surface [7]. Three types of granules
can be distinguished: alpha-granules, dense granules, and lysosomal granules. Dense
granules contain adenosine diphosphate (ADP), adenosine triphosphate (ATP), serotonin,
histamine, and ions such as Ca2+. Alpha granules contain platelet factor 4 (PF-4, CXCL4),
P-selectin, coagulation factors such as factor V, mitogenic factors, adhesive glycoproteins
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such as vWF, TSP-1, and fibrinogen, but also microbicidal proteins. Glycosidases, which
are important for clot retraction, are mainly stored in the lysosomal granules [7].

However, in addition to their role in hemostasis, platelets have other important
functions. In recent years, platelets have been increasingly recognized as immune and in-
flammatory cells. Several studies have highlighted the role of platelets in acute and chronic
inflammatory processes such as stroke, myocardial infarction, infections, and sepsis [8–12].
Indeed, platelets are the most abundant circulating cell type with important immune func-
tions. They display their function as immune cells either locally at sites of platelet activation
or systemically by interacting with, e.g., leukocytes or via release of immune modulatory
molecules [13,14]. Platelets store more than 300 proteins in their granules [15]. Besides
the abovementioned proteins, granules also contain proteins acting as chemokines and
cytokines such as, e.g., RANTES (Regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted) or CXCL12 (stromal cell-derived factor 1), and recruit and stimulate
other cells of the immune system or induce endothelial inflammation [16]. Granule release
also leads to changes in the platelet membrane composition. An increased number of inte-
grin αIIbβ3 molecules and increased surface expression of P-selectin (CD62P) can be found
on the surface after platelet activation. Exposure of P-selectin mediates initial interactions
between platelets and leukocytes via immobilization of leukocytes at the site of lesion [17]
and is used as a binding partner for initiation of complement activation [18]. In addition,
platelets are a peripheral source of serotonin, stored in dense granules, which leads to
differentiation of monocytes into dendritic cells (DCs) and also T-cell activation [19].

2. Platelets as Immune Cells in Infections

The first systemic response of the body to any kind of infection, tissue injury, or trauma
is known as the acute phase response (APR). During APR, proinflammatory cytokines are
released and acute phase proteins are produced [20]. By impairing microbial growth and
promoting procoagulant activity to trap pathogens in local blood clots, platelets play a
crucial role in the APR [21]. In addition, next to inflammatory and immune cells, platelets
also produce interleukin 1-β (IL-1β) [21], which is not stored in granules as ready-to-use
protein, but instead is translated from megakaryocyte (MK)-derived mRNA and released
upon stimulation [22]. In mouse models of malaria, IL-1β has been demonstrated to play
a major role in induction of the APR [21]. Another aspect that makes platelets part of the
innate immune system is the expression of pattern recognition receptors (PRR) such as toll-
like receptors (TLRs). TLR4, for example, is able to recognize bacterial lipopolysaccharides
(LPS), which leads to platelet activation and release of IL-1β-rich microparticles, promoting
interaction and activation with, e.g., endothelial cells [23]. However, others did not observe
activation of washed platelets after incubation with LPS. Only incubation of whole blood
with LPS led to increased P-selectin levels [24], indicating an indirect effect of LPS on
platelets. During bacterial infections, TLR2 can be stimulated, leading to formation of
platelet/neutrophil aggregates, which enhances adhesion of the aggregates to sites of injury
or infection [25]. In addition, TLR2 stimulation of MKs is followed by increased maturation
of MKs and elevated protein content, suggesting effects on platelet count, platelet function,
and inflammation [26].

Besides their role in innate immunity, platelets are also pivotal for the acquired immune
response. Platelets stimulate T-cell activation, trafficking, and also differentiation [27].
T cells are divided, with MHC class II recognizing CD4+ cells and MHC class I recognizing
cytotoxic CD8+ cells. CD4+ cells release cytokines regulating the activity of B cells and
innate immune cells and can be divided into immune effector cells (Th1, Th2, Th17) and T-
regulatory cells. Platelet-derived chemokines such as RANTES trigger activation and arrest
of T cells at sites of infections. Upon release, RANTES is immobilized on the endothelium
and triggers the arrest of monocytes and monocyte-derived cells at the endothelium but
not on adherent platelets in a shear resistant manner (Figure 1) [28]. Adhesion of rolling
monocytes on activated platelets as well as on the exposed endothelium is P-selectin-
dependent, and this interaction further triggers expression and secretion of cytokines such
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as TNF-α [29–31]. Furthermore, CXCL4 (PF-4) can mediate T-cell trafficking to sites of
injury or infection by direct and indirect stimulation of CXCR3 expression on T cells [14].
In addition, T cells are also able to activate platelets via CD40L/CD40 interaction, leading
to the release of chemokines such as RANTES and an increase in T cell recruitment [32,33].
Platelets further recruit and activate DCs via CD11b-JAM-C interactions, and the increased
expression of CD80 and CD86 leads to enhanced T-cell response [34,35].

Figure 1. Scheme illustrating different platelet functions in the immune response. Platelets sense and
bind invading bacteria and injured endothelium, resulting in platelet activation. Upon activation,
platelets release chemokines and cytokines such as RANTES, triggering leukocyte recruitment and
PMVs acting on gene expression of monocytes and monocyte (MC)-derived cells such as dendritic
cells (DC). In addition, neutrophils are attracted, and NET formation occurs at the site of infection via
platelet-dependent mechanisms. Created with BioRender.com (accessed on 21 March 2022).

Another immune cell function of platelets is displayed by the release of microvesicles.
The so-called platelet microvesicles (PMVs) are lipid membrane vesicles with a size of
0.1–1.0 µm that are mediators of cell–cell communication. Elevated numbers of PMVs
in the circulation are associated with inflammation and diseases such as arthritis [36],
development of an acute coronary artery syndrome, and stroke [37,38]. PMVs carry ad-
hesion molecules (CD62P, RANTES) that facilitate monocyte arrest at sites of deposited
PMVs (vessel walls) and additional recruitment of activated platelets [39]. PMVs contain
up to 250 different microRNAs (miRNAs, 20–22 nucleotides long). These miRNAs and
also other stored molecules can be transferred to other cell types such as immune cells,
vascular cells, and also smooth muscle cells, thereby changing their gene expression [40,41].
Changes in gene expression include phenotypic switches of monocytes and monocyte-
derived cell lines such as macrophages towards a phagocytic phenotype (Figure 1) [42].
Furthermore, not only PMVs released upon platelet activation but also upon apoptosis of
platelets have immunomodulatory effects, as shown by differentiation of monocytes into
phagocytes [43]. In bacterial infections, platelets can contribute to clearance of bacteria via
release of antimicrobial peptides present in PMVs or stimulation of immune cells via release
of immunomodulatory molecules. PMVs can be distinguished in kinocidins, defensins,
thymosins, and derivatives of antimicrobial peptides, which act against Staphylococcus
aureus (S. aureus) and Candida albicans [44,45].

3. Interactions of Platelets with Bacteria

Bacteria are able to spread from the site of infection, thereby often crossing host barriers
and entering the circulatory system, leading to bacteremia and sepsis. Complications of
bacteremia associated with abnormal platelet functions are, e.g., infective endocarditis
and disseminated intravascular coagulation (DIC) [46]. Interactions between platelets and
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bacteria are characterized by direct (Figure 2) or indirect binding of bacteria to platelets
or via released bacterial factors [24,46,47]. Indirect binding occurs via bridging molecules
of the extracellular matrix (ECM), thereby linking bacterial surface proteins with platelet
receptors [48]. The adhesive properties of bacteria towards platelets are essential for
colonization of, e.g., cardiac valves during infective endocarditis [49,50]. Colonization can
lead to local and/or systemic infections, and this might result in platelet activation in the
bloodstream. Some bacterial infections cause severe thrombocytopenia without preceding
bacteremia. To these belong, e.g., Helicobacter pylori-mediated immune thrombocytopenia
driven by autoantibody-destroying platelets [51,52] or the hemolytic uremic syndrome
(HUS) caused by Shiga toxin-producing Escherichia coli (E. coli) [52,53], which is due to
amplification of the platelet activation process. Thrombocytopenia associated with bacterial
infections appears as a secondary effect of systemic platelet activation, coagulation, and
DIC, due to boosted platelet consumption [54].

Figure 2. Binding of S. pneumoniae (blue) to platelets (red). Scanning electron microscopy of single
platelets (upper left), single pneumococci (bottom left), and platelets incubated with the pneumococcal
TIGR4 strain for 1 h (right). The right image shows binding of pneumococci to platelets. In addition,
pneumolysin pores are formed in platelet membranes (arrows), and released granule content is
visible (circle).

Besides platelet activation as a result of bacterial binding, another mode of bacteria–
platelet interaction has been discovered, namely, internalization of bacteria by platelets. S.
aureus was the first bacterium that was described to be internalized by platelets [55,56]. A
prerequisite for internalization of S. aureus is a simultaneous platelet stimulation by ADP.
Slightly differently, Porphyromonas gingivales was shown to be internalized by platelets
without additional stimulation of platelets [57,58]. Furthermore, the platelet FcγRII receptor
might also be able to initiate internalization of IgG–bacteria complexes as it has been shown
for beads (0.5–1.5 µm in size) coupled with IgG or E. coli pre-opsonized with IgGs [59,60].
Other studies demonstrated a kind of searching and shuttling of invading bacteria by
platelets. Adherent platelets can migrate over their substrate, collecting all substrate-
bound material including bacteria, resulting in boosted activity of phagocytes [61]. In
addition, platelets were shown to deliver the intracellular bacterium Listeria monocytogenes
to dendritic cells [62]. However, the fate of the internalized bacteria is still unclear. On the
one hand, they could be killed by antimicrobial substances of α-granules. On the other
hand, the intracellular fate might help the bacteria to escape from the host immune system.

4. Platelet Receptors in Bacterial Infections and Bacterial Adhesins

Platelets express a large number of receptors involved in interactions with pathogens.
This includes integrins, G-protein-coupled receptors, ADP receptors (purinergic receptors,
P2Y), leucine-rich repeat glycoproteins (GP), Toll-like receptors (TLRs), IgG superfamily
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receptors (GPVI, FcγRIIa), and tyrosine kinase receptors [63]. The FcγRIIa receptor is a
low-affinity IgG receptor binding to the Fc part of immunogloblins [64]. About 2000 to
3000 FcγRIIa receptors are expressed on the surface of a single platelet [65], which enable
binding and internalization of immune complexes containing IgGs (Figure 3) [59]. Binding
of, e.g., IgG-covered pathogens leads to platelet activation and aggregation. Binding and
activation of other platelet receptors by bacteria often requires simultaneous stimulation of
FcγRIIa. For example, platelet aggregation induced by E. coli is dependent on simultaneous
stimulation of integrin αIIbβ3 and FcγRIIa [66]. For S. aureus and S. epidermidis, a clustering
of integrin αIIbβ3 or TLR with FcγRIIa is necessary for platelet activation [67]. Some
pathogens such as S. aureus or H. pylori require plasma proteins such as fibrinogen or vWF
to crosslink FcγRIIa with GPIb receptors for platelet activation [68].

Figure 3. Binding of bacteria to platelets occurs either directly or indirectly. Bacterial adhesins with
specific repeating units can utilize ECM proteins such as fibronectin (Fn), fibrinogen (Fg), TSP-1,
or vWF as molecular bridges to bind to, e.g., integrin αIIβ3 or other complexes of glycoproteins.
Furthermore, some bacterial factors can directly bind to integrins, TLRs, or other platelet surface
proteins. Bacteria already covered by IgGs are recognized by FcγRIIa. Created with BioRender.com
(accessed on 21 March 2022).

As mentioned above, integrin αIIbβ3 interacts with ECM proteins containing an RGD-
like motif [6]. Some bacteria express surface proteins with domains rich in serine-aspartate
repeats. This is highlighted by a family of S. aureus surface components called microbial
surface components recognizing adhesive matrix molecules (MSCRAMMs). They exhibit
sequence repeats mediating adherence to platelets or other host cell tissues as one of the
first steps during infection [69]. Well-characterized members of this family are clumping
factor A and B (ClfA and ClfB), fibronectin-binding protein A and B (FnBPA and FnBPB),
and serine-aspartate repeat-containing protein E (SdrE). Fibrinogen bridges ClfA and
ClfB via their fibrinogen binding domains to integrin αIIbβ3 [70], whereas fibrinogen or
fibronectin is used by FnBPA and FnBPB for bridging [71,72]. In addition, integrin αIIbβ3 is
also directly targeted by ClfA, but not ClfB, resulting in platelet activation (Figure 3) [73,74].
Further, integrin αIIβ3 can be directly bound by the S. aureus proteins iron-regulated
surface determinant B (IsdB) [75]. Next to pneumococci, fibrinogen also bridges proteins of
other bacteria such as serine-aspartate dipeptide repeat G (SdrG) protein of S. epidermidis to
integrin αIIbβ3 [76]. A further platelet protein target of bacteria is the surface-associated
protein-disulfide polymerase (PDI). The S. aureus extracellular adherence protein (Eap), a
member of the SERAM (secretable expanded repertoire adhesive molecules) family, binds
directly but also indirectly utilizes fibrinogen as a bridging molecule to PDI, resulting in
platelet activation [77]. Direct activation and aggregation of platelets is also achieved by
other secreted S. aureus proteins such as the chemotaxis inhibitory protein (CHIPS), the
formyl peptide receptor-like 1 inhibitory protein (FLIPr), and the major autolysin (AtlA)
(Figure 3) [24]. Upon activation of platelets, the extracellular fibrinogen-binding protein EfB
of S. aureus binds to surface-exposed P-selectin and inhibits interactions between platelets
and leukocytes [78,79].
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GPIbα is a type-1 glycosylated membrane receptor that is highly abundant on the
surface of platelets and megakaryocytes [80]. GPIbα is found in a complex with GPIbβ,
GPIX, and GPV [81] and is the receptor for vWF but also for TSP-1, α-thrombin, and
CD62P [80]. Different streptococcal species have been shown to bind to GPIbα via so-called
glycosylated adhesins containing serine-rich repeats. This protein family was described
in Streptococcus gordonii (glycosylated streptococcal protein B, GspB) [82] and Streptococcus
sanguinis (serine-rich protein A, SrpA, and hemagglutinin salivary antigen, HSA) [83] and
was shown to bind to sialic acid residues. In addition, vWF is used by bacteria for bridging
to GPIbα as was shown for S. aureus surface protein A (SpA) and an uncharacterized
H. pylori surface protein [68,84].

TLRs are type 1 transmembrane proteins widely expressed on eukaryotic cells and best
characterized on immune cells such as macrophages and dendritic cells. The ectodomain
of TLRs contains leucine-rich β-sheets interacting with PAMPs and a Toll-interleukin-1
receptor domain for signal transduction [85]. Platelets express TLR1, TLR2, TLR4, TLR7,
and TLR9, with TLR4 being the most abundant [86,87]. Next to the LPS-recognizing
TLR4, TLR2 is also important in bacterial infections. TLR2 contains a glycosylated N-
terminal ligand-binding domain with leucine-rich repeats [88] and recognizes bacterial
lipoproteins [89]. Platelet TLR2 has been shown to be a target of S. pneumoniae and group
B streptococci (GBS). Binding induces activation of the phosphoinositide-3 (PI3)-kinase
pathway, finally leading to platelet activation and aggregation [90,91]. The interaction
between pneumococci and platelet TLR2 induces further activation of integrin αIIbβ3 as
well as release of dense granules [90]. Furthermore, TLR9 is also involved in bacteria-
induced platelet aggregation. TLR9 recognizes cell-free bacterial DNA, which is increased
in the blood of septic patients, leading to activation of coagulation [92].

In addition to the above-mentioned platelet receptors, the zinc-dependent metallo-
proteinase ADAM10 is a receptor for the S. aureus α-hemolysin (Hla), and binding leads
to cleavage of GPVI [93]. Hla is a β-barrel pore-forming toxin, forming pores of 1–3 nm
in diameter in the lipid bilayer of eukaryotic cells. These pores allow molecules up to a
size of 4 kDa to pass through [94,95]. Hla is expressed by most S. aureus clinical isolates,
and expression levels have been reported to correlate with virulence and disease sever-
ity [96,97]. Interactions of platelets with Hla have been reported to cause platelet activation
and aggregation [98,99]. In addition, we recently demonstrated that Hla-mediated platelet
activation is followed by loss of platelet function, leading to impaired thrombus formation
and reduced stability of formed thrombi [100].

5. Platelets in S. pneumoniae Infections

S. pneumoniae exhibits the typical characteristics of Gram-positive bacteria. Pneumococci
are enclosed by a flexible bilipid membrane, which is surrounded by a thick, multi-layered
peptidoglycan sacculus composed of highly cross-linked glycan strands [101]. Besides pepti-
doglycan, teichoic acids are a general constituent of the Gram-positive cell wall [102]. Pneu-
mococci possess rather complex, structurally unique, peptidoglycan-anchored wall teichoic
(WTA) and membrane-anchored lipoteichoic acids (LTA), which are built up of identical re-
peating sugar units, highly decorated with phosphorylcholine [103,104]. Pneumococci shield
themselves from the environment by a thick polysaccharide capsule enveloping the cell
wall, whose composition is serotype-specific [105]. The capsule is the main virulence factor
of pneumococci and protects the bacteria effectively from opsonization and phagocytosis
by the host immune system [106]. Furthermore, four classes of proteins can be found on the
surface of pneumococci, which can be classified by their mode of anchoring. The largest
group with 37 predicted members is the group of lipoproteins, which are anchored to the
bacterial cell membrane via an N-acyl diacylglycerol group [107,108]. Most of the lipopro-
teins are predicted to be part of ABC-transporters, which are essential for nutrient uptake
and therefore directly involved in bacterial fitness [109]. Other lipoproteins have been
shown to have essential functions in protein folding, cell wall biosynthesis, stress response,
or pathogenicity [110–113]. The second group of pneumococcal surface proteins is the
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unique group of choline-binding proteins (CBPs). This group consists of 13–16 proteins
(strain dependent), which contain N- or C-terminally a choline-binding domain composed
of highly conserved choline-binding modules. CBPs are non-covalently bound to the
phosphorylcholine moiety of the repeating units of WTA and LTA [114]. Well-characterized
CBPs are the major autolysin LytA, which plays an important role in autolysis and viru-
lence and the pneumococcal surface protein C (PspC), which is essential for pneumococcal
colonization and pathogenesis [115–119]. The third class of pneumococcal surface proteins
(about 13–19 members) contains a C-terminal cell wall-sorting signal beginning with a
LPXTG amino acid motif [120,121]. The transpeptidase sortase A (SrtA) recognizes this
motif; cleaves between the threonine and glycine residues; and anchors the protein to
lipid II, which is subsequently incorporated into the peptidoglycan of the cell wall [122,123].
Known representatives from this group are, for example, the neuraminidase A (NanA)
and the pneumococcal adhesion and virulence factor B (PavB), which were shown to be
involved in pneumococcal adhesion and pathogenesis. The fourth group of pneumococcal
surface proteins is the so-called moonlighting proteins, also known as non-classical surface
proteins. This group includes enzymes that are actually ubiquitous intracellularly but can
also be found on the surface of bacteria, where they play an additional role, often associated
with virulence [124]. One example of such a protein is the pneumococcal enolase, which
intracellularly converts 2-phosphoglycerate to phosphoenolpyruvate during glycolysis,
but can also be found on the bacterial surface. Here, the enolase was shown to bind host
plasminogen as well as the human complement inhibitor C4b-binding protein, leading to
enhanced adherence to epithelial and endothelial cells and complement evasion [125,126].

5.1. Community Acquired Pneumonia (CAP)

S. pneumoniae is one of the leading causes of community-acquired pneumonia (CAP).
CAP is a potentially life-threatening disease, with a mortality rate of up to 14% in hospi-
talized patients [127]. The highest risk for an infection with severe outcomes is in young
children, the elderly, immunocompromised patients, and those with comorbidities [128].
During severe CAP, systemic platelet activation [129] and dropping platelet counts have
been reported. The development of thrombocytopenia correlates with increased mortal-
ity [130,131]. As discussed in Section 5.4, S. pneumoniae directly and indirectly stimulates
platelets, leading to activation and release of granule content, which is accompanied with
the release of antimicrobial peptides (AMPs). However, although AMPs are released,
S. pneumoniae is not affected by platelet releasates, but in turn destroys platelets them-
selves [132]. Neutrophils are one of the most important players in the progression of
inflammation and also sepsis. In response to bacteria, neutrophils form NETs built up of
neutrophil DNA, histones, and granular proteins such as defensins, thereby often leading
to bacterial trapping and antimicrobial actions [133,134]. Neutrophil-derived defensins
inhibit the synthesis of bacterial DNA, RNA, and proteins. In addition, lysozymes degrade
the bacterial cell wall, and elastase cleaves bacterial surface virulence factors [135]. NETs
and their extracellular histones mediate initiation and proceeding of platelet activation and
coagulation, leading to a prothrombotic phenotype [136]. Pneumococci evade trapping
in NETs by protective effects mediated by D-alanylation of LTA [137], blocking of NET
binding via pneumococcal surface protein A [138], and by degrading the neutrophil DNA
scaffold via endonuclease A [139]. Taken together, S. pneumoniae is able to evade the platelet
induced immune response, and on the contrary triggers an inflammatory and coagulant
phenotype of platelets during severe CAP.

5.2. Sepsis

Sepsis is a common complication of pneumococcal infections, with mortality rates of
up to 30%. Sepsis leads to an activation of the coagulation cascade with consumption of cir-
culating coagulation factors, platelets, and the generation of platelet–leukocyte complexes.
As a result, patients develop thrombocytopenia and DIC, finally leading to hypoxic organ
damage. Up to 50% of patients with severe sepsis develop DIC [140]. Several factors lead to
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DIC. First, coagulation is activated via different pathways [134,141,142]. Second, there is an
increase of endothelial adhesion molecules, leading to platelet adhesion to endothelial cells
and exposed subendothelial collagen. During these processes, platelet activation, aggre-
gation, microthrombus formation, and finally vessel occlusion are triggered [99,143–145].
In addition, neutrophils are attracted and affected during sepsis. High numbers of cir-
culating immature forms of neutrophils in the peripheral, impaired migration but also
prolonged presence of NETS are commonly observed in sepsis [146,147]. NET formation
indirectly triggers tissue factor release of endothelial cells, which is then captured in NETs,
further triggering coagulation [144,148]. Another factor is the massive amount of released
reactive oxygen species (ROS). ROS favor vasoconstriction and have an activating effect
on platelets [149]. Next to aggregation and thrombus formation, platelets also play a role
in inflammatory processes, which are associated with sepsis. Platelet-derived soluble
CD40L is increased in the circulation of septic patients [150–152] and plays a central role
in activation and recruitment of neutrophils by activation of the β2 integrin Mac-1 of
neutrophils and indirectly via macrophage inflammatory protein-2 and subsequent CXCR2
signaling [153,154]. Under septic conditions, activation of CXCL4 is also increased. This
results in platelet degranulation, release of proinflammatory factors, and stimulation of the
coagulation cascade [155]. Taken together, bacterially induced microthrombus and NET for-
mation can cause uncontrolled coagulation and inflammation, leading to thrombocytopenia
and DIC during sepsis.

5.3. Infective Endocarditis

Development of infective endocarditis is a complication of bacteremia caused by
S. pneumoniae. In the pre-antibiotic era, S. pneumoniae caused about 15% of IE cases. Upon
usage of penicillin or cephalosporine, the prevalence dropped to approximately 3% in the
1990s, and currently, prevalence data are missing [156,157]. IE caused by pneumococci
mainly affects the aortic valves, and patients often also suffer from acute pneumonia; a
common complication of pneumococcal IE is embolism [158]. Before bacteria can colo-
nize the valves and cause IE, the surface structure of the endothelial valves has to be
altered, as observed after previously occurred endocarditis or valve replacement [159]. On
these structural changes, fibrin and platelets adhere, forming the so called non-bacterial
thrombotic vegetation (NBTV) [160,161]. These NBTV serve as a niche for colonization in
transient bacteremia or in the case of oral streptococci, after dental treatment [162–164],
leading to further platelet aggregation on the surface and fibrin deposition [160]. By further
acquisition of fibrin and platelets, bacteria are shielded from the immune system, allowing
bacteria to reach very high densities [24,165].

5.4. Pneumococcal Interactions with Platelets

In contrast to S. aureus, little is known about the interaction between S. pneumoniae and
platelets. The first studies describing platelet activation due to pneumococci were published
in the 1970s. These studies showed that some pneumococcal serotypes induced platelet
activation and aggregation in vitro, whereas other serotypes had no effect on platelet acti-
vation [166,167]. Later, platelet aggregation was shown to be induced only in interactions
with encapsulated strains via an interaction with TLR2, but not with nonencapsulated
strains [90]. However, other studies reported contradictory results. De Stoppelaar and
colleagues did not observe platelet aggregation in encapsulated strains [168]. In addition,
a TLR2-independent platelet degranulation was observed, which could be confirmed in
mice with knockouts for several TLRs [168]. However, recent studies, including our own,
demonstrated a direct binding of pneumococci to platelets. One study showed aggregate
formation between platelets and pneumococci. This aggregate formation was depen-
dent on the presence of soluble fibrin and the presence of TSP-1 derived from activated
platelets [169]. The pneumococcal adhesins PavB and PspC are hypothesized to bind to
platelet GPII/bIII via bridging of TSP-1 [170,171].
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One of the major virulence factors of S. pneumoniae is pneumolysin (Ply), a cholesterol-
dependent cytolysin that oligomerizes into the membrane after binding to the target cell,
leading to pore formation [172]. Ply has been shown earlier to activate and aggregate
platelets depending on Ca 2+-influx through pneumolysin pores [173,174]. However, our
own data demonstrate platelet killing by pneumolysin (Figure 4) [47].

Figure 4. Scheme of different interactions between platelets and pneumococci. Individual pneumo-
coccal surface proteins can induce direct activation of platelets. On the other hand, the intracellular
pneumolysin (Ply) kills platelets by extensive pore formation in platelet membranes, as shown by
the SEM image of a Ply-treated platelet on the right side. Pneumolysin is released in the circulation
upon autolysis of pneumococci, and its action on platelets can be neutralized by the addition of
pharmaceutical IgG preparations. Created with BioRender.com (accessed on 21 March 2022).

In accordance with other studies, we also observed highly increased P-selectin signals
in flow cytometry, suggesting massive platelet activation. However, instead, as shown
by confocal imaging, only intracellular stores of P-selectin were stained due to antibodies
diffusing through the pneumolysin pores. In addition, the increase in light transmission
of the platelet suspension after incubation with pneumolysin is due to cell lysis instead
of aggregation. Platelet lysis occurred immediately after addition of pneumolysin, even
at very low concentrations. A loss of platelet function was also observed in whole blood
experiments [47]. Nevertheless, we also observed increased P-selectin signals in lysates
of ply knockout strains, which appear independent of pneumococcal-derived H2O2, since
P-selectin levels were similar in a ply-mutant and a ∆spxB∆ply double mutant (Figure 5B).
Therefore, we hypothesized that other surface-associated proteins of S. pneumoniae trigger
platelet activation. A screening of our library of pneumococcal surface proteins (Table 1) in
activation assays with washed platelets revealed candidate proteins, which directly activate
platelets. Among them were SP_0899, a lipoprotein of thus far unknown function, and
CbpL, a choline-binding protein and putative adhesion contributing to colonization [175].
In addition, AliB and SP_1833 also induced at least a slightly increased P-selectin staining.
AliB is a lipoprotein and functions as a substrate-binding protein for oligopeptides [176],
and SP_1833 (PfbA) is a sortase-anchored protein with plasmin- and fibronectin-binding
capacity [177] (Figure 3A). All tested pneumococcal lipoproteins were heterologously
expressed without the lipid moiety. The naturally occurring lipidation of lipoproteins
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has been shown to trigger TLR2-dependent signaling in leukocytes [178,179]. Therefore,
lipidated proteins were tested in comparison to their non-lipidated forms [179], but no
activation leading to P-selectin surface staining was detected. Nevertheless, it is noteworthy
to know that TLR expression levels in resting platelets is low, but they become upregulated,
and levels increase on the platelet surface upon activation [87,180]. Since proteins with
platelet activation potential were identified in all groups of pneumococcal surface proteins,
mutants were applied in activation assays lacking pneumolysin or whole groups of surface
proteins [107,177]. This was achieved by the deletion of genes encoding essential enzymes
involved in the anchoring of proteins (prolipoprotein diacylglyceryl transferase Lgt for
lipoproteins and SrtA for sortase-anchored proteins) to the bacterial surface. To remove
CBPs from the surface of pneumococci, a ply mutant was treated with choline chloride.
During severe invasive infections, antibiotic treatment autolysis as well as antibiotic-
induced lysis occurs in the bloodstream. Therefore, lysates generated from these deletion
or choline chloride-treated strains were also tested for their platelet activation potential.
Independent of the genetic background, all lysates induced increased P-selectin signals at
similar levels (Figure 1B), leading to the assumption that another factor, e.g., components of
the cell wall could be responsible for platelet activation. However, isolated and structurally
defined protein-free pneumococcal lipoteichoic acids as well as wall teichoic acids [181]
had no impact on platelet P-selectin surface expression (Table 1). Taken together, besides
the identified surface proteins, another thus far unknown factor might be able to induce
direct platelet activation. Nevertheless, the lytic effect of pneumolysin on platelets, even at
very low concentrations, probably overshoots any other effect of pneumococcal proteins on
platelets in invasive infections (Figures 1 and 4).

Figure 5. Individual pneumococcal proteins and pneumococcal lysates directly activate human
platelets. Washed platelets of a defined set of donors were incubated with different concentrations
of pneumococcal proteins (A) (Table 1) for 30 min or pneumococcal lysates (B) with the indicated
genetic backgrounds for 60 min at 37 ◦C. CD62P was used as an activation marker and was detected
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by flow cytometry, using a PE-Cy5-labelled P-selectin antibody. PBS was used as negative control,
and 20 µM TRAP-6 was used as a positive control. The data are presented as geometric mean of
fluorescence intensity (GMFI) of positive gated events multiplied with the percentage of positive
gated events in the dot plots.

Table 1. List of pneumococcal proteins and cell wall components, which were tested to activate
platelets and led to CD62P expression. * The last column provides the highest tested concentration
of each protein in the platelet activation assay. The molarities were chosen on the basis of previous
publications determining platelet activating potential of bacterial proteins [24].

Protein Class No. Protein Name
SP Number Function Activation of

Washed Platelets
Protein

Concentration (µM) *

Lipoproteins

1 AdcAII (SP_1002) substrate-binding protein of
ABC transporter for zinc(II) ions - 4

2 AliB (SP_1527)
substrate-binding protein of

ABC transporter for
oligopeptides

+ 2

3 AliC
substrate-binding protein of

ABC transporter for
oligopeptides

- 4

4 AliD
substrate-binding protein of

ABC transporter for
oligopeptides

- 4

5 AmiA (SP_1891)
substrate-binding protein of

ABC transporter for
oligopeptides

- 4

6 DacB (SP_0629) L,D-carboxypeptidase,
peptidoglycan turnover - 4

7 Lipidated DacB L,D-carboxypeptidase,
peptidoglycan turnover - 4

8 Etrx1 (SP_0659) extracellular thioredoxin
protein 1 - 4

9 Etrx2 (SP_1000) extracellular thioredoxin
protein 2 - 4

10 MetQ (SP_0149) substrate-binding protein of
ABC transporter for methionine - 4

11 Lipidated MetQ substrate-binding protein of
ABC transporter for methionine - 4

12 PccL (SP_0198) transport of small hydrophobic
molecules such as siderophores - 4

13 PiaA (SP_1032) substrate-binding protein of
ABC transporter for iron - 4

14 PnrA (SP_0845) substrate-binding protein of
ABC transporter for nucleosides - 4

15 PpmA (SP_0981) proteinase maturation protein,
peptidyl-prolyl isomerase - 4

16 PsaA (SP_1650) substrate-binding protein of
ABC transporter for manganese - 4

17 SlrA (SP_0771)
streptococcal lipoprotein
rotamase, peptidyl-prolyl

isomerase
- 4

18 GshT (SP_0148) substrate-binding protein of
ABC transporter for glutathione - 4



Cells 2022, 11, 1121 12 of 21

Table 1. Cont.

Protein Class No. Protein Name
SP Number Function Activation of

Washed Platelets
Protein

Concentration (µM) *

19 SP_0191 unknown function - 4

20 SP_0899 unknown function +++ 2/4

21 FusA (SP_1796)
substrate-binding protein of

ABC transporter
for fructo-oligosaccharides

- 2

22 RafE (SP_1897)
substrate-binding protein of

ABC transporter
for multiple sugars

- 4

23 PstS (SP_2084)
substrate-binding protein of

ABC transporter
for phosphate ions

- -

24 SP_1690 substrate-binding protein of
ABC transporter - 4

25 MalX (SP_2108)
substrate-binding protein of

ABC transporter for
maltose/maltodextrin

- 4

26 SatA (SP_1683) substrate-binding protein of
ABC transporter for sialic acid - 4

CBPs

27 CbpC (SP_0377) regulatory function for autolysis
by inhibiting autolysin LytC - 4

28 CbpF (SP_0391) putative adhesin - 4

29 CbpL (SP_0667) putative adhesin ++ 4

30 Chimeric
(PspA+PspC)

fusion of N-terminal domains of
PspA and PspC - 4

31 PcpA (SP_2136) adhesin - 2

32 PspA_QP2
(SP_0117)

virulence factor, binds
lactoferrinand inhibits
complement activation

- 4

33 PspC_SH2
(SP_2190)

adhesion, IgA inactivation,
major factor H–binding protein - 4

Sortase–
anchored
proteins

34 PfbA (SP_1833) plasmin- and
fibronectin-binding protein + 2

35 PitB (spt_1059) pilin of pneumococcal
pilus-2, adhesin - 2

36 PsrP (SP_1772) adhesion, biofilm formation - 4

37 RrgB (SP_0463) pilus-1 anchorage protein - 4

38 RrgC (SP_0464) pilus-1 backbone protein, pilin - 4

39 SP_1992 adhesin architecture, bind to
collagen and lactoferrin in vitro - 4

Cell wall
components

40 lipoteichoic acids - 4

41 wall teichoic acids - 40 µg/mL

6. Relevance of Findings for Disease

Thus far, there are only a few studies focusing on platelet activation during pneumo-
coccal infections. One study showed that the expression of pblB, a phage-derived gene,
was associated with increased platelet activation and mortality in hospitalized patients
suffering from CAP caused by S. pneumoniae [129]. Another study showed increased
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platelet activation and platelet hyperreactivity in a porcine model of invasive S. pneumoniae
infections [182]. In a follow-up in vitro study, the authors demonstrated that desialylation
of platelets by the pneumococcal neuraminidase A (NanA) results in hyperreactivity of
platelets to ADP stimulation [183].

One approach to interfere with platelet dysfunction in pneumococcal infections is di-
rectly targeting and neutralizing the pore forming pneumolysin with antibodies. Promising
candidates are the pharmaceutically available IgG preparation IVIG (Privigen, 98% IgG) or
the mixed immunoglobulin preparation trimodulin (21% IgA, 23% IgM, 56% IgG). Both
immunoglobulin preparations contain antibodies against pneumolysin and have been
shown to efficiently inhibit platelet damage in vitro, as shown by rescued platelet function
and viability even in the presence of high pneumolysin concentrations (Figure 4) [47,184].
The presence of IgM and IgA in trimodulin had no beneficial effect for pneumolysin
neutralization. In fact, neutralization efficiency was dependent on IgG content in the
immunoglobulin preparation [184]. In a phase 2 clinical trial (CIGMA study), patients
with severe community-acquired pneumonia were treated with trimodulin in addition to
standard care. In the trimodulin group, patients had higher platelet counts and a nominally
lower mortality compared to the placebo group [47]. However, patients included in the
study were only 160, and larger clinical trials are necessary to confirm this observation.

A major cause for thrombocytopenia is coagulopathy conditions, observed in 80%
of septic patients, with DIC being the most severe form [185]. Therefore, treatment of
coagulopathies is highly needed to reduce mortality rates and coagulation-associated tissue
damage. The focus of ongoing research lies on inhibition of coagulation or the use of anti-
platelet drugs. Anti-platelet therapy during sepsis or ARDS is not part of standard care, but
several studies conclude this as a promising approach to reduce disease severity [186–189].
However, the benefit of anti-platelet drugs such as, e.g., acetylsalicylic acid during sepsis is
under debate [189,190], and more stringent clinical studies are needed. The same accounts
for inhibition of coagulation. Although some clinical studies conclude damped disease
severity upon usage of, e.g., antithrombin, its benefit is controversial, and more research on
this topic is needed [191,192].

7. Conclusions

In this review, we highlight interactions between platelets and S. pneumoniae or S. aureus
in vitro and in disease. Multiple factors of both bacteria result in direct or indirect platelet
activation and aggregation. However, the predominant effect seems to be exerted by the
pore-forming toxins pneumolysin (pneumococci) and alpha-hemolysin (Hla, S. aureus).
Whereas Hla first activates and later on lyses platelets, pneumolysin directly lyses platelets.
The pathomechanisms of these toxins and their impact on platelet function are of high
clinical importance because thrombocytopenia and DIC are typical complications in severe
invasive infections caused by these pathogens. Future clinical studies targeting either bacte-
rial components such as pneumolysin and Hla and their receptors or systemic coagulation
as seen in dependence of Hla are highly needed to improve clinical outcomes.
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