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Inflammatory activation and immune cell infiltration are main biological 
characteristics of SARS-CoV-2 infected myocardium
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ABSTRACT
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can target cardiomyocytes 
(CMs) to directly invade the heart resulting in high mortality. This study aims to explore the 
biological characteristics of SARS-CoV-2 infected myocardium based on omics by collecting 
transcriptome data and analyzing them with a series of bioinformatics tools. Totally, 86 differen
tially expressed genes (DEGs) were discovered in SARS-CoV-2 infected CMs, and 15 miRNAs were 
discovered to target 60 genes. Functional enrichment analysis indicated that these DEGs were 
mainly enriched in the inflammatory signaling pathway. After the protein-protein interaction (PPI) 
network was constructed, several genes including CCL2 and CXCL8 were regarded as the hub 
genes. SRC inhibitor saracatinib was predicted to potentially act against the cardiac dysfunction 
induced by SARS-CoV-2. Among the 86 DEGs, 28 were validated to be dysregulated in SARS-CoV-2 
infected hearts. Gene Set Enrichment Analysis (GSEA) analysis of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) showed that malaria, IL-17 signaling pathway, and complement and coagulation 
cascades were significantly enriched. Immune infiltration analysis indicated that ‘naive B cells’ was 
significantly increased in the SARS-CoV-2 infected heart. The above results may help to improve 
the prognosis of patients with COVID-19.

ARTICLE HISTORY
Received 12 October 2021 
Revised 29 November 2021 
Accepted 30 November 
2021 

KEYWORDS
SARS-CoV-2; cardiomyocyte; 
heart injury; COVID-19; 
bioinformatics

Introduction

Coronavirus disease 2019 (COVID-19), which 
results from the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), is spreading all over 
the world and thus causing a serious global health 
crisis [1]. SARS-CoV-2 has a high affinity to 
angiotensin-converting enzyme 2 (ACE2) and 
ACE2 plays a pivotal role in the pathogenesis of 
this infectious disease. ACE2 is ubiquitous and 
widely expressed in human tissues especially in 
alveolar cells [2]. As expected, the lung is one of 
the most important target organs during the 
SARS-CoV-2 attack on the body. It has been 
reported that some patients progress to severe 
respiratory failure and acute respiratory distress 
syndrome (ARDS) which requires mechanical ven
tilation, and that the mortality rate of these 
patients is as high as 20–40% [3].

Except for the lung, ACE2 is also highly 
expressed in the cardiovascular system [4]. In fact, 

in the systemic symptoms caused by SARS-CoV-2 
infection, myocardial injury is one of the important 
pathogenic features which further increases the risk 
of mortality [5]. According to previous reports on 
SARS-CoV, the existence of viral RNA and macro
phage infiltration could be simultaneously detected 
in clinical heart samples, suggesting direct and 
indirect viral-induced damage to the myocardium 
[6]. Perez-Bermejo JA et al [7] performed experi
ments and discovered that SARS-CoV-2 was more 
inclined to infect cardiomyocytes (CMs) over fibro
blasts and endothelial cells. However, the down
stream effects on cardiomyocytes after infection 
with this virus are not delineated.

Therefore, in this study, the differentially 
expressed genes (DEGs) in SARS-CoV-2 infected 
three types of human CMs were re-analyzed, and 
the overlapping genes were enrolled for analysis of 
protein-protein interaction (PPI), Gene Ontology 
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(GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), as well as their upstream regulators. 
Besides, the potential therapeutic drugs are pre
dicted. Furthermore, these DEGs in SARS-CoV-2 
infected human hearts were re-analyzed and used 
to validate the DEGs of in-vitro results. Finally, 
based on the in vivo results, Gene Set Enrichment 
Analysis (GSEA) analysis was performed and 
immune infiltration was evaluated. We hope that 
the above bioinformatics analysis will show the 
biological characteristics during SARS-CoV-2 
infected myocardium.

Methods

Bioinformatics datasets

Three datasets GSE150392, GSE151879 and 
GSE169241 were obtained from Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
database. In GSE150392, human induced pluripotent 
stem cell-derived cardiomyocytes (hiPSC-CMs) were 
infected with Mock or SARS-CoV-2. In GSE151879, 
human embryonic stem cells-derived cardiomyocytes 
(hESC-CMs) and adult human cardiomyocytes (AHC 
Ms) were both infected with Mock or SARS-CoV-2. In 
GSE169241, heart samples of three COVID-19 
patients and five controls were collected. All the gene 
expression profiles of the aforementioned datasets 
were detected by high-throughput sequencing.

DEGs analysis

The raw-count of GSE150392 [8], GSE151879 [9], 
and GSE169241 [10] were enrolled for detecting 
DEGs between SARS-CoV-2 infected and unin
fected myocardium. Networkanalyst (https:// 
www.networkanalyst.ca/) webtool, a collection of 
online user-friendly bioinformatic tools [11], was 
used to analyze the above DEGs after normalizing 
the data using DESeq2 [12]. The criteria for DEGs 
are as follows: adjusted P-value < 0.05, and log2 
fold change (FC) ≥ 1 or ≤ −1.

Identification of upstream TFs and miRNAs

The expression of DEGs could be specifically regu
lated by TFs at transcriptional level [13] and 
miRNAs at post-transcriptionally [14]. The 

transcription factors (TFs) of these DEGs were 
predicted with FunRich (http://www.funrich.org/) 
software [15], and the top 10 TFs were picked out. 
The upstream miRNAs were searched on miRNET 
website (https://www.mirnet.ca/) [16], and the 
miRNA-mRNA network was subsequently con
structed using the website.

Functional enrichment analysis

GSEA is a knowledge-based approach for analyzing 
groups of genes that share common biological func
tions, chromosomal location, or regulation [17]. GO 
analysis mainly reflects three independent ontologies 
of group genes: molecular function (MF), biological 
process (BP) and cellular component (CC) [18]. 
WEB-based Gene SeT AnaLysis Toolkit 
(WebGestalt, http://www.webgestalt.org/), a user- 
friendly functional enrichment analysis webtool [19], 
was applied for GSEA and GO analysis. KEGG data
base provided biological pathway information of 
DEGs enrichment [20]. Enrichr website (https:// 
amp.pharm.mssm.edu/Enrichr/), a comprehensive, 
freely available gene set enrichment analysis web ser
ver [21], was used to explore pathway information.

PPI network construction and analysis

The ‘Search Tool for Retrieval of Interacting Genes/ 
Proteins’ database (STRING, https://string-db.org/) 
integrates all available information regarding pro
tein-protein interaction [22], and all DEGs were 
mapped into the database to construct the complete 
PPI network. Subsequently, the network was 
imported into Cytoscape software (https://cytos 
cape.org/), an open-source software platform for 
visualizing complex networks [23], to screen out 
hub nodes with plug-in ‘cytoHubba’ according to 
the indexes Degree, Betweenness, and Closeness. 
Furthermore, the plug-in ‘MCODE’ was used to 
extract the clustering function modules. The criteria 
used was as follows: degree cutoff = 2, node density 
cutoff = 0.1, node score cutoff = 0.2, k-core = 2 and 
max depth = 100.

Potential therapeutic drugs prediction

The Connectivity Map (cMap) source can provide 
information of connection between gene 
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expression signatures and small molecules, genes 
or disease [24]. In order to search for drugs against 
virus-induced myocardial injury, drug repurposing 
analysis was performed on the cMap database by 
using the online application CLUE (https://clue.io) 
[25]. The first 10 molecules with the lowest scores 
were collected.

Immune infiltration analysis

CIBERSORT (https://cibersort.stanford.edu/) is an 
analytical online webtool that provides an estima
tion of the abundance of member cell types in 
a mixed cell population by using gene expression 
data [26]. The immune infiltration of 22 kinds of 
immunocytes was evaluated with CIBERSORT and 
analyzed with the wilcoxon test method to com
pare the difference between infected and unin
fected hearts. A p-value < 0.05 was considered 
statistically significant. Pearson correlation 
between infiltrating immunocytes was calculated 
in GraphPad Prism 8.0.

Results

In the present research, we aimed to explore the 
biological characteristics of SARS-CoV-2 infected 
myocardium by bioinformatic tools. After re- 
analyzing the datasets of SARS-CoV-2 infected 
CMs, the DEGs were picked out and enrolled for 
GO, KEGG analysis, and PPI network construc
tion. The upstream regulator including TFs and 
miRNAs that are potentially responsible for the 
expression of DEGs were screened. In order to 
find possible therapeutic drugs, the DEGs were 
collected for analysis in the specific database. 
Finally, the dataset of the hearts of COVID-19 
patients was re-analyzed to confirm the in-vitro 
results, and further used for detecting the immune 
infiltration.

Identification of DEGs during SARS-CoV-2 
infected cardiomyocytes

In GSE150392, 1570 genes were found to be upre
gulated while 1890 genes were downregulated in 
SARS-CoV-2 infected hiPSC-CMs (Figure 1(a)). In 
GSE151879, there were 1952 upregulated and 1021 
downregulated genes in SARS-CoV-2 infected 

hESC-CMs (Figure 1(b)), and 623 upregulated 
and 340 downregulated genes in SARS-CoV-2 
infected AHCMs (Figure 1(c)).

In order to more accurately screen out the DEGs 
after the virus interfered with CMs, we took the 
intersection of up- and down-regulated DEGs 
among three groups. The results showed that there 
were 62 genes up-regulated in all three groups 
(Figure 1(d), Table 1), and only 24 genes were 
down-regulated in all three groups (Figure 1(e), 
Table 1). In short, these 86 DEGs were considered 
to be the genes that are most likely differentially 
expressed after SARS-CoV-2 infected the CMs.

Prediction of upstream TFs and miRNAs

There were several TFs predicted to regulate these 
86 DEGs. As shown (Figure 2(a)), only NFIC was 
significantly enriched, and nine others including 
ZIC1, HSF1, MEF2A, STAT1, SOAT1, POU2F1, 
CUX1, EGR1 and BACH2 showed no significance.

Besides, the upstream miRNAs were predicted 
and 15 miRNAs were found to potentially regulate 
the expression of 60 of 86 DEGs, and they formed 
a complex network containing 132 edges (Figure 2 
(b), Supplementary Table 1). Among all the 
miRNAs, miR-1-3p and miR-27a-3p had the 
most target genes.

Analyze GO and KEGG

We further assessed the biological role of 86 DEGs 
with GO analysis. The results showed that these 
DEGs were enriched in response to stimulus, bio
logical regulation, and metabolic process under BP 
categories (Figure 3(a)). In terms of MF, the func
tions of DEGs were mainly involved in protein 
binding, ion binding and nucleic acid binding 
(Figure 3(a)). These DEGs were distributed in 
different structures of cells including membrane, 
nucleus, and extracellular space (Figure 3(a)).

Biological pathway was analyzed with KEGG 
database [20]. As shown (Figure 3(b)), several 
signaling pathways were significantly enriched 
including TNF signaling pathway, Cytokine- 
cytokine receptor interaction, IL-17 signaling 
pathway, NF-kappa B signaling pathway, etc., indi
cating that the function of DEGs was closely 
related to inflammatory phenotype.
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Construction of the PPI network and hub genes 
analysis

To construct the PPI network, we mapped all the 
86 DEGs into STRING database and generated 
a complex network structure, in which 54 nodes 
and 121 edges were retained (Figure 4(a)). After 
‘MCODE’ [27] analysis, we revealed two modules 
where the first one scored 8.75 (Figure 4(b)). 
‘cytoHubba’ [28] was another way to evaluate the 
nodes through ‘degree’, ‘betweenness’ and ‘close
ness’. The top 10 genes under three dimensions 
were displayed (Figure 4(c-e)). Altogether, several 

genes such as CCL2, CXCL3, CXCL8, CXCL2, 
IRF1, etc. were potential hub ones.

Predicting potential anti-SARS-CoV-2-induced 
cardiomyocyte disorder drugs

In order to find a way to repair the damage, we 
further explored the possible drugs based on the 
86 dysregulated genes. There was a total of 2429 
compounds enrolled and scored (Supplementary 
Table 2), and the ten most likely therapeutic 
drugs were PIK-75, ZG-10, triptolide, peucedanin, 

Figure 1. Analyze the DEGs between mock and SARS-CoV-2 infected CMs. Volcano plot showed DEGs as red dot represent up- 
regulated and green dot represent down-regulated genes in hiPSC-CMs (a), hESC-CMs (b), and AHCMs (c) respectively. (d) The venn 
diagram indicated 62 genes were upregulated in all three datasets. (e) The venn diagram indicated 24 genes were downregulated in 
all three datasets.

Table 1. The overlapping DEGs in datasets of SARS-CoV-2 infected CMs.
DEGs Genes

Up-regulated TNIP3, SLC38A5, CD38, TNFRSF9, RIPK4, STARD13, NFKB2, BDKRB1, PCK2, PDE4C, LIF, IL27RA, BMP6, NUAK1, NEDD4L, DSE, NFKBIZ, 
PTGS2, WNK4, IL4I1, CDKN2B, PIK3CD, TNFAIP3, ZSWIM4, PTGER4, SLC22A3, CD14, PCED1B, EBI3, GATA3, IRAK2, POSTN, 
SERTAD4, SUSD3, SLC2A6, NFE2L3, KLF5, PID1, RUNX2, LOX, IL32, RPS6KA1, SKIL, NFKBIA, PFKFB4, NOD2, BHLHE41, AMIGO2, 
TYMP, RFLNA, IRF1, ELF3, PTPRB, PAPPA, RUNX1, CXCL8, LTBP2, ZC3H12A, FRMD6, ETV4, CPM, DRAM1, FLNB, TNFSF18, SRGN, 
CCL2, IL6, SYT1, RORA, INHBA, SERPINE2, ARRDC3, PRR15, SPINT1, SHROOM3, SERPINE1, TNFAIP2, NEDD9, IL11, KLF10, BCAT1, 
TFPI2, ICAM5, BIRC3

Down- 
regulated

TACC2, KLHL41, NEBL, SELENOP, CSRP3, MLIP, CAMK2B, LRRC2, MYOZ2, HAND2, SNTA1, PLCXD3, SYNPO2L, PPFIA2, LBH, DRD1, 
PLN, HSPB3, COL21A1, ADCY5, VSNL1, STRIP2, RCAN2, OXCT1, FABP3, INKA2, MAN1C1, MYH11, IL17RB, BDH1, SREBF2-AS1, 
GJA3, PPM1L, GPX3
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PD-0325901, phenylbutyrate, NSC-23766, saraca
tinib, PD-98059, and XMD-892, all of which with 
scores less than −90 (Table 2).

Validation of the DEGs expression in the dataset 
of SARS-CoV-2 infected heart

To fully understand the biological characteristics of 
virus-infected myocardium, we re-analyzed the 
DEGs between COVID-19 infected hearts and 
uninfected hearts. As indicated (Figure 5(a)), there 
were 1765 upregulated and 1509 downregulated 
DEGs in the SARS-CoV-2 infected heart. More 

than that, 15 upregulated and 13 downregulated 
genes of the 86 DEGs were also dysregulated in 
heart samples (Figure 5(b)), showing that the 
in vitro SARS-CoV-2 infected CMs could simulate 
in vivo infection in the heart to some extent. All the 
28 DEGs were ordered according to the size of their 
logFC in GSE169241 (Figure 5(c)), and CCL2 was 
found to be the most increased while OXCT1 
decreased the most in SARS-CoV-2 infected hearts.

We also performed GSEA analysis to uncover the 
biological pathways involved. As shown, 31 KEGG 
terms including ‘Malaria’, ‘IL-17 signaling pathway’, 
‘Complement and coagulation cascades’, etc. were 

Figure 2. Predict the upstream regulators of the overlapped 86 DEGs. (a) The potential upstream TFs including NFIC, ZIC1. (b) Predict 
upstream miRNAs and construct the miRNA-mRNA network in muscle tissue. Blue quadrilateral was miRNA and red circular was 
DEGs.

Figure 3. Analyze the GO and KEGG pathway enrichment of 86 DEGs. (a) Bar chart showed results of Biological process (red), Cellular 
component (blue), and Molecular function (green). (b) Bubble diagram showed the KEGG pathways enrichment results. The size of 
the dot represents count, and color represents -log10 adjusted p value.
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positively associated with the pathological state, 
while 25 terms including ‘propanoate metabolism’, 
‘valine, leucine, and isoleucine degradation’, 
and ‘Citrate cycle (TCA cycle)’, etc. were negatively 
associated with the disease progression (Figure 6 
(a,b)).

Assessing the immune infiltration in the 
SARS-CoV-2 infected heart

The infection of SARS-CoV-2 was able to induce 
abnormal response of the inflammatory signal 
pathway. We, therefore, assessed the immune infil
tration of SARS-CoV-2 infected hearts (Figure 7 

(a)). The results showed that there were closely 
positive correlations and negative correlations 
between the infiltration fraction of multiple 
inflammatory cells (Figure 7(b)). Furthermore, 
the proportion of ‘naïve B cells’ was significantly 
upregulated (P = 0.036) after the SARS-CoV-2 
infection (Figure 7(c)), while ‘Macrophages M2� 
and ‘Mast cells resting’ showed a downward trend 
(P = 0.071 for both). This provides a clue that 
naive B cells may be the focus of intervention.

Discussion

There is no doubt that SARS-CoV-2 induced 
COVID-19 mainly focused on the respiratory sys
tem and results in severe respiratory failure ulti
mately causing death [29]. Besides, one more 
important reason for the death of COVID-19 
patients is the destruction of the cardiovascular 
system. Myocardial injury is common during 
SARS-CoV-2 infection, and researchers have 
found that it is significantly associated with 
a higher risk of mortality [30,31]. Therefore, it is 
urgent to explore the biological effects of SARS- 
CoV-2 on the heart.

Figure 4. Construct the PPI network and analyze the properties of nodes. (a) The whole PPI network containing 54 nodes and 121 
edges. (b) The significant module with score 8.75. (c) The top 10 genes according to the parameter degree. (d) The top 10 genes 
according to the parameter betweenness. (e) The top 10 genes according to the parameter closeness.

Table 2. Potential drugs for the treatment of SARS-CoV-2 
induced CMs dysfunction.

Rank Score Name Description

1 −98.03 PIK-75 DNA protein kinase inhibitor
2 −97.34 ZG-10 JNK inhibitor
3 −97.04 triptolide RNA polymerase inhibitor
4 −95.93 peucedanin Apoptosis stimulant
5 −95.86 PD-0325901 MEK inhibitor
6 −95.09 phenylbutyrate HDAC inhibitor
7 −93.67 NSC-23766 Ras GTPase inhibitor
8 −93.02 saracatinib SRC inhibitor
9 −92.9 PD-98059 MEK inhibitor
10 −92.53 XMD-892 MAP kinase inhibitor
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Genes are key participants in life activities and 
disease evolution. In this study, we firstly collected 
three independent datasets from the GEO database 
and re-analyzed them. These three datasets used 

SARS-CoV-2 or mock treatment to interrogate 
a response from cardiomyocytes originating from 
hiPSC, HESC, and adult humans, and detected via 
high throughput sequencing. The final results 

Figure 5. Validate the expression of the 86 DEGs in dataset of COVID-19 heart samples. (a) Volcano plot showed DEGs as red dot 
represent up-regulated and green dot represent down-regulated genes in COVID-19 heart. (b) The overlapping of up-regulated DEGs 
and downregulated DEGs between SARS-CoV-2 infected CMs and heart. There were 15 of 62 overlapped DEGs upregulated and 13 of 
24 overlapped DEGs downregulated in SARS-CoV-2 infected heart. (c) The logFC value of above 28 DEGs (red marked 15 upregulated 
and blue marked 13 downregulated) in SARS-CoV-2 infected heart.

Figure 6. Biological characteristics of SARS-CoV-2 infected heart. (a) GSEA analysis indicated KEGG results of infected heart in COVID- 
19 patients. There were totally 56 items listed. (b) Example items of the positive and negative enrichment set including ‘Malaria’, ‘IL- 
17 signaling pathway’, ‘Propanoate metabolism’, and ‘Valine, leucine and isoleucine degradation’.
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revealed thousands of differentially expressed 
genes in each dataset. However, only 86 DEGs 
were concurrently up-regulated or down- 
regulated in all datasets, indicating the existence 
of several internal biological differences among the 
above CMs from the three sources when exposed 
to SARS-CoV-2. Therefore, these overlapped genes 
were selected as the most potential abnormally 
expressed factors in SARS-CoV-2 infected CMs. 
To verify the reliability of these genes, we re- 
analyzed the dataset of heart samples from clinical 
COVID-19 patients and uninfected individuals 
and found that 28 genes of the 86 DEGs were 
also significantly differentially expressed in vivo, 
suggesting that the in vitro model was reliable to 
some extent.

To construct the integrated regulatory network, 
we predicted the upstream transcription factors 
and miRNAs with bioinformatic tools. In terms 
of the transcription factors listed, only NFIC was 

significantly enriched while others showed no sig
nificance. MiRNAs are tissue-specific regulators 
that can inhibit gene expression. We further pre
dicted the possible miRNAs targeting the 86 DEGs 
in muscle to construct a precise network. We 
found 15 miRNAs that potentially regulate a total 
of 60 genes from 86 DEGs and miR-1-3p is most 
widely associated with these DEGs. According to 
previous research, miR-1-3p was increased in per
ipheral blood and positively correlated with the 
level of myocardial damage in acute viral myocar
ditis [32] and therefore whether its circulating 
form could contribute to diagnose and even 
judge the prognosis in SARS-CoV-2 induced myo
cardial injury is worth exploring. Besides, its 
extensive association with multiple DEGs suggests 
that it is also a potentially valuable intervention 
target.

There is still insufficient understanding of this 
virus-induced myocardial disorder. Based on all 

Figure 7. Immune infiltration in SARS-CoV-2 infected heart. (a) Barplot showed the composition of immunocytes in SARS-CoV-2 
infected hearts and uninfected hearts. A total of 22 immune cells were included. (b) Heatmap showed the Pearson correlation 
between 22 kinds of immunocytes. The blue represented positive correlation, red represented negative correlation and yellow 
represented no correlation between two cells. (c) The content of 22 types of immunocytes in hearts of COVID-19 and none-COVID-19 
patients were compared. Propotion of ‘B cells naïve’ was significantly higher in COVID-19 hearts than in control hearts.
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dysregulated genes, we evaluated the characteris
tics of the above biological dysfunction through 
GO and KEGG analysis. In terms of the biological 
process in GO, we found that response to stimulus, 
biological regulation, and metabolic process were 
significantly enriched. The analysis of biological 
pathways by KEGG provides abundant informa
tion. As indicated in the analysis, these DEGs were 
enriched in ‘TNF signaling pathway’, ‘Cytokine- 
cytokine receptor interaction’, ‘IL-17 signaling 
pathway’, and ‘NF-kappa B signaling pathway’, 
whose roles were also vital in other viral myocar
ditis [33,34]. This suggested that anti- 
inflammatory strategies will likely help to combat 
myocardial injury in COVID-19 patients. We also 
focused on the KEGG signaling pathway by GSEA 
analysis with the results of in vivo dataset, and 
confirmed the importance of ‘IL-17 signaling path
way’ in the disease progression once again. In fact, 
activation of IL-17 signaling pathway, to a certain 
extent, is a landmark event of SARS-CoV-2 infec
tion [35], and mediated the cytokine storm caused 
by SARS-CoV-2 infection [36]. More than that, 
‘Complement and coagulation cascades’ were pro
ven to actively participate in this cardiac anomaly, 
which highly suggests that myocardial injury in 
COVID-19 may be partly from microcirculatory 
thrombosis.

To identify the key genes responsible for 
exacerbating SRARS-CoV-2 damage to CMs, we 
constructed a PPI network with all 86 DEGs and 
further analyzed the nodes by using ‘MCODE’ 
and ‘cytohubba’ in cytoscape software. Several 
genes including CCL2, CXCL8, PTGS2, and 
IRF1 were considered to be hub genes because 
they were screened out according to different 
standards simultaneously. Chemokine 
(C-C-motif) ligand 2 (CCL2), also known as 
monocyte chemoattractant protein-1 (MCP-1), 
is a member of the chemokine family, and 
responsible for attracting leukocytes to sites of 
infection or injury to mediate defense and repair 
[37]. In a recent research, SARS-CoV-2 infected 
CMs could induce CCL2 secretion and further 
recruit monocyte[9][], indicated a vital role of 
CCL2 in the pathological mechanism. CXCL8, 
also called IL-8, is a prototypical member of 
the CXC family, and is usually responsible for 
the recruitment and activation of inflammatory 

cells through interaction with cell surface recep
tor GPCR, CXCR1 and CXCR2 [38]. In COVID- 
19, CXCL8 expression was higher only in severe 
patients, and positively correlated with the per
centage of neutrophils [39], which proposed that 
CXCL8 leads to deterioration of the condition by 
recruiting neutrophils. CXCL8, along with IL-37 
and CRP, could be combined into a highly sen
sitive model to effectively differentiate severe 
cases from moderate ones in the COVID-19 
population [40]. Therefore, the above hub 
genes such as CCL2 and CXCL8 may be key 
participants and diagnostic indicators in 
COVID-19 patients who experienced myocardial 
injury.

Due to the fact that these hub genes were closely 
associated with inflammatory cells in function, we 
also evaluated the immune infiltration in the 
injured heart sample with the in vivo dataset. 
After the execution in the CIBERSORT webtool 
and subsequent statistical analysis, only the pro
portion of ‘naive B cells’ was significantly 
increased in SARS-CoV-2 infected hearts, while 
‘Macrophages M2ʹ and ‘Mast cells resting’ 
decreased with parameter p-value close to 0.05. 
The naive B lymphocytes are a major mediator of 
adaptive immunity in mammals [41]. In a recent 
research by Wu et al [42]. the immune infiltration 
landscape in the lung tissues of COVID-19 
patients was estimated, and naive B cells infiltra
tion was found to be high and may be the main 
cause of the over-active humoral immune 
response. Furthermore, it was found that the 
increased B cell infiltration was associated with 
poorer clinical outcomes, and may act as 
a trigger of severe respiratory and pulmonary 
symptoms of COVID-19. Several specific mole
cules that can target B cells have been shown to 
be beneficial against the COVID-19 pandemic 
[43,44]. Therefore, the increased B cell infiltration 
is a potential culprit of functional deterioration in 
the hearts of COVID-19, and appropriate inhibi
tion of naive B cells might be an effective strategy 
to alleviate COVID-19-induced heart dysfunction/ 
damage.

Exploring therapeutic drugs is of great signifi
cance to improve the prognosis of COVID-19 
patients. We matched 86 DEGs into the cMAP 
database and obtained scores of all 2429 small 
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molecules. A series of compounds were identified 
to potentially reduce the SARS-CoV-2 induced 
CMs injury. The antiviral saracatinib, one of the 
most likely therapeutic drugs, has been considered 
to be effective against SARS-CoV-2 in two differ
ent research models [45,46]. However, whether 
saracatinib or other predicted small molecules 
could prevent myocardial tissue damage caused 
by SARS-CoV-2 remains to be confirmed.

Conclusion

In conclusion, our study identified potential bio
markers in SARS-CoV-2 infected myocardium, 
and found potential immune cell intervention tar
gets and valuable therapeutic drugs. However, 
further studies are needed to confirm our preli
minary results.

Highlights

● The miRNA-mRNA network and PPI net
work will improve our understanding of the 
disease development and can be applied for 
exploring potential disease biomarkers.

● Fraction of ‘naive B cells’ was significantly 
increased in SARS-CoV-2 infected myocar
dium, and may be a potential intervention 
target.

● Several small moleculars especially saracatinib 
were believed to fight disease progression.
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