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Abstract: Alzheimer’s disease (AD) is one of the most prevailing neurodegenerative diseases in
the world, which is characterized by memory dysfunction and the formation of tau and amyloid β

(Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of
senile plaques involving tau hyperphosphorylation, fibrillar Aβ, and neurofibrillary tangles (NFTs)
is used as a pathological marker of AD and eventually produces aggregation or misfolded protein.
Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to
pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory
deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway
plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or
misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could
be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway,
which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach
to modulate the formation of aggresomes associated with AD. This review focuses on the recent
improvements in the application of natural compounds and small molecules as a potential therapeutic
approach for AD prevention and treatment via aggrephagy.

Keywords: Alzheimer’s disease (AD); aggregation; autophagy; aggresome; autophagosomes; ag-
grephagy

1. Introduction

Aggresomes are inclusion bodies that consist of aggregated cytoplasmic proteins in-
duced by the overexpression or inhibition of certain proteins of the proteasome system [1],
and the accumulation of incorrectly folded proteins is thought to contribute to the etiology
of various neurodegenerative diseases [2]. Misfolded protein molecules processing has an
important role in maintaining normal cellular function as well as homeostasis. Three pro-
tein quality systems have been found to degrade misfolded or aggregated protein, which
are ubiquitinated proteasomal degradation, chaperone-mediated degradation, and selec-
tive autophagy or aggrephagy [3]. Previous studies have demonstrated that an increasing
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number of AD-related proteins are associated with aggresomes [4], and non-pathological
proteins could form invasive inclusion bodies as well. It is well-known that Aβ production
in addition to oligomer accumulation is the key factor of AD pathogenesis [5]. Addition-
ally, neurofibrillary tangles (NFTs) are caused by the neuronal microtubule-stabilizing
hyperphosphorylation of tau protein [6]. Particularly, it is mentioned that the impaired
degradation of these aggregated proteins molecules causes neuronal atrophy, cytotoxicity,
synaptic impairment, memory deficits, and ultimately causes AD pathogenesis [7,8]. It
has been hypothesized that autophagy manipulations might be a potentially promising
therapeutic strategy target to modulate protein-aggregation-related diseases and toxicity.
Recently, it has been revealed that AD-related protein aggregates might be recognized
via several receptors which may be degraded through the autophagy–lysosome pathway
(ALP); this process is known as the aggrephagy mechanism [4]. However, it has not been de-
termined whether autophagy easily eliminates invasion caused by other proteins associated
with AD. In this review, we would like to emphasize the susceptibility of AD-associated
proteins to autophagy.

Autophagy, a cellular self-degradation system, can be exploited for the clearance and
removal of misfolded protein, cellular constituents, processing antigens, tackling infec-
tious organisms, sequestering additional organelles, suppressing tumors, and controlling
cell growth [9,10]. Autophagy supports the clearance of aggregated or misfolded proteins
during stress conditions, especially when ubiquitin–proteasome systems and chaperones be-
come overwhelmed [11]. In general, autophagy is thought to be involved in several human
diseases, for instance, heart and liver diseases, myopathies, cancer, and neurodegenerative
disorders [12]; however, autophagy malfunction is additionally involved in several protein
aggregation diseases [13]. Accumulating evidence has indicated that misfolded proteins can
impair cell function and viability via a diversity of mechanisms such as proteasome inhibi-
tion, pore formation, as well as intracellular transport disruption [14,15]. It has been shown
that misfolded protein production exceeds the capability of the ubiquitin–proteasome
pathway and molecular chaperone system [16]. However, aggregated or misfolded protein
is vigorously sequestered in a microscopically observable way, which forms pericentriolar
structures, so-called an aggresomes. These aggresomes are consequently degraded through
autophagy, which is generally called the aggresome–autophagy pathway [16,17]. In this
study, we reviewed the role of autophagy to modulate aggresomes and their potential
therapeutic action for the treatment of AD, focusing on several small molecules which may
potentially help improve AD treatment.

2. Molecular Mechanism of Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most prevailing neurodegenerative diseases,
characterized by memory dysfunction and the presence of hyperphosphorylated tau and
amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and
cortex [18]. The clinical and pathological appearance of AD comprises memory impairment
and slowness while performing normal regular activities [19]. The main pathological
features represent intracellular aggregates composed of the extracellular deposition of
amyloid-β (Aβ) and phosphorylated tau protein that form neurofibrillary tangles (NFTs)
leading to the formation of senile plaques [20–23] (Figure 1). Aggregated forms of tau
protein are reported to appear in the proximal axon. Large, insoluble tau aggregates,
which contain irreversibly phosphorylated tau species, do not move in the axons [13].
The production of toxic tau species may damage the transport system in the axon, reduce
APP transport towards the synapse, cause APP accumulation in the soma, and thus lead
to Aβ aggregation. Neurofibrillary tangles are formed via the hyperphosphorylation of
a microtubule-associated protein known as tau, causing it to aggregate, or group, in an
insoluble form. The precise mechanism of tangle formation is not completely understood,
and it is still controversial as to whether tangles are a primary causative factor in disease or
play a more peripheral role. It has been shown that the degree of cognitive impairment in
diseases such as AD is significantly correlated with the presence of neurofibrillary tangles.
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Investigating possible links between tau and NFTs is important for us to better understand
processes that lead to the onset of AD at a mechanistic level. Increased Aβ load and NTFs
in autophagic vacuoles further exacerbates autophagy stress and AD pathology, which
eventually disturbs communication between neurons and their normal function, as well
as finally resulting in neuronal death [24]. Synaptic autophagy vacuoles and aggregate
clearance failure induce synaptic toxicity which results in diminished synaptic plasticity as
a cause of memory dysfunction in AD.
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Figure 1. Molecular mechanism of AD pathogenesis. Amyloid precursor protein cleaves by β-
secretase and α-secretase, leading to the accumulation of neurotoxic Aβ plague. Neurofibrillary
tangles (NFTs) are aggregates of hyperphosphorylated tau protein. Aβ plague and NFTs causes
synaptic dysfunction and memory impairment, which are characteristics of AD.

3. Molecular Pathway of Autophagy Process

Autophagy can still be triggered to remove the unwanted components of cytoplasm
such as protein clusters instead of injured mitochondria [25,26]; however, at times of
strain and injury, autophagy mainly remains inside the cell homeostasis [27]. Unc-51-like
kinase 1 (ULK1), as well as its start protein complex, is controlled mostly by metabolic
sensor systems: mammalian target of rapamycin complex 1 (mTORC1) as a negative
controller, and AMP-activated kinase (AMPK), a positive controller of autophagy [28].
The phosphatidylinositol 3-kinase (PI3K) type III nucleation intricate, whose best-known
protein is Beclin-1, can then be activated to stimulate the nucleation of a pre-phagophore
with the aid of ATG-9-bound vacuoles [29]. The lipidation of LC3-II (ATG-8) protein has
a binding site that attaches to LC3-interacting motifs (LIRs) on autophagosome carriers
which is responsible for the pre-phagosome [30]. With the help of ATG-4B, ATG-3, and
ATG-7, this bonding with phosphatidylethanolamine is carried out with the assistance
of an ATG-12-conjugation intricate as well as the phosphatidylinositol 3,4,5-triphosphate
(PIP3) binding intricate [31]. Initially, LC3 is SPLIT by ATG-4B to disclose glycine remains
formatting LC3-I which is shifted to ATG-7 (E1-similar enzyme which is shared with ATG-
12) and is shifted to its particularly E2-like enzyme, ATG-3, and attached to the main group
of phosphatidylethanolamines (PE), which generate LC3-II [32,33]. ATG-7 activates ATG-12
and makes the following intermediates with ATG-7 and ATG-10 (E2-similar enzyme) until
it is conjugated with ATG-5 [34]: ATG-12/ATG-5 intricates work as E3-similar enzymes
to encourage ATG-8-PE entanglement [35]. ATG-16L is needed for the natural process,
but it does confirm that the lipidation happens in the correct cell wall. These actions
cause the phagophore to enlarge and simply close, which controls the formation of the
autophagosome [36]. Just before closing, the autophagosome’s dual layer merges to the
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lysosomes, allowing the deterioration of the inward membrane and intra-autophagosome
cargo to begin [37]. A detailed molecular mechanism of autophagy is presented in Figure 2.
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Figure 2. Molecular mechanism of autophagy. Autophagy process is initiated through the formation
of the phagophore structure formation. PI3K-AKT and mTOR have been predisposed to form
phagophore initiation. Beclin-1, UVRAG, and VPS34 complexes help to initiate phagophore formation.
Phagophore nucleation has been extended to autophagosome formation. Binding between mature
autophagosomes as well as lysosomes indicates the autolysosome formation. Chloroquine (CQ),
Bafilomycin A1 (BAF-A1), and Vinblastine inhibit the binding of lysosomes and autophagosomes.
Eventually, autolysosomes will be eliminated by acid hydrolases that produce nutrients as well as
recycling metabolites.

4. Mechanism of Aggresome Formation

Aggrephagy is a selective form of autophagy that eliminates aggregated and ubiquiti-
nated proteins [38]. The first stage of aggresome formation involves the accumulation of
irregularly folded or unfolded proteins, packed into larger, insoluble aggregates and trans-
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ported to the microtubule-organizing center (MTOC) [38,39], where aggresomes can cause
autophagic degradation. In the autophagic process, autophagosomes undergo lysosomal
degradation through dual autophagy membranes encompassing ubiquitin-labeled pro-
teins [20,40]. The autophagy pathway plays an important role in the cytoplasm, but it is not
efficient in the nucleus because autophagy-related molecules do not have nuclear inclusions.
Aggresomes are membrane-free, microtubule-dependent, cytoplasmic inclusion bodies that
form oligomer complexes with amorphous structures containing unfolded or misfolded
proteins, which are generally stable and insoluble under physiological conditions [41,42].
Typically, aggregated proteins continue to grow and develop and then oligomerize to form
longer insoluble inclusions bodies or aggregates [43]. These aggregates can either link
with themselves or join with existing aggresomes located at the MTOC, residing near the
cellular centrosome. These aggregates are labeled with ubiquitin alone with heat shock
proteins (Hsps), such as Hsp70, and their development in neurodegenerative diseases is
demonstrated in Figure 1 [3,44–46]. Additionally, aggresomes are primarily surrounded
by the cytoskeleton of intermediate filament, and a cage-like structure appears in the cy-
toskeleton, such as vimentin and keratin, along with neurofilaments [41,47] (Figure 3). This
cage-like structure is known to promote structural stability and inhibit non-specific inter-
actions. These aggresomes exert cellular cytotoxicity, but at a later stage, matured bilayer
autophagosomes lose their activity [48]. The components of the ubiquitin–proteasome
systems are concentrated or grouped into these assemblies before aggregate molecules are
discarded through degradation or refolding [49]. Recently, it has been reported that the
modulation of aggresome formation and assembly may serve as a novel approach to treat
diseases associated with defects in protein conformation.
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Figure 3. Molecular mechanism of aggresome development and formation. Under normal conditions,
misfolded and polyubiquitinated proteins are fragmented via the ubiquitin proteasomal system.
When ubiquitin proteasomal system is altered or overhauled, misfolded polyubiquitin proteins
accumulate and form to aggregate. In this case, ataxin-3-dexiquitinase interrelates and aggregates
with polyubiquitinated proteins to form ubiquitin chain structure. In addition, HDAC6 binds these
non-anchored C-terminal tails of ubiquitin to form aggregates and recruits them into the dynein
motor complex.
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Histone deacetylase-6 enzyme (HDAC6), important for aggresome formation, is essen-
tial for microtubule transport machinery, and misfolded proteins produced from dendrites
and axons are shifted towards the move to lysosome-rich MTOC [50]. HDAC6 is considered
as the crucial controller of aggresome creation and maintains the central component of
autophagy initiation [4]. In aggrephagy, MTOC is packed in aggresomes and degrades via
lysosomes [51].

5. Clearance of Aggresomes through Autophagy

When the proteasomal degradation system is overwhelmed, the autophagy pathway
is activated as an essential cellular defense system to resist incorrect folding and to pre-
vent the accumulation of aggregated proteins [2,52]. In this system, poorly folded and
aggregated proteins are selectively identified and transferred to the MTOC (center of mi-
crotubule tissue) around the central body via microtubule-based retrograde transport [53].
Accumulating evidence suggests that autophagy not only protects aggressive cells by
chelating poorly folded cytotoxic aggregates, but also enriches poorly folded aggregates
for subsequent removal [54]. Autophagy is a multi-step progression well characterized by
the construction of an insulating membrane, named phagophore, which swells to form the
double-membrane autophagosome and fuses with the lysosome to degrade the sequestered
cytoplasmic cargo [52,55]. Unlike proteasomes, autophagy does not require substrate ex-
pansion and is capable of degrading large protein complexes, protein aggregates, and even
entire organelles [56,57]. Moreover, autophagy is a precisely controlled process involving
multiple proteins encoded by the Atg (autophagy-related) genes [58,59], and previous
studies revealed that autophagy is induced in response to oxidative stress or proteasomal
damage and is directly involved in the elimination of aggresomes [60,61].

Emerging evidence suggests that autophagy is responsible for the removal of aggre-
gated and misfolded proteins, and the inhibition of autophagy preferentially affects the
degradation of mutant proteins associated with neurodegenerative diseases while leaving
their wild-type counterparts unaffected [62]. Although the mechanism of autophagy for
the specific elimination of misfolded proteins is not yet clear at the molecular level, the
selective isolation of incorrectly folded proteins in aggresomes can facilitate the preferential
removal of abnormal autophagy proteins [63]. By chelating the endogenous autophagy
inhibitor mTOR (mammalian target of rapamycin) kinase [64], the aggresome can also
contribute to the initiation of autophagy [65,66]. Importantly, the conventional concept
of autophagy only involves the non-selective removal of misfolded proteins and regular
cellular proteins, whereas the aggresome–autophagy pathway is specific to aggregated
and misfolded proteins. Therefore, a special type of autophagy induction is thought to
be related to the specific elimination of toxicity linked to the aggresome formation. One
potential mechanism has been found in parkin-mediated, Lys63-linked polyubiquitination
which promotes the elimination of misfolded proteins via autophagy, and autophagy occurs
by binding to the adapter protein p62 [67], an Ub binding protein interacting with the ubiq-
uitinated proteins via the autophagic mechanical component LC3 through its UBA domain
(connected to Ub) and the 22 amino acid LIR (LC3 interaction region) [68]. p62 promotes
the binding of a polyubiquitin chain linked to Lys63 [30,31], and the inhibition of its UBA
or LIR domain changes the conditions of the ubiquitinated aggregates in the autophago-
somes [69,70]. According to recent evidence, p62 may also promote the formation of protein
aggregates in addition to promoting the elimination of autophagy [71]. Further studies are
required to determine whether p62 is indeed an Ub receptor that regulates the processing
of Lys63-linked, folded, polyubiquitinated proteins via an active aggresome–autophagy
pathway [72] (Figure 4). As a result, under various stress conditions, an unnecessary level
of misfolded proteins is produced in cells as a result of overproduction and UPS damage,
resulting in the creation of huge numbers of protein aggregates. p62, a autophagic cargo
receptor first identified in mammalian cells, is essential for the development and autophagic
removal of intracellular protein aggregates [73]. Biologically, the autophagic elimination
of these p62-positive aggregates provides not only the removal of protein aggregates, but
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also the maintenance of p62’s homeostatic level [74]. This is significant since intracellular
p62 production has been linked to the malignant transformation of autophagy-deficient
cells [75]. It was recently proposed that, like some other cytoplasmic membraneless com-
partments, the arranged p62-positive protein aggregates seem to be actually liquid droplets
created by phase separation, which is dependent on the relationship between p62 as well
as ubiquitin and can also be regulated by p62 post-translational modification [76]. These
cytoplasmic aggregates made up of p62 and poly-Ub proteins are also known as p62 in-
clusion bodies [77]. Therefore, the creation of p62 bodies increases cell survival under
nutritional deprivation conditions, in addition to promoting their own breakdown via
selective autophagy.
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Figure 4. The regulation of aggresome–autophagy pathway. Aggresome and autophagy are regulated
by Lys63-associated polyquitination-mediated pathway. Oxidative damage or genetic mutations are
responsible for protein misfolding. After folding, the misfolded proteins are labeled with polyubiq-
uitin chains linked to Lys48, which is subsequently degraded via either the proteasomal system or
chaperone-mediated pathway. However, when proteasome and chaperone systems are overwhelmed,
misfolded proteins form oligomers or aggregates with cellular toxicity. Moreover, PD-related parkin
ligase E3 acts with the E2 enzymes Ubc13/Uev1a to facilitate Lys63-associated polyubiquitination
of misfolded proteins in proteasome injury conditions. Polyubiquitin chain stimulates binding
with HDAC6, and the misfolded proteins bind to dynein motor complex, which retrograde the
aggresomes to MTOC via transport. Polyubiquitination encourages p62 binding in addition to
recruiting autophagic membranes to form autophagosomes. Consequently, the fusion of autophago-
somes and lysosomes facilitates the degradation of misfolded and aggregated proteins through the
lysosomal hydrolases.
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6. Molecular Mechanism of the Fusion of Aggresome and Lysosome

In the final stage of degradation, fully matured and closed membrane aggresomes
fuse with lysosomes to form hybrid compartment organelles called “autolysosomes” which
digest their contents [39] (Figure 2). Although the fusion process is morphologically well
characterized, its mechanism remains relatively elusive at the molecular level. Typically, the
separation membrane is fused with the lysosomal membrane, and then, the lysosomal hy-
drolase breaks down the content of the fused (or aggresome/lysosome) autolysosome. The
substance (amino acid, etc.) is eventually degraded, and is then either recycled or removed
into the extracellular space [78]. Subsequently, the lysosomal fraction of the autolysosomes
is recovered to produce new lysosomes [79]. Rab7A (Ypt7 in yeast), mature autophago-
somes, HOPS (homologous protein fusion and classification complex), and SNARE receptor
(SNAP (soluble adhesion protein NSF)) (NSF, fusion-sensitive) labeled (ethyl-maleimide)
proteins are essential for the fusion of autophagosomes and lysosomes [78]. The SNAREs
increase the permeability of the membrane, indicating that the membranes open and fuse
the content of two adjacent organelles [80]. The Rab7A is transformed into an active form
linked to GTP through the action of HOPS (Figure 2). The fusion of organelle binding is
dependent on the complex of Rab7A and HOPS (Rab7A downstream effector), which is
present in two membranes fused, and SNARE and Rab7A are enriched at the fusion site [81].
SNAREs are also required for the expansion and closure of autophagosomal membranes,
the early stages of autophagy, and for the transportation of Atg9 (a transmembrane protein
necessary for membrane development) [82]. Recently, it has been found that the SNARE
protein syntaxin 17 (STX17) is employed in the outer membrane of autophagosomes and
mediates lysosomal fusion [83,84]. The depletion of STX17 prevents the destruction of
autolysosomes and leads to the accumulation of autophagosomes in the process of basal
and starvation-induced autophagy [85]. It is currently unknown whether STX17 is also
involved in selective aggrephagy [86]. Furthermore, when an autophagosomal membrane
is formed around the materials to be submerged in the endoplasmic reticulum, STX17
interacts with the autophagosome-labeled Atg14L protein at a very early stage [87,88].
These findings together suggest that STX17 plays an important role at both ends of the
autophagy decomposition pathway.

7. The Role of Autophagy in Modulating Aggregation in AD

The crucial function of autophagy in preserving neuronal homeostasis is well estab-
lished in in vivo studies conducted in mice, in which the inhibition of autophagy results in
protein deposition and neurodegeneration over time [89]. Decreased autophagy is related
to an increase in age-associated neurodegenerative diseases, such as AD [90]. Defective au-
tophagy typically involves the decreased expression of major receptors for autophagy and
altered orientation substrate and autophagosome formation. Emphasis has been placed on
several aspects, such as the lack of maturation, degradation, and lysosomal alteration [91].
Interestingly, several genes involved in protein homeostasis in neurodegenerative dis-
eases are mutated, such as the lysosome–autophagy system and ubiquitin–proteasome
system [92]. In the cases of neurodegenerative diseases, the first marker of altered au-
tophagy is an abnormal quantity of autophagosomes or amphisomes, which can lead to
the generation of ROS and other cytotoxic elements. Incidentally, the accumulation of
autophagosomes is characterized by an endogenous pool of amyloidogenic Aβ peptides in
animal models with AD [93].

The potential function of SQSTM1/p62 in AD progression and other neurodegener-
ative disorders has been receiving more attention [94]. Compared to the control group,
cytoplasmic SQSTM1/p62 protein levels were found to be reduced in the frontal cortex
of AD patients [95,96], indicating that SQSTM1/p62 expression is downregulated [96].
Interestingly, oxidative impairment to the promoter of SQSTM1/p62 leads to the reduc-
tion in gene transcription, which also appeared in the brain of AD patients [96]. The
histopathological analysis of hippocampal and cortical samples from patients with AD
showed that the SQSTM1/p62 protein that is contained in inclusion bodies mainly consists
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of phosphorylated tau, TRAF6 (tumor necrosis factor receptor associated 6), and ubiquitin,
promoting the formation of aggresomes [97]. Moreover, the co-localization of SQSTM1/p62
and Keap-1 insoluble deposits was observed in AD brain extracts [98], and the impairment
to the promoter of SQSTM1/p62 as well as co-localization of SQSTM1/p62 with protein
aggregation have been observed in other neuropathies, such as Huntington’s disease,
tauopathy, and α-synucleinopathies [94,96]. Several studies suggested that SQSTM1/p62
plays a central role in the transport of tau protein to proteasome [97], and that there is a
negative connection between the levels of SQSTM1/p62 and p-tau [99], indicating that
reduced SQSTM1/p62 function likely causes the accumulation of tau positive aggregates
with age. Notably, a SQSTM1/p62-deficient mouse model had a typical AD phenotype,
including p-tau neurofibrillary tangles, memory impairment, and synaptic depletion [100].
In addition to protein homeostasis, these last two effects are consistent with the assumption
that autophagy is necessary for cell remodeling and neuronal plasticity, and autophagy
is a prerequisite for neurogenesis and memory processes [101]. However, it is unknown
whether a change in the levels of SQSTM1/p62 is correlated with the elimination of ab-
normal aggresomes in AD patients. Collectively, current findings suggest that it would be
promising to decrease the formation of aggresomes in AD via modulating autophagy.

8. Potential Therapeutic Action of Autophagy to Control Aggresome Formation in
AD Pathogenesis

Natural compounds or small molecules have been used to induce the clearance of
aggresomes and to restore or enhance cognitive function in patients with AD [4]. For exam-
ple, liraglutide has been found to activate the insulin degradation enzyme (IDE), increase
cognition function and long-term potentiation (LTP), and reduce Aβ plaque deposition and
inflammation in APP/PS1 mice via the mTOR-independent and JNK pathway [102,103].
Additionally, rapamycin, a well-known natural macrolide, was found to mitigate Aβ

plaques, liberate cerebral amyloid angiopathy, and enhance memory impairment in the
AD mice model of PDAPP, hAPP (J20), and P301S through the inhibition of mTOR activ-
ity [104,105]. Moreover, a polyphenolic compound known as curcumin, a PI3K/mTOR
inhibitor, not only relieved AD pathology by decreasing Aβ but also repaired spatial mem-
ory function in APP/PS1 mice through the degradation of autophagic Aβ aggregates [106].
In clinical trials using JNPL3 mice as an AD model, autophagy induced by methylene
blue was shown to decrease the aggregation of insoluble tau through the inhibition of
mTOR [107]. Another polyphenol, oleuropein aglycone, also promoted autophagy by
releasing Ca2+ from the reticulum and preventing the activity of mTOR in TgCRND8
mice, and considerably downregulated Aβ plaque [108]. A carbazole-based fluorophore,
SLM, bound to Aβ and prevented Aβ aggregation in 3xTg-AD mouse models by alle-
viating the pathological and behavioral impairments in AD [109]. Additionally, human
prolactin-releasing peptide palmitoylated analog, palm11-PrRP31, was shown to protect
neuronal cells in APP/PS1 mice models of AD and decrease astrogliosis, microgliosis, and
β-amyloid plaque load as well. [110]. The list of representative natural compounds and
small molecules that modulate aggresome formation in AD pathogenesis by enhancing
autophagy is summarized in Table 1.
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Table 1. Natural compounds and small molecules that modulate autophagic activity and control
aggresome formation in AD models.

Natural
Compounds/Small

Molecules
AD Model Molecular

Mechanism Research Outcomes References

Fisetin Mouse and rat primary
cortical neurons

mTOR inhibition,
TFEB and Nrf2 activation

Autophagy induction, decreases
sarkosyl-insoluble tau phosphorylation [111]

Ouabain Tau transgenic fly, P301L mice Inactivation of mTOR,
activation of TFEB

Increases autophagy,
decreases toxic tau,

increases memory function
[112]

SLM, a carbazole-based
fluorophore 3xTg-AD Activation of GSK-3β,

reduces neuroinflammation
Decreases Aβ40 and Aβ42 levels,

reduces phosphorylation of tau [109]

Aspirin 5xFAD Activation of PPARα and
TFEB Increases lysosomal biogenesis, decreases Aβ [113]

Liraglutide APP/PS1, APPswe/SH-SY5Y
cells

Increase in IDE levels,
mTOR-independent, JNK

activation

Improves cognitive function,
reduces Aβ plaque deposition and

inflammation,
enhances LTP and autophagy activation

[102,103]

Rapamycin Transgenic (h)APP mice mTOR inactivation Improves memory, decreases
sarkosyl-insoluble tau [104,105]

Cinnamic acid 5 × FAD Activation of PPARα,
upregulation of TFEB

Reduces cerebral Aβ plaque burden,
improves memory function, stimulates

lysosomal biogenesis.
[114]

Trehalose APP/PS1, Tg2576
Increase in synaptophysin,

doublecortin, and
progranulin

Inhibits tau, improves cognitive and learning
ability [115,116]

Curcumin APP/PS1 mTOR inactivation Reduces Aβ plaque, increases memory
function [106]

Oleuropein aglycone TgCRND8 mice Inhibition of mTOR and Ca2+

liberating
Reduces Aβ plaque, increases synaptic

plasticity [108]

Hep-14 APP/PS1 Upregulation of TFEB Reduces Aβ plaque [117]

Palm11-PrRP31 APP/PS1 Activation of pre-synaptic
marker synaptophysin

Decreases Tau phosphorylation,
reduces Aβ plaque and microgliosis [110]

Methylene blue JNPL3 mTOR inactivation reduces insoluble tau, increases memory
function [107]

Temsirolimus P301S mice Inhibition of mTOR Improves motor and memory function,
reduces sarkosyl-insoluble tau [118]

Recently, mTOR-independent transcription factor, TFEB, was shown to reduce aggre-
some formation and activate autophagy, and several compounds are capable of stimulating
TFEB-induced lysosomal biogenesis and mTOR-independent autophagy (Figure 5). For ex-
ample, ouabain has been found to activate TFEB, decrease the aggregation of p-Tau, and
increase cognition function in P301L mice [112]. Cinnamic acid and aspirin were found to
activate TFEB promotor and promote lysosomal biogenesis, which decreased the formation of
Aβ plaque in a 5 × FAD mice model [113,114]. Trehalose, a disaccharide molecule, activates
calcineurin and protein phosphatase-3 CB (PP3CB) by promoting the translocation of TFEB
into the nucleus via mTOR-independent autophagy [115]. Additionally, it has been found that,
in APP/PS1 mice, trehalose treatment promotes the clearance of Aβ plaque independent of the
mTOR pathway [115,116]. Hep14, a cardiac glycoside-ingenol, increased TFEB-induced ALP
by activating PKC and inhibiting GSK3β, thus decreasing plaque formation in an APP/PS1
AD mice model [117]. Jiang et al. demonstrated that the treatment of temsirolimus success-
fully improved the autophagic clearance of hyperphosphorylated tau in the brain of P301S
transgenic mice and okadaic-acid-incubated SH-SY5Y cells. In addition, temsirolimus admin-
istration improved memory impairments and spatial learning function in P301S mice [118].
Small-molecule or natural compounds may control autophagy–lysosomal process via mTOR-
and TFEB-mediated pathways, which is summarized in Figure 3.
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Figure 5. Mechanism of natural compounds or small molecules to activate mTOR and TFEB in
autophagy–lysosomal process. Natural compounds or small molecules inactivate AKT and mTOR,
which promote the accumulation of TFEB in the cytoplasmic and its nuclear translocation. TFEB in
cytoplasm is heavily phosphorylated and interacts with mTOR in the lysosome surface. The inactivation
of mTOR activity stimulates the dephosphorylation of TFEB. Subsequently, dephosphorylated TFEB is
translocated from cytoplasm to nucleus. In nucleus, TFEB binds to the promoter regions of autophagy-
and lysosomal-associated genes and induces gene expression in addition to lysosome biogenesis. The
aggresome is bound to the phagophore, resulting in the formation of the autophagosome. Eventually,
the autophagosome fused with lysosome degrades aggresomes via aggrephagy process.

9. Future Prospective of Inhibiting Aggresome Formation as a Treatment for AD

Recently, extensive resources were dedicated to the development of high-performance,
automated detection platforms to identify compounds that can prevent aggresome de-
velopment and endorse aggresome formation [119]. Such high-performance screening
primarily uses large libraries designed for general-purpose detection, which serves as a
useful approach when running screens with unknown targets or with no structural in-
formation available [119,120]. These screenings play an important role in drug discovery
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and the creation of new forms of chemical treatment [119,120]. However, since protein
aggregation and the formation of aggresomes are complex and mediated by multi-step
processes [14], special care must be taken in interpreting the results, especially when
aggresome-related genes are used as reporter genes. For example, inhibiting the early
stage of the autophagy pathway reduces the formation of aggresomes and the levels of
toxic protein species [121] (Figure 6). However, although preventing the late stages of
the autophagic pathway reduces aggresome development, it was shown to increase the
assembly of soluble, toxic protein species. This complexity highlights the importance of
verifying and characterizing the target sites as well as working mechanisms of candidate
compounds. The familial form of Alzheimer’s disease (FAD), resulting from mutations
in the PRESENILIN 1 (PSEN1) as well as APP genes, accounts for less than 5% of all AD
cases and manifests itself early [122]. An iPSC line generated from a FAD patient with the
PSEN1-G206D mutation was created and characterized. The iPSC line kept its original
genotype as well as karyotype, was free of Sendai viral vectors and reprogramming fac-
tors (OCT4, c-MYC, SOX2, and KLF4), had a typical morphology, expressed endogenous
pluripotency markers, and could be differentiated into ectodermal, mesodermal, as well
as endodermal cells, clarifying its pluripotency [123,124]. PSEN1 mutations cause severe
cognitive deterioration, which is largely caused by Aβ oligomerization and accumulation,
as well as Tau phosphorylation [125]. The iPSC line revealed here will allow researchers to
investigate the involvement of Aβ, p-Tau, and other pathways in FAD, paving the way for
new treatments for the condition [126]. Therefore, patient-specific iPSCs include defective
genes and may be an ideal cell model for studying the pathophysiology of AD, aiding in
the medication screening of AD treatment.
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Figure 6. Regulation of misfolded protein by autophagy. Misfolded proteins are recognized and
polyubiquitinated by ubiquitin E3 protein ligases. Adapter proteins, such as HDAC6, ataxin3, and
ubiquitin-1, bind to polyubiquitinated proteins on the dynein motor complex for retrograde transport
to the aggressor. Aggresome takes over the autophagy mechanism, including HDAC6, and breaks
down aggresome. Several steps along this path enable small molecules to block incorrect protein
folding and improve the coupling of folded proteins to dynein for retrograde transport, or improve
the clearance of aggresome by autophagy, which can be potentially applied in the treatment of
neurodegenerative diseases.
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10. Conclusions

Autophagy enhancers that can be utilized for the potential treatment of neurodegener-
ative diseases are receiving growing attention in recent studies [20,127–129]. It has been
shown that the inactivation of mTOR via the lipophilic macrolide antibiotic rapamycin
promotes the induction of autophagy [130]. Furthermore, the long-term administration of
rapamycin can reduce amyloid loads in mouse models of AD and improve the cognitive
function as well as the pathology of tauopathy [131,132]. In addition, post-translational
modifications, such as ubiquitination, acetylation, O-GlcNAcylation, and phosphorylation,
also appear to exert a positive effect on autophagy [70,133]. Acetylation is an important
cellular mechanism that protects cells from stress stimuli and can be changed in neurode-
generative pathologies, highlighting acetylation and deacetylation processes as potential
therapeutic candidates for neurodegenerative diseases. Several selective, small-molecule
inhibitors of HDAC6 have been identified [134]. For example, tubastatin A promotes the
acetylation of α-tubulin, stabilizes the microtubule network, and confers neuroprotection
on neurons during in vitro culture and neurodegeneration. By clarifying the mechanism
underlying the selection of lysosomal loads, an autophagy-based approach will serve as
a more effective therapeutic candidate [135]. In the case of AD, aggresome formation
can occur, which can induce the inhibition of proteasome activity. Aggrephagy and its
downstream signaling cascades offer promising new therapeutic targets for preventing
AD, and further research is required to clarify the relationship between the mechanisms
involved in autophagic activities and the formation of aggresomes.
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