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This paper proposes a novel algorithm for inferring gene regulatory networks whichmakes use of cubature Kalman filter (CKF) and
Kalman filter (KF) techniques in conjunction with compressed sensing methods.The gene network is described using a state-space
model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a
linear Gaussian model.The hidden states are estimated using CKF.The system parameters are modeled as a Gauss-Markov process
and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the
genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to
assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which
include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in
silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms
of accuracy, robustness, and scalability.

1. Introduction

Gene regulation is one of themost intriguing processes taking
place in living cells. With hundreds of thousands of genes at
their disposal, cells must decide which genes are to express at
a particular time. As the cell development evolves, different
needs and functions entail an efficient mechanism to turn the
required genes on while leaving the others off. Cells can also
activate new genes to respond effectively to environmental
changes and perform specific roles. The knowledge of which
gene triggers a particular genetic condition can help us ward
off the potential harmful effects by switching that gene off. For
instance, cancer can be controlled by deactivating the genes
that cause it.

Gene expression is the process of generating functional
gene products, for example, mRNA and protein. The level
of gene functionality can be measured using microarrays or
gene chips to produce the gene expression data [1]. More

accurate estimation of gene expression is now possible using
the RNA-Seq method. Intelligent use of such data can help
improve our understanding of how the genes are interacting
in a living organism [2–4]. Gene regulation is known to
exhibit several modes; a couple of important ones include
transcription regulation and posttranscription regulation [5].
While the theoretical applications of gene regulation are
extremely promising, it requires a thorough understanding of
this complex process. Different genes may cooperate to pro-
duce a particular reaction, while a gene may repress another
gene as well. The potential benefits of gene regulation can
only be reaped if a complete and accurate picture of genetic
interactions is available. A network specifying different inter-
connections of genes can go a long way in understanding the
gene regulation mechanism. The control and interaction of
genes can be described through a gene regulatory network.
Such a network depicts various interdependencies among
genes where nodes of the network represent the genes,
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and the edges between them correspond to an interaction
among them. The strength of these interactions represents
the extent to which a gene is affected by other genes in the
network. A key ingredient of this approach is an accurate and
representative modeling of gene networks. Precise modeling
of a regulatory network coupled with efficient inference and
intervention algorithms can help in devising personalized
medicines and cures for genetic diseases [6].

Various methods for gene network modeling have been
proposed recently in the literature with varying degrees of
sophistication [7–10].These techniques can be broadly classi-
fied as static and dynamicmodeling schemes. Staticmodeling
includes the use of correlation, statistical independence for
clustering [11–13], and information theoretic criteria [14–16].
On the other hand, dynamic models provide an insight into
the temporal evolution of gene expressions and hence yield
a more quantitative prediction on gene network behavior
[17–20]. In order to incorporate the stochasticity of gene
expressions, statistical techniques have been applied [13]. A
rich literature is also available on the Bayesian modeling of
gene networks [21–26]. Promoted in part by the Bayesian
methods, the state-space approach is a popular technique
to model the gene networks [27–33], whereby the hidden
states can be estimated using the Kalman filter. In the case
of nonlinear functions, the extended Kalman filter (EKF) and
particle filter represent feasible approaches [33, 34]. However,
the EKF relies on the first-order linear approximations of
nonlinearities, while the particle filter may be computation-
ally too complex. A comprehensive review of these methods
can be found in [35].

In this paper, the gene network is modeled using a state-
space approach, and the cubature Kalman filter (CKF) is used
to estimate the hidden states of the nonlinear model [36,
37]. The gene expressions are assumed to evolve following a
sigmoid squash function, whereas a linear function is con-
sidered for the expression data. The noise is assumed to be
Gaussian for both the state evolution and gene expression
measurements. As the gene network is assumed sparse, any
simple mean square error minimization technique will not
suffice for the estimation of static parameters. Therefore, a
compressed sensing-based Kalman filter (CSKF) [38] is used
in conjunction with CKF for reliable estimation of parame-
ters. In case of statistical inference, it is essential to obtain
some guarantees on the performance of estimators. In this
regard, the Cramér-Rao lower bound (CRB) of the parameter
estimates is used as a benchmarking index to assess the mean
square error (MSE) performance of the proposed estimator
which is evaluated here for a parameter vector. The perfor-
mance of the proposed algorithm is tested on synthetically
generated random Boolean networks in various scenarios.
The algorithm is also tested using DREAM4 data sets and
IRMA networks [39, 40].

The main contributions of this paper can be summarized
as follows.

(1) CKF is proposed for the estimation of states, and a
compressed sensing-based Kalman filter is used for
the estimation of system parameters. The genes are

known to interact with few other genes only necessi-
tating the use of sparsity constraint for more accurate
estimation.Theproposed algorithmcarries out online
estimation of parameters and is therefore computa-
tionally efficient and is particularly suitable for large
gene networks.

(2) The Cramér-Rao lower bound is calculated for the
estimation of unknown parameters of the system.The
performance of the proposed algorithm is compared
to CRB. This comparison is significant as it shows
room for improvement in the estimation of param-
eters.

(3) The proposed algorithm is compared with the EKF
algorithm. Using the false alarm errors, true connec-
tions, and Hamming distance as fidelity criteria, rig-
orous simulations are carried out to assess the perfor-
mance of the algorithm with the increase in the num-
ber of samples. In addition, receiver operating charac-
teristic (ROC) curves are plotted to evaluate the algo-
rithms for different network sizes. It is observed that
the proposed algorithm outperforms EKF in terms
of accuracy and precision. The proposed algorithm
is then applied to the DREAM4 10-gene and 100-
gene data sets to assess the algorithm accuracy. The
underlying gene network for the IRMA data sets is
also inferred.

The rest of this paper is organized as follows. Section 2
describes the underlying system model for the gene expres-
sions. The proposed CKF algorithm in combination with
CSKF for gene network inference is formulated in Section 3.
The derivation of CRB is shown in Section 4, and the
simulation results and their interpretation are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2. System Model

Gene regulatory networks can bemodeled as static or dynam-
ical systems. In this work, state-space modeling is considered
which is an instance of a dynamic modeling approach and
can effectively cope with time variations.The states represent
gene expressions, and their evolution in time, in general, can
be expressed as

x𝑘 = 𝑔 (x𝑘−1) + w𝑘 𝑘 = 1, . . . , 𝐾, (1)

where 𝐾 is the total number of data points available, w𝑘 is
assumed to be a zero-mean Gaussian random variable with
covariance Q𝑘 = 𝜎

2

𝑤
I, and the function 𝑔(⋅) represents the

regulatory relationship between the genes and is generally
nonlinear. The microarray data is a set of noisy observations
and is commonly expressed as a linear Gaussian model [41]

y𝑘 = ℎ (x𝑘) + k𝑘, (2)

where k𝑘 is Gaussian-distributed random variable with zero
mean and covariance S𝑘 = 𝜎

2

V I and incorporates the uncer-
tainty in the microarray experiments. In order to capture
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the gene interactions effectively, the following nonlinear state
evolution model is assumed [33, 34]:

𝑥𝑘,𝑛 =

𝑁

∑

𝑚=1

𝑏𝑛𝑚𝑓 (𝑥𝑘−1,𝑚) + 𝑤𝑘,𝑛,

𝑘 = 1, . . . , 𝐾, 𝑛 = 1, . . . , 𝑁,

(3)

where𝑁 is the total number of genes in the network and 𝑓(⋅)

is the sigmoid squash function

𝑓 (𝑥𝑘−1,𝑚) =

1

1 + 𝑒

−𝑥𝑘−1,𝑚
. (4)

This particular choice for the nonlinear function ensures that
the conditional distribution of the states remains Gaussian
[41]. The multiplicative constants 𝑏𝑛𝑚 quantify the positive or
negative relations between various genes in the network. A
positive value of 𝑏𝑛𝑚 implies that the 𝑚th gene is activating
the 𝑛th gene, whereas a negative value implies repression
[34, 42]. The absolute value of these parameters indicates the
strength of interaction.

The model given in (3) and (4) in the absence of any con-
straints may be unidentifiable and may result into overfitted
solutions [43]. Assumptions on network structures are, there-
fore, necessary to obtain a connectivity matrix that agrees
with the biological knowledge. In a gene regulatory network
(GRN), the genes are known to interact with few other genes
only. To this end, the coefficients 𝑏𝑛𝑚s are estimated using
sparsity constraints, as explained in the next section.

A discrete linear Gaussian model for the microarray data
is considered which can be expressed at the 𝑘th time instant
as [41]

y𝑘 = x𝑘 + v𝑘. (5)

Stacking the unknown parameters together, the parameter
vector to be estimated is

b ≜ [𝜙1, 𝜙2, . . . , 𝜙𝑁] , (6)

where 𝜙𝑛 = [𝑏𝑛1, . . . , 𝑏𝑛𝑁]. Plugging the values of states from
(3) into (5), it follows that

y𝑘 = R𝑘b + e𝑘, (7)

where

R𝑘 ≜
[

[

[

[

̃f𝑘 0 0 0
0 ̃f𝑘 0 0
0 0 d 0
0 0 0 ̃f𝑘

]

]

]

]

, (8)

̃f𝑘 ≜ [𝑓 (𝑥𝑘−1,1) ⋅ ⋅ ⋅ 𝑓 (𝑥𝑘−1,𝑁)] .
(9)

Thus, the gene network inference problem boils down to the
estimation of system parameters b using the observations
y𝑘, where the effective noise e𝑘 is the sum of system and
observation noises. The next section describes the proposed
inference algorithm for sparse networks.

CKF CSKF

𝑘 = 𝐾

Output

No

Initialize

Yes

y𝑘

x𝑘

b𝑘b0, x0

Input time-series data y

Figure 1: Block diagram of network inference methodology CKFS.

3. Method

In this section, the methodology proposed to infer the sys-
tem parameters in (3) is described. The proposed cubature
Kalman filter with sparsity constraints (CKFS) approach is
succinctly illustrated in Figure 1. The specific details of this
algorithm are as next presented.

3.1. Cubature Kalman Filter. Kalman filter is a Bayesian filter
which provides the optimal solution to a general linear state
space inference problemdepicted by (1) and (2) and assumes a
recursive predictive-update process. The underlying assump-
tion of Gaussianity for the predictive and the likelihood
densities simplifies the Kalman filter algorithm to a two-step
process, consisting of prediction and update of the mean and
covariance of the hidden states. However, the presence of
nonlinear functions in the state and measurement equations
requires calculation ofmultidimensional integrals of the form
nonlinear function × Gaussian density [36], which in general
is computationally prohibitive. Several solutions to this prob-
lem have been proposed including the EKF, which linearizes
the nonlinear function by taking its first-order Taylor approx-
imation, and the unscented Kalman filter (UKF), which
approximates the probability density function (PDF) using a
nonlinear transformation of the random variable. Recently, a
new approach, CKF, has been proposed which evaluates the
integrals numerically using spherical-radial cubature rules
[36].

The next two subsections briefly explain the working of
Bayesian filtering and the CKF solution for the nonlinear
multidimensional integrals.

3.1.1. TimeUpdate. Let the observations up to the time instant
𝑘 be denoted by d𝑘; that is, d𝑘 ≜ [y𝑇

1
, . . . , y𝑇

𝑘
]

𝑇. In the predic-
tion phase, also called the time update of the Bayesian filter,
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themean and covariance of theGaussian posterior density are
computed as follows:

x̂𝑘|𝑘−1 = 𝐸 [f (x𝑘−1) | d𝑘−1] ,

P𝑥𝑥,𝑘|𝑘−1 = 𝐸 [f (x𝑘) f
𝑇
(𝑥𝑘)] − x̂𝑘|𝑘−1x̂

𝑇

𝑘|𝑘−1
+Q𝑘−1,

(10)

where 𝐸 denotes the expectation operator and x𝑘−1 is nor-
mally distributed with parameters (x̂𝑘−1|𝑘−1,P𝑥𝑥,𝑘−1|𝑘−1). The
third equality is a consequence of the zero-mean nature
of Gaussian noise w and its independence from d𝑘. The
estimates x̂𝑘−1|𝑘−1 and P𝑥𝑥,𝑘−1|𝑘−1 are assumed to be available
from the previous iteration. Here, P𝑥𝑥,𝑘|𝑘−1 is an estimate of
the error covariance matrix.

3.1.2. Measurement Update. Since the measurement noise
is also Gaussian, the likelihood density is given by y𝑘−1 |

d𝑘−1 : N(z𝑘−1; ŷ𝑘|𝑘−1,P𝑥𝑥,𝑘|𝑘−1). As themeasurements become
available at the 𝑘th time instant, the mean and covariance of
the likelihood density are calculated as follows:

ŷ𝑘|𝑘−1 = 𝐸 [y𝑘 | d𝑘−1] ,

P𝑦𝑦,𝑘|𝑘−1 = 𝐸 [x𝑘x
𝑇

𝑘
] − ŷ𝑘|𝑘−1ŷ

𝑇

𝑘|𝑘−1
+ S𝑘−1.

(11)

The updated posterior density, obtained from the condi-
tional joint density of states, and the measurements can be
expressed as

([x𝑇
𝑘
y𝑇
𝑘
]

𝑇

dk−1)

∼ N((

x̂𝑘|𝑘−1
ŷ𝑘|𝑘−1

) , (

P𝑥𝑥,𝑘|𝑘−1 P𝑥𝑦,𝑘|𝑘−1
P𝑇
𝑥𝑦,𝑘|𝑘−1

P𝑦𝑦,𝑘|𝑘−1
)) ,

(12)

where

𝑃𝑥𝑦,𝑘|𝑘−1 = 𝐸 [x𝑘x
𝑇

𝑘
] − x̂𝑘|𝑘−1ŷ

𝑇

𝑘|𝑘−1
(13)

is the cross-covariance matrix between the states and the
measurements. Hence, the states and the corresponding error
covariance matrix are updated by calculating the innovation
z𝑘 − ẑ𝑘|𝑘−1 and the Kalman gain K𝐺,𝑖

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 + K𝐺,𝑘 (y𝑘 − ŷ𝑘|𝑘−1) ,

𝑃𝑥𝑥,𝑘|𝑘 = 𝑃𝑥𝑥,𝑘|𝑘−1 − K𝐺,𝑘𝑃𝑦𝑦,𝑘|𝑘−1K
𝑇

𝐺,𝑘
,

K𝐺,𝑘 = 𝑃𝑥𝑦,𝑘|𝑘−1𝑃
−1

𝑦𝑦,𝑘|𝑘−1
.

(14)

The next subsection briefly describes the computation of
high-dimensional integrals present in the equations above.

3.1.3. Computation of Integrals Using Spherical-Radial Cuba-
ture Points. In order to determine the expectations in (10),
using a numerical integration method, a spherical-radial
cubature rule is applied. This method calculates the cubature
points X𝑗,𝑘−1|𝑘−1 as follows [36]:

X𝑗,𝑘−1|𝑘−1 = U𝑘−1|𝑘−1𝜁𝑗 + x̂𝑘−1|𝑘−1, (15)

where 𝜁𝑗 =
√ℓ/2[1]𝑗, 𝑗 = 1, . . . , ℓ, ℓ = 2𝑁 denotes the total

number of cubature points andU𝑘−1|𝑘−1 stands for the square
root of the error covariance matrix; that is,

P𝑥𝑥,𝑘−1|𝑘−1 = U𝑘−1|𝑘−1U
𝑇

𝑘−1|𝑘−1
. (16)

The cubature points are updated via the state equation

X∗
𝑗,𝑘|𝑘−1

= 𝑔 (X𝑗,𝑘−1|𝑘−1) . (17)

The propagated cubature points yield the state and error
covariance estimates

x̂𝑘|𝑘−1 =
1

ℓ

ℓ

∑

𝑗=1

X∗
𝑗,𝑘|𝑘−1

,

P𝑥𝑥,𝑘|𝑘−1 =
1

ℓ

ℓ

∑

𝑗=1

X∗
𝑗,𝑘|𝑘−1

X∗𝑇
𝑗,𝑘|𝑘−1

− x̂𝑘|𝑘−1x̂
𝑇

𝑘|𝑘−1
+Q𝑘−1.

(18)

The integrals in (11) and (14) can be evaluated in a similar
manner. The next subsection explains the estimation of
parameters in the system.

3.2. Estimation of Sparse Parameters Using Kalman Filter. The
state estimates are obtained using the CKF as described in
the previous subsection. In order to estimate the unknown
parameters in the system model, one of the most commonly
used methods involves stacking the parameters with the
states and estimating them together. The estimation process
performed in this manner is called joint estimation. Another
method for the estimation of parameters consists of a two-
step recursive process which is termed dual estimation. This
process estimates the states in the first step, and with the
assumption that states are known, parameters are estimated
in the second step. These steps are repeated until the algo-
rithm converges to the true values or until the amount of
available observations is exhausted. This paper makes use of
the latter technique.

The vector b as defined in (6) is assumed to be evolving
as a Gauss-Markov model. As discussed previously, the states
are assumed to be known at this step. The system evolution
equations can therefore be expressed as

b𝑘 = b𝑘−1 + 𝜂𝑘−1,

y𝑘 = R𝑘b𝑘 + e𝑘,
(19)

where 𝜂
𝑘
stands for the i.i.d Gaussian noise and R𝑘 is as

defined in (8). It is observed that (19) is a system of linear
equations with additive Gaussian noise, and therefore, the
Kalman filter is the optimal choice for the estimation of
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parameter vector. The standard predict and update steps
involved in Kalman filter are summarized as follows:

̂b𝑘|𝑘−1 = ̂b𝑘−1|𝑘−1 + 𝜂𝑘,

P𝑏𝑏,𝑘|𝑘−1 = P𝑏𝑏,𝑘−1|𝑘−1 + Σ𝜂𝑘 ,

u𝑘 = y𝑘 − R𝑓𝑘̂b𝑘,

K𝐺 = P𝑏𝑏,𝑘|𝑘−1R
𝑇

𝑓𝑘
(R𝑓𝑘P𝑏𝑏,𝑘|𝑘−1R

𝑇

𝑓𝑘
+ 𝜎

2

𝑒
I−1) ,

̂b𝑘|𝑘 = ̂b𝑘|𝑘−1 + K𝐺u𝑘,

P𝑏𝑏,𝑘|𝑘 = (I − K𝐺R𝑓𝑘)P𝑏𝑏,𝑘|𝑘−1,

(20)

whereK𝐺 denotes the Kalman gain andP represents the error
covariance matrix.

The Kalman filter algorithm is based on an 𝑙2-norm
minimization criterion. As the gene networks are known to
be highly sparse, the parameter vector is expected to have
only a few nonzero values. A more accurate approach for
estimating such a vector would be to introduce an additional
constraint on its 𝑙1-normwhich is the core idea in compressed
sensing [38, 44]. Such an 𝑙1-norm constraint provides a
unique solution to the underdetermined set of equations [45].
Therefore, instead of a simple 𝑙2 norm minimization, the
following constrained optimization problem is considered:

min
b̂𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

̂b𝑘 − b𝑘
󵄩
󵄩
󵄩
󵄩
󵄩

2

2
s.t. 󵄩

󵄩
󵄩
󵄩
󵄩

̂b𝑘
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜖. (21)

The importance of this constraint can be judged by the fact
that without it, the system would be rendered unidentifiable
[43].

The problem (21) can be solved using a pseudomeasure-
ment (PM) method which incorporates the inequality con-
straint (21) in the filtering process by assuming an artificial
measurement ‖b𝑘‖1 − 𝜖 = 0. This is concisely expressed as

0 = R̂b𝑘 − 𝜖, R𝜏 = [sign (
̂b𝜏 (1)) , . . . , sign (

̂b𝜏 (𝑁))] .

(22)

The value of the covariance matrix Σ𝜖 = 𝜎

2

𝜖
I of the pseudo-

noise 𝜖 is selected in a similar manner as the process noise
covariance in the EKF algorithm. However, it is found that
large values of variances, that is, 𝜎2

𝜖
≥ 100, prove sufficient in

most cases [38]. Further details on selecting these parameters
can be found in [38, 46]. The PM method solves (21) in a
recursive manner for𝐾𝜏 iterations using the following steps:

K𝜏
𝐺
= P𝜏R

𝑇

𝜏
(R𝜏P𝜏R

𝑇

𝜏
+ Σ𝜖)

−1

,

̂b𝜏+1 = (I − K𝜏
𝐺
R𝜏) ̂b𝜏,

P𝜏+1 = (I − K𝜏
𝐺
R𝜏)P𝜏.

(23)

At each 𝑘th time instant, P𝑏𝑏,𝑘|𝑘 and ̂b𝑘|𝑘 obtained from
(20) are considered as initial values; that is, ̂b1 =

̂b𝑘|𝑘 and
P1 = P𝑏𝑏,𝑘|𝑘 which is the error covariancematrix.The value of

(1) Input time series data set y.
(2) Initialize 𝐼, 𝐾, 𝜙0, x0.
(3) for 𝑘 = 1, . . . , 𝐾 do
(4) Find the state estimates using CKF following the time

and measurement update steps in Section 3.
(5) Estimate parameters ̂b𝑘 from x𝑘 and y𝑘 using (20).
(6) for 𝜏 = 1, . . . , 𝐾𝜏 do
(7) Update the parameters ̂b𝑘 using (23).
(8) end for
(9) end for
(10) return

Algorithm 1: Network inference: CKFS.

𝐾𝜏 is equal to the number of constraints, that is, the expected
number of nonzero b𝑚𝑛s in the system. Possible ways for
calculating 𝐾𝜏 include minimum description length (MDL)
principle and Bayesian information criterion (BIC).

3.3. Inference Algorithm. The network inference algorithm
is summarized in Algorithm 1. The algorithm consists of a
recursive processwhich repeats itself for the number of obser-
vations present in the time-series data. For each time sample,
the state estimate is obtained using the CKF, and the parame-
ter estimate is obtained using the KF. Since the parameters are
expected to be sparse, the estimates are then refined further
using the CSKF algorithm. This iterative process results in
a simple and accurate algorithm for gene network inference
while considering a complex nonlinear model.

4. Cramér-Rao Bound

Theperformance of an estimator can be judged by comparing
it with theoretical lower bounds proposed in parameter
estimation theory.The CRB establishes a lower bound on the
MSE of an unbiased estimator [47]. In particular, the CRB
states that the covariance matrix of the estimator ̂b is lower
bounded by

E [(
̂b − b) (̂b − b)

𝑇

] ⪰ [I (b)]−1, (24)

where the matrix inequality ⪰ is to be interpreted in the
semidefinite sense and I(b) is the Fisher information matrix
(FIM)

I (b) = E[(

𝜕 ln𝑓 (y | b)
𝜕b

)(

𝜕 ln𝑓 (y | b)
𝜕b

)

𝑇

] . (25)

The CRB for gene network inference can be calculated as
follows. By stacking all the observations for 𝑘 = 1, . . . , 𝐾, (7)
can be written compactly in the matrix form

y = Rb + e, (26)
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where y = [y𝑇
1
, . . . , y𝑇

𝐾
]

𝑇, R = [R𝑇
1
, . . . ,R𝑇

𝐾
]

𝑇, and e = [e𝑇
1
, . . . ,

e𝑇
𝐾
]

𝑇. The PDF 𝑝(y | b) is expressed as

𝑝 (y | b) = 𝐶 exp(−

(y − Rb)𝑇 (y − Rb)
2𝜎

2
𝑒

) , (27)

where 𝐶 is a constant. The derivative of ln𝑝(y | b) can be
expressed as

𝜕 ln𝑝 (y | b)
𝜕b

= −

𝜕

𝜕b
[

(y − Rb)𝑇 (y − Rb)
𝜎

2
𝑒

]

=

R𝑇y − R𝑇Rb
𝜎

2
𝑒

.

(28)

It now follows that

(

𝜕 ln𝑝 (y | b)
𝜕b

)(

𝜕 ln𝑝 (y | b)
𝜕b

)

𝑇

=

R𝑇 (y − Rb) (y − Rb)𝑇R
𝜎

4
𝑒

.

(29)

By taking the expectation of (29), the FIM in (25) is given by

I (b) =

R𝑇R
𝜎

2
𝑒

. (30)

The inverse of the FIM in (30) can be used to place a lower
bound on the estimation error of the parameter vector b.
Figure 2 shows the comparison of MSE of CKFS algorithm
with CRB as a function of number of samples 𝐾 for one
representative gene from the eight-gene network considered
in Section 5.1. It is observed that the MSE of the estimated
parameters decreases with increasing number of samples.

5. Results and Discussion

The simulation results of the CKFS algorithm are discussed in
this section. The performance is first tested on synthetic data
obtained from randomly generated Boolean networks under
various scenarios and performance metrics. The algorithm
is then assessed on the DREAM4 networks and the IRMA
network.

5.1. Synthetic Data. Time-series data is produced from ran-
domly generated Boolean networks using the system model
(3) and (5). Two scenarios are considered for this purpose.

First, the comparison is performed by varying the num-
ber of sample size while keeping the network size fixed. The
gene network consists of 8 genes and 20 vertices. In terms
of network estimation, if the algorithm predicts an edge
between two nodes which may not be present in reality, an
error, referred to as false alarm error (F), is said to have
occurred. Another situation is the indication of the absence
of a vertex in the graph which in fact is present in the real
network. This kind of error is termed missed detection (M).
The summation of these two errors normalized over the total
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Figure 2: Cramér-Rao bound on the estimation of parameters. The
MSE for one of the representative 𝜃 is shown here for a network
consisting of 8 vertices.

number of vertices in the network yields the Hamming
distance. It is also important to consider the probability
of predicting the true connections correctly which will be
assessed by the true connections (T) metric. An algorithm
with low Hamming distance and small false alarm error
is particularly desirable as predicting an edge erroneously
can be troublesome for biologists. True connections indicate
the reliability of the predictions. Figure 3 illustrates the
performance of the CKFS algorithm and that of the EKF
algorithm proposed in [34] in terms of the metrics described
above. It is important to mention here that the same system
model is assumed by both CKFS and EKF algorithms for
the purpose of this simulation. These metrics are the same
as those used in [15]. The variances of both the system and
measurement noises, 𝜎2

𝑤
and 𝜎

2

V , respectively, are taken to be
10

−5 in all the simulations and are assumed to be known.
It is noticed that EKF has a slightly lower false alarm rate
when the number of samples is small; however, as the
number of samples increases, CKFS yields a lower false alarm
error. The Hamming distance for CKFS is also smaller than
EKF indicating lesser cumulative error. True connections
show a consistent behavior for the two algorithms when the
number of samples is increased where CKFS is able to predict
connections more accurately. These experiments show the
superiority of CKFS in terms of lower error rate.

To obtain a more rigorous evaluation, the performance of
algorithms is then compared in a scenario which considers
the sample size to be fixed and assumes networks of different
sizes. The receiver operating characteristic (ROC) curves are
plotted as performance measures. A higher area under the
ROC curve (AUROC) shows more true positives for a given
false positive, and therefore, indicates better classification.
The performance of CKFS(𝑁, 𝐸,𝐾) and EKF(𝑁, 𝐸,𝐾) is
shown in Figure 4, where 𝑁 stands for the number of nodes,
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Figure 3: (a), (b), and (c) False alarm errors, Hamming distance, and true connections. The synthetic networks consist of 8 vertices and 20
edges. The metric is normalized over the number of edges. CKFS gives lower error and predicts more true connections with the increase in
the sample size of data.

𝐸 represents the number of edges, and 𝐾 denotes the time
points. It is observed that the CKFS exhibits superior perfor-
mance than the EKF for networks of different sizes.

The complexity of the two algorithms is compared for
synthetically generated networks with number of genes equal
to 10, 20, 30, and 40.The sample size is kept to 50 time points
for each of these networks, and the run time for EKF and
CKFS algorithms is calculated as shown in Table 1. It is noted
that EKF is faster for smaller network sizes, but as the network
size increases, the run time gets much larger than that for
CKFS. The main reason for this is that EKF [34] estimates
the states and parameters by stacking them together which
requires large-sized matrix multiplications at each iteration.

The benefit associated with performing dual estimation, as
in CKFS, is that the parameters are estimated separately
from the states. Since the system is linear and one-to-one
for parameters, inversion of much smaller matrices can be
performed reducing the computational complexity of CKFS
algorithm. CKFS is therefore particularly attractive for large-
sized networks.

5.2. DREAM4Gene Networks. Several in silico networks have
been produced in order to benchmark the performance
of gene network inference algorithms. dialogue on reverse
engineering assessment and methods (DREAM) in silico
networks serve as one of the popular methods used for this
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Figure 4: ROC curves for the performance of CKFS and EKF using synthetic data. (𝑁,𝐸,𝐾) (a), (b), and (c) (5, 10, 20), (10, 12, 20), and
(15, 19, 20). The area under the ROC curve for CKFS is more than that for EKF for various sized networks.

Table 1: Run time in seconds for EKF and CKFS algorithms for
varying network sizes for synthetically generated data. The number
of sample points is fixed to 50.

Number of genes 10 20 30 40
EKF 0.16 1.9 16.5 84
CKFS 1.2 4.3 11.5 24.1

purpose [39, 48]. In this section, the performance of the
CKFS algorithm is evaluated using the 10-gene and 100-
gene networks released online by the DREAM4 challenge.

Five networks are produced using the known GRNs of
Escherichia coli and Saccharomyces cerevisiae. The data sets
for each of 10-gene network consists of 21 data points for
five different perturbations. The inference is performed by
using all the perturbations. The 100-gene network consists
of data sets for ten perturbations. AUROC and area under
the precision-recall curve (AUPR) are calculated for the five
networks of both the data sets and shown in Tables 2 and 3,
respectively. The quantities, precision and recall, are defined
as 𝑃 = 𝑇/(𝑇 + 𝐹) and 𝑅 = 𝑇/(𝑇 + 𝑀), respectively. For
comparison purposes, the values of the two quantities for
time-series network identification (TSNI) algorithm that
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Figure 5: The inferred IRMA networks. (a), (b), and (c) Gold standard, inferred network using CKFS, and inferred network using ODE
[39, 40]. Black arrows indicate true connections, blue arrows indicate the edges that are correct, but their directions are reversed, and red
arrows indicate false positives.

Table 2: Area under the ROC curve (AUROC) and area under the PR curve (AUPR) for DREAM4 10-gene networks for the five different
networks.

Algorithm Network 1 Network 2 Network 3 Network 4 Network 5
ODE [39] 0.62 (0.27) 0.63 (0.32) 0.58 (0.21) 0.63 (0.23) 0.68 (0.25)
CKFS 0.63 (0.40) 0.67 (0.50) 0.72 (0.50) 0.75 (0.49) 0.81 (0.42)
Random [39] 0.55 (0.18) 0.55 (0.19) 0.55 (0.17) 0.57 (0.17) 0.56 (0.16)

Table 3: Area under the ROC curve (AUROC) and area under the PR curve (AUPR) for DREAM4 100-gene networks for the five different
networks.

Algorithm Network 1 Network 2 Network 3 Network 4 Network 5
ODE [39] 0.55 (0.02) 0.55 (0.03) 0.60 (0.03) 0.54 (0.02) 0.59 (0.03)
CKFS 0.67 (0.13) 0.57 (0.08) 0.60 (0.10) 0.62 (0.10) 0.60 (0.07)
Random [39] 0.50 (0.002) 0.50 (0.002) 0.50 (0.002) 0.50 (0.002) 0.50 (0.002)

exploits ordinary differential equations are also given [39].
The CKFS algorithm is found to perform significantly better
than the TSNI algorithm.

5.3. IRMA Gene Network. In addition to synthetic data, it is
imperative to test the algorithms using real biological data.
In this subsection, the performance of the CKFS algorithm is
assessed using the in vivo reverse-engineering and modeling
assessment (IRMA) network [40]. This network consists of
five genes. Galactose activates the gene expression in the
network, whereas glucose deactivates it. The cells are grown
in the presence of galactose and then switched to glucose
to obtain the switch-off data which represents the expressive
samples at 21 time points. The switch-on data consists of 16
sample points and is obtained by growing the cells in a glucose
medium and then changing to galactose. The system and
measurement noise variances for the CKFS are assumed to
be identical as in the previous simulations. Figure 5 shows the
inferred network, the gold standard, and the network inferred
using TSNI. It is observed that the CKFS algorithm succeeds

to predict most of the interactions while giving lower false
positives.

6. Conclusions

This paper presents a novel algorithm for inferring gene
regulatory networks from time-series data. Gene regulation
is assumed to follow a nonlinear state evolution model. The
parameters of the system, which indicate the inhibitory or
excitatory relationships between the genes, are estimated
using compressed sensing-based Kalman filtering. The spar-
sity constraint on the parameters is crucial because the genes
are known to interact with few other genes only. The use of
CKF and the dual estimation of states and parameters renders
the algorithm computationally efficient. The performance of
CKFS is evaluated for synthetic data for different network
sizes as well as varying sample points. ROC curves, Hamming
distance, and true positives are used for comparing the
accuracy of inferred network with EKF. It is observed that
CKFS outperforms the EKF algorithm. In addition, CKFS
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gives advantages over EKF in terms of smaller run time for
large networks. The Cramér-Rao lower bound is also deter-
mined for the parameters of the model and compared with
the MSE performance of the proposed algorithm. Assess-
ment using DREAM4 10-gene and 100-gene networks and
IRMA network data corroborates the superior performance
of CKFS. Future research directions include incorporating
the estimation of model order in the network inference
algorithm.

Acknowledgments

This work was supported by USNational Science Foundation
(NSF) Grant 0915444 and QNRF-NPRP Grant 09-874-3-
235. The material in this paper was presented in part at the
IEEE InternationalWorkshop on Genomic Signal Processing
and Statistics (GENSIPS), San Antonio, TX, USA, December
2011.

References

[1] X. Zhou, X. Wang, and E. R. Dougherty, Genomic Networks:
Statistical Inference from Microarray Data, John Wiley & Sons,
New York, NY, USA, 2006.

[2] H. Kitano, “Computational systems biology,” Nature, vol. 420,
pp. 206–210, 2002.

[3] X. Zhou and S. T. C.Wong,Computational Systems Bioinformat-
ics, World Scientific, River Edge, NJ, USA, 2008.

[4] X. Cai and X. Wang, “Stochastic modeling and simulation of
gene networks,” IEEE Signal Processing Magazine, vol. 24, no. 1,
pp. 27–36, 2007.

[5] D. Yue, J. Meng, M. Lu, C. L. P. Chen, M. Guo, and Y. Huang,
“Understanding micro-RNA regulation: a computational per-
spective,” IEEE Signal ProcessingMagazine, vol. 29, no. 1, pp. 77–
88, 2012.

[6] R. Pal, S. Bhattacharya, and M. U. Caglar, “Robust approaches
for genetic regulatory network modeling and intervention: a
review of recent advances,” IEEE Signal Processing Magazine,
vol. 29, no. 1, pp. 66–76, 2012.

[7] H. Hache, H. Lehrach, and R. Herwig, “Reverse engineering of
gene regulatory networks: a comparative study,” Eurasip Journal
on Bioinformatics and Systems Biology, vol. 2009, Article ID
617281, 2009.

[8] T. Schlitt and A. Brazma, “Current approaches to gene regula-
tory networkmodelling,” BMC Bioinformatics, vol. 8, no. 6, p. 9,
2007.

[9] H. D. Jong, “Modeling and simulation of genetic regulatoy sys-
tems: a literature review,” Journal of Computational Biology, vol.
9, no. 1, pp. 67–103, 2002.

[10] I. Nachman, A. Regev, and N. Friedman, “Inferring quantitative
models of regulatory networks from expression data,” Bioinfor-
matics, vol. 20, no. 1, pp. i248–i256, 2004.

[11] C. D. Giurcaneanu, I. Tabus, and J. Astola, “Clustering time
series gene expression data based on sum-of-exponentials fit-
ting,” EURASIP Journal on Advances in Signal Processing, vol.
2005, no. 8, Article ID 358568, pp. 1159–1173, 2005.

[12] C. D. Giurcaneanu, I. Tabus, J. Astola, J. Ollila, and M. Vihinen,
“Fast iterative gene clustering based on information theoretic
criteria for selecting the cluster structure,” Journal of Computa-
tional Biology, vol. 11, no. 4, pp. 660–682, 2004.

[13] X. Cai andG. B. Giannakis, “Identifying differentially expressed
genes in microarray experiments with model-based variance
estimation,” IEEE Transactions on Signal Processing, vol. 54, no.
6, pp. 2418–2426, 2006.

[14] X. Zhou, X.Wang, and E. R. Dougherty, “Gene clustering based
on cluster-wide mutual information,” Journal of Computational
Biology, vol. 11, no. 1, pp. 151–165, 2004.

[15] W. Zhao, E. Serpedin, and E. R. Dougherty, “Inferring connec-
tivity of genetic regulatory networks using informationtheoretic
criteria,” IEEE/ACMTransactions onComputational Biology and
Bioinformatics, vol. 5, no. 2, pp. 262–274, 2008.

[16] J. Dougherty, I. Tabus, and J. Astola, “Inference of gene reg-
ulatory networks based on a universal minimum description
length,” Eurasip Journal on Bioinformatics and Systems Biology,
vol. 2008, Article ID 482090, 2008.

[17] L. Qian, H. Wang, and E. R. Dougherty, “Inference of noisy
nonlinear differential equation models for gene regulatory net-
works using genetic programming and Kalman filtering,” IEEE
Transactions on Signal Processing, vol. 56, no. 7, pp. 3327–3339,
2008.

[18] W. Zhao, E. Serpedin, and E. R. Dougherty, “Inferring gene reg-
ulatory networks from time series data using the minimum
description length principle,” Bioinformatics, vol. 22, no. 17, pp.
2129–2135, 2006.

[19] X. Zhou, X. Wang, R. Pal, I. Ivanov, M. Bittner, and E. R.
Dougherty, “A Bayesian connectivity-based approach to con-
structing probabilistic gene regulatory networks,” Bioinformat-
ics, vol. 20, no. 17, pp. 2918–2927, 2004.

[20] J. Meng, M. Lu, Y. Chen, S.-J. Gao, and Y. Huang, “Robust infer-
ence of the context specific structure and temporal dynamics of
gene regulatory network,” BMC Genomics, vol. 11, no. 3, p. S11,
2010.

[21] Y. Zhang, Z. Deng, H. Jiang, and P. Jia, “Inferring gene reg-
ulatory networks from multiple data sources via a dynamic
Bayesian network with structural em.,” in DILS, S. C. Boulakia
and V. Tannen, Eds., vol. 4544 of Lecture Notes in Computer
Science, pp. 204–214, Springer, New York, NY, USA, 2007.

[22] K. Murphy and S. Mian, Modeling gene expression data using
dynamic Bayesian networks, University of California, Berkeley,
Calif, USA, 2001.

[23] H. Liu, D. Yue, L. Zhang, Y. Chen, S. J. Gao, and Y. Huang, “A
Bayesian approach for identifying miRNA targets by combin-
ing sequence prediction and gene expression profiling,” BMC
Genomics, vol. 11, no. 3, p. S12, 2010.

[24] Y. Huang, J. Wang, J. Zhang, M. Sanchez, and Y. Wang,
“Bayesian inference of genetic regulatory networks from time
series microarray data using dynamic Bayesian networks,”
Journal of Multimedia, vol. 2, no. 3, pp. 46–56, 2007.

[25] B.-E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and
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