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Purpose: A large portion of the adult population is thought to suffer from obstructive sleep apnoea syndrome (OSAS), a sleep-related
breathing disorder associated with increased morbidity and mortality. International guidelines include the polysomnography and the
cardiorespiratory monitoring (CRM) as diagnostic tools for OSAS, but they are unfit for a large-scale screening, given their
invasiveness, high cost and lengthy process of scoring. Current screening methods are based on self-reported questionnaires that
suffer from lack of objectivity. On the contrary, commercial smartbands are wearable devices capable of collecting accelerometric and
photoplethysmographic data in a user-friendly and objective way. We questioned whether machine-learning (ML) classifiers trained on
data collected through these wearable devices would help predict OSAS severity.
Patients and Methods: Each of the patients (n = 78, mean age ± SD: 57.2 ± 12.9 years; 30 females) underwent CRM and
concurrently wore a commercial wrist smartband. CRM’s traces were scored, and OSAS severity was reported as apnoea hypopnoea
index (AHI). We trained three pairs of classifiers to make the following prediction: AHI <5 vs AHI ≥5, AHI <15 vs AHI ≥15, and AHI
<30 vs AHI ≥30.
Results: According to the Matthews correlation coefficient (MCC), the proposed algorithms reached an overall good correlation with
the ground truth (CRM) for AHI <5 vs AHI ≥5 (MCC: 0.4) and AHI <30 vs AHI ≥30 (MCC: 0.3) classifications. AHI <5 vs AHI ≥5
and AHI <30 vs AHI ≥30 classifiers’ sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV) and
diagnostic odds ratio (DOR) are comparable with the STOP-Bang questionnaire, an established OSAS screening tool.
Conclusion:Machine learning algorithms showed an overall good performance. Unlike questionnaires, these are based on objectively
collected data. Furthermore, these commercial devices are widely distributed in the general population. The aforementioned
advantages of machine-learning algorithms applied to smartbands’ data over questionnaires lead to the conclusion that they could
serve a population-scale screening for OSAS.
Keywords: obstructive sleep apnoea syndrome, screening, wearable devices, wrist-worn smartbands, artificial intelligence

Introduction
Obstructive Sleep Apnoea Syndrome (OSAS) is characterized by frequent events of cessation of airflow during sleep,
associated with sleep arousal, oxygen desaturation and the concurrent persistence of respiratory effort.1 This sleep-related
breathing disorder is highly prevalent among adults,2,3 and it is associated with a higher mortality and morbidity as compared
to the general population.4–6 OSAS can be assessed through Polysomnography (PSG), the reference standard technique, or
through alternative diagnostic methods such as cardiorespiratory monitoring (CRM). The American Academy of Sleep
Research (AASM) and the European Respiratory Society included both PSG and CRM in their clinical guidelines,7,8 but they
are relatively invasive, expensive and time consuming in the process of sleep events scoring.9,10 Due to resource constraints, it
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is therefore unfeasible to resort to PSG or CRM for general population screening purposes. As several studies claim that OSAS
goes largely undiagnosed, not being recognized in up to 90% of patients,11,12 it is imperative to investigate new convenient
tools to screen the general population for OSAS. A possible way to reduce the invasiveness of the PSG and CRM might be
single-lead electrocardiography (ECG). The application on the skin of just two electrodes allows to collect data over both the
electrical activity of the heart and the status of the autonomic nervous system, known to be perturbed by the OSAS events.13,14

Recent studies achieved promising results using single-lead ECG signals to train deep neural networks: Feng et al15 reached
a sensitivity of 86.1% relative to the gold standard, using an unsupervised learning approach for feature extraction; Yang et al16

reached a sensitivity of 87.1% with a deep learning algorithm capable of extracting from the single-lead ECG cardiopulmon-
ary features. Other studies reached comparable results.17–20 Nevertheless, a single-lead ECG approach does not solve the
problem of screening the general population for OSAS: the single-lead ECG test needs to be administered by a health-care
provider after having grown a suspicion of OSAS, whereby these methods are promising alternatives to PSG and CRM but
cannot be used to pursue a large-scale screening in an unaware population.

A machine-learning (ML) approach allows to collect a relatively small number of features and feed them into an algorithm
capable of making predictions. So far, researchers have mainly focused on training ML algorithms on questionnaires or data
collected through various medical devices. Mencar et al trained a series of ML-algorithms on anthropometric and clinical data
collected via questionnaires. The best algorithm of this study reached a poor accuracy (44.7%), making the authors conclude
that ML-algorithms cannot be used for automated diagnosis of OSAS, even if they might find an application in estimating the
probability of OSAS and may be useful for prioritizing the access to PSG and CRM resources. Uston et al21 trained SLIM
(Supersparse Linear Integer Model) on questionnaire’s data based on the medical history of the patient. Although SLIM is
considerably easy-to-use, it reached a sensitivity of 64.2%, too low for a first-level test that aims at screening the general
population. Beyond the ML approach, self-reported questionnaires have been investigated for making prediction and grading
OSAS;: the Epworth Sleepiness Scale, the Berlin questionnaire, the STOP questionnaire, and the STOP-Bang questionnaire
are among the most studied in literature,22,23 and the last considered as the one with the highest methodological validity and
accuracy. Questionnaires are reliable, but they suffer from a response rate (range 82–91%) that is insufficient for OSAS
screening.22 The low response rate might be explained by their high complexity, and relatively long time taken for filling them
in. Furthermore, questionnaires’ result is thought to be dependent upon the relative willingness of the patient to complete them,
willingness generally higher in the sleep-clinic population compared to the general one.22 This makes questionnaires draw on
subjective data that might bias the result of the test.

Medical-grade wearable devices have been the object of recent experimental interest, and various studies addressed
the applicability of algorithms trained on data collected through these devices for OSAS screening and detection.
Wearables are equipped with different sensors, such as accelerometers and photoplethysmography, that allow gathering
physiological data such as the tri-axial movement of the wrist and cardiorespiratory related parameters, respectively.24

Among the investigated wearables, there is reflective photoplethysmography,25 which data was used to train ML-
algorithm that reached a correlation of 61% to the PSG reference. Deep learning model based on tracheal-placed
accelerometers26 reached a better sensitivity, specificity, and accuracy of 81%, 87%, and 84%, respectively. Similar
approaches used both photoplethysmographic sensors placed on the nasal septum27 or electrocardiogram wearable
belts.28 Despite this promising outcome, this approach remains prototypal, relatively invasive, and not particularly
suitable for large population screenings.

An alternative approach to medical-grade devices could instead take advantage of the widespread distribution of
biometric sensors in the consumer market. More specifically, consumer wrist-worn smartbands are considered
affordable and minimally invasive, capable of continuously collecting physiological data, such as heart rate (HR)
and sleep parameters.29 Fitbit Inc. devices, such as Fitbit ChargeHRTM, Fitbit Charge 2TM and Fitbit AltaHRTM, are
amid the most studied commercial smartbands.30 Their accelerometric and HR measures have been validated in
literature both during sleep and wakefulness, showing higher sensor accuracy during sleep.30–36 Their unobtrusive-
ness, their easy accessibility and reliability makes these devices compatible with a population-based screening test.

In this study, we evaluated the performance of supervised ML-algorithms trained on smartbands’ data to predict
and grading OSAS. Three different pairs of algorithms were trained to classify patients according to three different
cut-offs: AHI <5 vs AHI >5, AHI <15 vs AHI ≥15 and AHI <30 vs AHI ≥30. We then compared their performance to
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the pooled performance reported by Nagappa et al37 in their systematic review. We then questioned whether
a multistep classification would achieve a better performance. We modified the training dataset for the AHI <15 vs
AHI ≥15 and AHI <30 vs AHI ≥30 classifications as follows: we excluded healthy patients (AHI <5) by both datasets,
while we dropped those having the AHI <15 from the AHI <30 vs AHI ≥30 training datasets.

Methods
Cohort Selection and Cardiorespiratory Monitoring
Volunteers were recruited among patients of the Sleep Centre of Santa Chiara Hospital in Pisa, Italy. Each volunteer was
equipped with one of the CRM devices available at the Sleep Centre: Nox T3, Nox Medical; Somté, Compumedics;
Embletta MPR, Natus Medical; Sleep and go, Sibelmed; Sleepdoc porti 8, Dr. Fenyves und Gut Deutschland GmbH.
Each device collected the following physiological parameters: nasal airflow, chest and abdominal muscle’s activity, pulse,
oxygen saturation and snoring. A trained professional scored the CRM’s recordings according to the AASM’s 2012
guidelines. The AHI was used to estimate the severity of the disease.38 Table 1 shows sample size, gender distribution,
mean age and mean Body Mass Index (BMI) of the sample, stratified by OSAS severity class. Patients’ comorbidities for
each AHI severity group (healthy, mild, moderate and severe) are depicted in Supplementary Table 1.

This study was approved by the Pisa University Hospital Bioethical Committee (CEAVNO protocol No: 42714).
Participants provided written informed consent to take part in the study. The current study complies with the Declaration
of Helsinki.

Fitbit Data
In this study, we used two different models of Fitbit Inc.’s smartbands: Fitbit Charge4TM and Fitbit AltaHRTM, both equipped
with a triaxial accelerometer sensor (micro-electro-mechanical systems [MEMS] 3-axis accelerometer) and
a photoplethysmographic sensor (PurePulse® light-emitting diode). Accelerometric measures were processed by a Fitbit
Inc. proprietary algorithm to compute both energy expenditure and steps, while the photoplethysmographic measures, shaped
as a pulsatile waveform,24 were used to calculate HR by the aforementioned proprietary algorithm. Data were downloaded
from the Application Programming Interface (API) provided by Fitbit through a third-party platform (www.sleepacta.com).
Energy expenditure data were stored at a frequency of one data point per minute, while the HR data were stored at a frequency
of one data point per second during physical exercise, one data point each five seconds otherwise.31 The third-party platform
returns a minute-by-minute wake-sleep staging and derives from this sleep staging a series of sleep parameters through
DORMI, a proprietary deep-learning algorithm.39,40 Among these parameters, six of them were used to train the algorithm:
sleep efficiency (SE), defined as the ratio of total sleep time (TST) to time in bed;41 TST itself; Sleep Fragmentation Index
(SFI), defined as the total number of awakenings divided by the total sleep time;42 Wake After Sleep Onset (WASO), defined
as the period of wakefulness that occurs after a defined sleep onset;43 number of awakenings (Naw) after sleep onset and the
mean length of awakenings after sleep onset (mLaw). Figure 1 shows one representative patients smartbands’ data for each
disease’s severity class according to the AHI estimated by CRM.

Table 1 Description of the Training Dataset

AHI Patients, n [%] (F/M) Age, Mean [SD] BMI, Mean [SD]

Healthy (AHI < 5/h) 18 [23.1%] (7/11) 51.67 [15.3] 28.72 [4.73]

Mild (5/h ≤ AHI < 15/h) 30 [38.5%] (13/17) 58.83 [11.75] 32.58 [9.4]
Moderate (15/h ≤ AHI < 30/h) 16 [20.5%] (7/9) 56.88 [12.34] 31.96 [4.4]

Severe (AHI ≥ 30/h) 14 [17.9%] (3/11) 61.36 [9.45] 36.98 [8.95]

Note: For each class of AHI is shown the overall number of patients, the number of female (F) and male (M) patients, the mean age, and the mean body mass
index (BMI).
Abbreviations: AHI, apnoea hypopnea index; SD, standard deviation.
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Machine-Learning Algorithms
ML algorithms were provided by scikit-learn, a Python-based library.44 Three different pairs of algorithms were used,
and in each pair the algorithms were placed in series to classify OSAS severity. The first algorithm of the pair was trained
on the dataset composed of data collected through wrist-worn smartbands, while the second one was trained on the same
dataset of the former one, but the output of the classification reached by the first algorithm of the pair was fed as
additional descriptor. To reach the best performance by each pair of classifiers, we adjusted the parameters through
a trial-and-error approach to improve the outcome results.

The first pair of algorithms returned an AHI <5 vs AHI >5 classification. The first algorithm consisted of a multi-layer
perceptron (MLP) classifier, initialized as follows: number of layers, 2; number of neurons in the first layer, 200; number
of neurons in the second layer, 100; activation function, Rectified Linear Unit (ReLU); L2 regularization term, 0.01; all
other parameters were kept as scikit-learn defaults. The second algorithm was a MLP classifier, initialized as follows:
number of layers,2; number of neurons in the first layer, 200; number of neurons in the second layer 100; activation
function, Logistic; L2 regularization term, 0.01; all other parameters were kept as scikit-learn defaults.

A

DC

B

Figure 1 Minute-by-minute smartbands measures for each AHI’s severity class. Accelerometric, heart rate (HR) measures and sleep-wake classification according to the
DORMI algorithm for (A) Healthy participant (AHI = 0.0/h), (B) Mild (AHI = 12.1/h), (C) Moderate (AHI = 16.8/h), and (D) Severe (AHI = 60.1/h) representative OSAS
patients.
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The second pair of algorithms made AHI <15 vs AHI ≥15 classification. The first algorithm was a MLP classifier,
initialized as follows: number of layers, 2; number of neurons in the first layer, 100; number of neurons in the second
layer, 100; activation function, ReLU; L2 regularization term, 0.001; all other parameters were kept as scikit-learn
defaults (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html. Accessed May 6,
2022.). The second algorithm was a Random Forest classifier, initialized as follows: number of estimators, 2000; all other
parameters were kept as scikit-learn defaults (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html. Accessed May 6, 2022).

The third pair of algorithms made AHI <30 vs AHI ≥30 classification. The first algorithm was a Random Forest
classifier, initialized as follows: number of estimators, 200; all other parameters were kept as scikit-learn defaults.
The second algorithm was a Random Forest classifier, initialized as follows: number of estimators, 2000; all other
parameters were kept as scikit-learn defaults.

Training and Cross-Validation
The descriptors used to train the algorithm were: Age, Gender, BMI, SE, TST, SFI, WASO, Naw, mLaw, the mean HR
during sleep (mHRs) mean HR during sleep arousal (mHRw). The relative contribution of each descriptor to the outcome
performance included in the final algorithm is depicted in the Supplementary Figure 1. AHI was correlated to each
descriptor of the present dataset. We further compared the mean AHI between groups identified by Gender and
Comorbidity status (Supplementary Table 2).

As for cross-validation, we adopted the Leave-One-Out (LOO) procedure: given a dataset of N instances, we left out
just one instance as validation set, and for each round of LOO procedure, the algorithm was trained on N-1 instances.
Since the AHI’s severity classes had not the same numerosity, to avoid misclassification due to dataset size imbalance,
we applied the following procedure: for each round of LOO’s training, the algorithm was trained T times. Each time we
randomly selected I instance among the N-1 that composed the training dataset of the LOO’s round. Therefore, the
dataset was composed of an equal number of instances for each AHI’s severity class. The algorithm was set to have
a “warm start” that is, the algorithm reused the solution of previous calls for initialization. The values of T and I were: 8
and 7 for Healthy vs OSAS-suffering classification, 6 and 6 for both AHI <15 vs AHI ≥15 and for AHI <30 vs AHI ≥30
classifications. We reduced the T and I for the last two trainings since we trained AHI <15 vs AHI ≥15 and AHI <30 vs
AHI ≥30 on a dataset with AHI ≥5 only and AHI ≥15 only patients.

To verify that the data sample was large enough to support the training of the algorithms, we adopted the following
procedure. Starting from 78 participants, we repeated the leave-one-out procedure on the AHI <5 vs AHI >5 pair of
algorithms 30 times. We calculated the mean sensitivity of this procedure. We then randomly dropped from the original
dataset 2 participants, and we retrained the AHI <5 vs AHI ≥5 pair of algorithms 30 times via cross-validation (LOO),
each time eliminating 2 random participants. We finally calculated the mean sensitivity reached by the algorithms. That
is, we questioned how the sensitivity was affected by training the algorithms on a reduced (76 participants) dataset. This
overall procedure was repeated progressively dropping 5, 10, and then 20 participants from the original dataset. The
results of the overall sample estimation procedure are summarized in Supplementary Figure 2. Given that the mean
sensitivity is stable (ie, it shows a plateau) even when the number of participants in the training dataset is progressively
reduced, we conclude that our sample is large enough.

Performance Metrics and Statistical Analysis
The algorithms’ predictions fall into one of the following categories: True Positives (TP), ie, actual positive (OSAS
patients) correctly classified as positives; False Positives (FP), ie, actual negative (healthy) misclassified as positives;
True Negatives (TN), ie, actual negative (healthy) correctly classified as negatives; False Negatives (FN), ie, actual
positive (OSAS patients) misclassified as negatives. The afore-mentioned categories were used to calculate the following
performance parameters:

Matthews Correlation Coefficient MCCð Þ ¼ TP�TN � FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þ

p 45
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Sensitivity ¼ TP
TPþFN

46

Specificity ¼ TN
TNþFP

46

Positive Predictive Value PPVð Þ ¼ TP
TPþFP

46

Negative Predictive Value NPVð Þ ¼ TN
FNþTN

46

Diagnostic Odds Ratio DORð Þ ¼ TP�TN
FP�FN

47

Confusion Matrix ¼ TP FN
FP TN

� �
45

We calculated the Matthews Correlation Coefficient because it was found to be more informative than Accuracy and
F1-score. MCC ranges from −1 (perfect misclassification) to 1 (perfect classification).45 Confusion matrices were
produced through scikit-learn44 library, while all the other parameters were calculated through a custom script based
on NumPy library.48

To evaluate the relative importance of each descriptor for the algorithms presented here, we adopted the permutation
feature importance technique issued by the Python-based scikit-learn library.42 This technique allows to calculate a model
score, which indicates how much a model resorts to a single feature of the dataset to generate its output. The model score
was calculated here randomly shuffling a single feature for 10 times.

Results
Table 2 shows algorithms’ performance of predicting the AHI severity class in AHI <5 vs AHI ≥5, AHI <15 vs AHI ≥15
and AHI <30 vs AHI ≥30 cohorts, along with the pooled predictive parameters of the STOP-Bang questionnaire on the
sleep clinic population, according to Nagappa et al.37

To visually assess the classification performance, Figure 2 shows two confusion matrices for each OSAS severity
prediction.

Table 2 Comparison of ML Algorithms’ and STOP-Bang Questionnaire’s Performance Parameters

Any OSAS AHI≥5 Moderate-Severe OSAS
AHI≥15

Severe OSAS
AHI≥30

STOP-Bang
Questionnaire
Sensitivity 90.0% 94.0% 96.0%

Specificity 49.0% 34.0% 25.0%

PPV 91.0% 72.0% 48.0%
NPV 46.0% 75.0% 90.0%

Pooled DOR (95% CI) 8.3 (6.1–9.7) 7.2 (5.7–9.0) 7.2 (5.1–10.2)

ML Algorithms
MCC 0.39 0.15 0.33

Sensitivity 76.67% 73.33% 85.71%

Specificity 66.67% 41.67% 57.81%
PPV 88.46% 44.00% 30.77%

NPV 46.15% 71.43% 94.87%

DOR (95% CI) 6.57 (5.42–7.72) 1.96 (0.97–2.95) 8.22 (6.64–9.8)

Note: Table 2 depicts the performance parameters achieved by the ML algorithms here presented, along with the pooled performance of the
STOP-Bang, according to Nagappa et al’s systematic review.
Abbreviations: MCC, Matthews correlation coefficient; PPV, positive predictive value; NPV, negative predictive value; DOR, diagnostic odds
ratio; CI, confidence interval.
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According to the MCC, the algorithms here presented reached an overall good correlation with the severity class estimated
by the CRM for AHI <5 vs AHI >5 prediction (MCC: 0.4) and AHI <30 vs AHI ≥30 prediction (MCC: 0.3), while poor
results were reached in AHI <15 vs AHI ≥15 classification (MCC: 0.2). The sensitivity (AHI<5 vs AHI ≥5: 76.7%; AHI <15
vs AHI ≥15: 73.3%; AHI <30 vs AHI ≥30: 85.7%) was lower than the sensitivity of the STOP-Bang questionnaire (AHI <5
vs AHI ≥5: 90.0%; AHI <15 vs AHI ≥15: 94.0%; AHI <30 vs AHI ≥30: 96.0%), while the specificity (AHI <5 vs AHI ≥5:
66.7%; AHI <15 vs AHI ≥15: 41.7%; AHI <30 vs AHI ≥30: 57.8%) always outperformed the specificity of STOP-Bang
questionnaire (AHI <5 vs AHI ≥5: 49.0%; AHI <15 vs AHI ≥15: 34.0%; AHI <30 vs AHI ≥30: 25.0%). PPVof AHI <5 vs
AHI ≥5 (PPV: 88.5%) and AHI <30 vs AHI ≥30 (PPV: 30.8%) classifiers are in line with the pooled PPV presented by
Nagappa et al (AHI <5 vs AHI ≥5: 91.0%; AHI <30 vs AHI ≥30: 48.0%), while the AHI <15 vs AHI ≥15 classifier performs
worse in predicting positive patients (PPV: 44.0%), as compared to STOP-Bang questionnaire (PPV: 72.0%). NPV of
classifiers here presented (AHI <5 vs AHI ≥5: 46.2%; AHI <15 vs AHI ≥15: 71.4%; AHI <30 vs AHI ≥30: 94.9%) matched
the STOP-Bang pooled NPVs (AHI <5 vs AHI ≥5: 46.0%; AHI <15 vs AHI ≥15: 75.0%; AHI <30 vs AHI ≥30: 90.0%). For
both AHI <5 vs AHI ≥5 and AHI <30 vs AHI ≥30 predictions, the DOR of ML-algorithms and the STOP-Bang were similar,
and their confidence interval (CI) overlapped the corresponding STOP-Bang’s CI. DOR for AHI <15 vs AHI ≥15 prediction
(DOR: 2.0; CI: 1.0–2.0) was lower than the corresponding STOP-Bang’s pooled DOR (DOR: 7.2; CI: 5.7–9.0).

A B

C

Figure 2 Confusion matrices for each AHI <5 vs AHI ≥5, AHI <15 vs AHI ≥15 and AHI <30 vs AHI ≥30 cohort. Figure 2 shows confusion matrices normalized to the
ground truth for each AHI <5 vs AHI ≥5 (A), AHI <15 vs AHI ≥15 (B) and AHI <30 vs AHI ≥30 (C) classification. The number of predictions falling in each category is
shown in brackets.
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Figure 3 shows the misclassified and correctly classified patients for each AHI <5 vs AHI ≥5, AHI <15 vs AHI ≥15
and AHI <30 vs AHI ≥30 cohorts, along with the distance between the cut-off of OSAS severity estimated by the CRM
ground-truth.

OSAS Patient Classification
Healthy participants were not excluded neither from the AHI <15 vs AHI ≥15 nor from AHI <30 vs AHI ≥30
classifications so far presented. To assess the algorithm’s ability to diagnose the severity of OSAS in patients only (ie,
after excluding healthy subjects), we re-trained the AHI <15 vs AHI ≥15 algorithm only on those patients having AHI ≥5

A B

C

Figure 3 Correctly classified and misclassified patients for each AHI <5 vs AHI ≥5, AHI <15 vs AHI ≥15 and AHI <30 vs AHI ≥30 cohort. Figure 3 shows those patients that
were correctly classified (Orange) and misclassified (blue) in each AHI <5 vs AHI ≥5 (A), AHI <15 vs AHI ≥15 (B) and AHI <30 vs AHI ≥30 (C) classification. Vertical dashed
lines represent the error gravity of the classifier, ie, the distance between the cut-off (dark-blue horizontal line) and the AHI estimated by the CRM ground (y axis).

Table 3 Mild vs Moderate-Severe and Moderate vs Severe Classification

Mild vs Moderate-Severe 5≤AHI<15 Moderate vs Severe 15≤AHI<30

MCC 0.28 0.55
Sensitivity 80% 57.14%

Specificity 46.67% 93.75%

PPV 60% 88.89%
NPV 70% 71.43%

DOR (95% CI) 3.5 (2.35–4.65) 20.0 (17.72–22.28)

Notes: Table 3 shows the metrics of performance achieved by the Mild vs Moderate-Severe and Moderate vs Severe classifiers. MCC: Matthews
correlation coefficient.
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; DOR, diagnostic odds ratio; CI, confidence interval.
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(Mild vs Moderate-Severe classification), while the dataset used for training the AHI <30 vs AHI ≥30 algorithm
comprised only those patients having AHI ≥15 (Moderate vs Severe classification). Performance parameters and
confusion matrices are shown in Table 3 and Figure 4, respectively.

Both the Mild vs Moderate-Severe (MCC: 0.3) and the Moderate vs Severe (MCC: 0.6) classification reached a good
concordance with the CRM’s severity class. Mild vs Moderate-Severe classification reached a high sensitivity score
(Sensitivity: 80%) but a poor specificity (Specificity: 46.7%). On the contrary, Moderate vs Severe classification showed
a high specificity (Specificity: 93.8%) but a poor sensitivity (Sensitivity: 57.1%). PPV was higher in the Moderate vs
Severe classification (PPV: 88.9%) than in the Mild vs Moderate-Severe classification (PPV: 60%), while the NPVs of
these ML algorithms were similar (Mild vs Moderate-Severe: 70.0%; Moderate vs Severe classification: 71.4%). DOR
was notably high in Moderate vs Severe classification (DOR: 20.0; CI: 17.7–22.3), while it was lower in Mild vs
Moderate-Severe classification (DOR: 3.5; CI: 2.4–4.7).

Figure 5 shows the misclassified patients by AHI <15 vs AHI ≥15 and AHI <30 vs AHI ≥30 predictions. For each
patient, its AHI and AHI severity class estimated by CRM is reported along with the predicted class by ML algorithms.

A B

Figure 4 Confusion matrices for Mild vs Moderate-Severe and Moderate vs Severe classifiers. Figure 4 shows confusion matrices normalized to the ground truth for Mild vs
Moderate-Severe, ie, AHI <15 vs AHI ≥15 (A) and Moderate vs Severe, ie, AHI <30 vs AHI ≥30 (B) classifications. The number of predictions falling in each category is
shown in brackets.

A B

Figure 5 Correctly classified and misclassified patients for Mild vs Moderate-Severe and Moderate vs Severe classifiers. Figure 5 shows those patients that were correctly
classified (Orange) misclassified (blue) in each Mild vs Moderate-Severe (A), Moderate vs Severe (B) classification. Vertical dashed lines represent the degree of error of the
classifier, ie, the distance between the cut-off (dark-blue horizontal line) and the AHI estimated by the CRM ground (y axis).
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Introspection Analysis: Feature Importance
Figure 6 depicts the results of the feature importance analysis for each of the algorithms here presented.

The AHI <5 vs AHI ≥5 algorithm relies significantly on TST (0.167 ± 0.041), WASO (0.141 ± 0.038), Age (0.058
± 0.026), and SFI (0.054 ± 0.024). Gender (0.004 ± 0.006), BMI (0.002 ± 0.009), Naw (0.017 ± 0.022), mLaw
(0.0189 ± 0.020), SE (0.013 ± 0.021), mHRs (0.014 ± 0.017) and mHRw (0.014 ± 0.017) contribute less to the model.

The AHI <15 vs AHI ≥15 algorithm’s features contribute homogeneously to the model, as suggested by the following
model scores: Age (0.018 ± 0.013); Gender (0.013 ± 0.008); BMI (0.010 ± 0.008); Naw (0.018 ± 0.018); SFI (0.021 ±

A B

C D

E

Figure 6 Mean feature importance for each classifier. Figure 6 shows the mean feature importance of each descriptor fed in the algorithms of the following classifiers: AHI
<5 vs AHI ≥5 (A), AHI <15 vs AHI ≥15 (B), AHI <30 vs AHI ≥30 (C), Mild vs Moderate-Severe (D) and Moderate vs Severe (E) classifications. The feature importance is
a metric for introspecting a machine-learning model. This technique weights how much a descriptor contributes to the classifier.
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0.015); mLaw (0.020 ± 0.013); WASO (0.024 ± 0.019); mHRs (0.024 ± 0.031); mHRw (0.034 ± 0.023). On the other
hand, TST (−0.020 ± 0.030) and SE (−0.011 ± 0.017) show a weaker effect.

The AHI <30 vs AHI ≥30 algorithm’s main features are represented by Age (0.033 ± 0.020), Gender (0.025 ± 0.014)
and SFI (0.016 ± 0.019). BMI (0.001 ± 0.001), Naw (0.003 ± 0.009), mLaw (0.003 ± 0.011), TST (0.001 ± 0.014),
WASO (0.006 ± 0.007), mHRs (0.002 ± 0.010), SE (−0.008 ± 0.013) and mHRw (−0.012 ± 0.013) do not significantly
contribute to the performance of this algorithm.

The Mild vs Moderate-Severe algorithm was found to mainly rely on the following descriptors: BMI (0.013 ± 0.006);
Naw (0.029 ± 0.023) and mLaw (0.026 ± 0.015). Low or none contribution was given by Age (0.001 ± 0.004), Gender (0
± 0), SFI (0.001 ± 0.006), mHRs (0.008 ± 0.009) and mHRw (0.001 ± 0.017). TST (−0.036 ± 0.027), WASO (−0.002 ±
0.013) and SE (−0.009 ± 0.019) did not show model scores.

The Moderate vs Severe classifier is mainly based on SFI (0.021 ± 0.019) and SE (0.021 ± 0.014). Little contribution
was provided by the following descriptors: Age (0.001 ± 0.014); Gender (0 ± 0); BMI (0.001 ± 0.021); mLaw (−0.003 ±
0.021); TST (0.006 ± 0.018); WASO (0 ± 0); SE (0.021 ± 0.014); Naw (−0.027 ± 0.025); mHRs (−0.011 ± 0.013);
mHRw (−0.008 ± 0.019).

Discussion
In this study, we assessed the performance of three different machine learning (ML) algorithms trained on accelerometric
and photoplethysmographic data collected through wrist-worn Fitbit Inc.’s smartbands. The algorithms were indepen-
dently trained on two independent data cohorts. For the first data cohort, the dataset collected was subdivided according
to the following AHI cut-offs: AHI <5/AHI ≥5, AHI <15/AHI ≥15 and AHI <30/AHI ≥30. Each AHI <5, AHI <15 and
AHI <30 class comprised all the patients having the AHI estimated by CRM, respectively, below 5/h, 15/h, and 30/h. For
the second data cohort, we excluded from the AHI <15 class the patients having AHI <5/h, while those patients having
AHI <15/h were excluded from the AHI <30 class. We chose this dual approach for several reasons: the first data cohort
served the purpose of comparing the outcome of the classifier with the STOP-Bang Questionnaire’s pooled performance,
according to the metrics reported by Nagappa et al’s systematic review. DOR is a useful tool for comparing the
performance of different diagnostic tests evaluated in different studies.47 For AHI <5 vs AHI ≥5 and AHI <30 vs AHI
≥30 classification, the DOR reached by our ML approach is comparable to the pooled DOR reached by the STOP-Bang
questionnaire (Table 2). Conversely, the DOR of the AHI <15 vs AHI ≥15 classifier is lower than the pooled DOR for the
STOP-Bang. Even if useful for comparing diagnostic tests, DOR only is not sufficient to decide whether to include a new
diagnostic tool in the clinical practice.47 For this purpose, PPV and NPVare more reliable parameters. For each classifier,
PPV and NPVof ML algorithms are comparable to the pooled performance parameters of the STOP-Bang Questionnaire,
suggesting that ML algorithms based on data collected through smartband data could serve as a viable strategy to screen
OSAS in the general population.

The second data cohort, in which AHI <15 vs AHI ≥15 and AHI <30 vs AHI ≥30 classifiers were trained on modified
datasets, was not intended to be applied for comparison between screening tools, but to combine the ML algorithms in
a multistep process that aims at estimating OSAS severity. Once classified as at risk of OSAS through the AHI <5 vs AHI
≥5 classifier, the patient’s measures could be fed into AHI <15 vs AHI ≥15 and AHI <30 vs AHI ≥30 classifiers to assess
the severity of the disease. This double step approach has a practical application: according to both the AASM’s clinical
practice guidelines7 and the algorithm for diagnosis of OSAS proposed by the European Respiratory Society (ERS) task
force,49 PSG and CRM are tests to be undergone only after a clinical evaluation of the patient. In particular, the AASM’s
diagnostic algorithm begins upon “clinical suspicion based on a comprehensive sleep evaluation” and the collection of
the information necessary to establish a differential diagnosis, and to administer the most adequate clinical diagnostic
tests. AASM does not propose a standard procedure to make this clinical evaluation, such as a standardized adminis-
tration of pre-tests that return a clinical probability of OSAS. Given the widespread distribution of wearable devices,29 an
algorithm can be a feasible standard procedure to screen the general population for OSAS.

The performance achieved by the AHI <5 vs AHI ≥5 algorithm is comparable to the one of other studies in which
ML-algorithms were trained on data derived from wearable devices. In Table 4 is compared the performance of our
algorithm that makes the AHI <5 vs AHI ≥5 classification to performance’s metrics of other studies.
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The sensitivity of the algorithms presented in these studies averages off at 77%. This might suggest that the intrinsic
instability of the wearable sensor placed around the wrist25,50 or the thorax, as in Baty et al28 may account for the lower
performance compared to non-wearable devices (as later discussed in Limitations).

ML-algorithms based on physiological data could have several advantages over the commonly used self-reported
questionnaires: monitoring through smartbands would avoid the subjectivity of self-reported symptoms. Since they do
not require the wearer to play an active part in the diagnostic process, they could be affected less by the OSAS-suspected
willingness to fill in a questionnaire. Furthermore, their minimal invasiveness could increase patients’ compliance. To
support the latter point, wrist-worn smartbands have been tested and validated in different clinical and home-monitoring
settings and have been always found as well-tolerated tools.51–53 Another advantage of commercial smartbands over self-
reported questionnaires is the long-term data storage and their suitability to retrospective studies. Users’ data collected
through Fitbit Inc.’s and similar devices can be indefinitely stored within the manufacturer’s server, and thereby retrieved
through the API provided by the company. Since OSAS is often unrecognized, the opportunity to retroactively screen
wearables’ users through previously collected smartbands’ measures is a promising way for identifying potential OSAS
patients unaware of their condition. The cohort of people that can take advantage of this retroactive approach is higher
than 31 million people, the number of active users of Fitbit Inc.’s devices in 202054. This number will probably raise in
the next years, according to perspective studies on the wearable devices’ share in forthcoming years.55

Limitations
A limitation of this study consists of the misclassification of several patients by the ML algorithms. Even if both
overestimation and underestimation of patients’ severity could occur, underestimation is the most critical one since it can
prevent a patient from undergoing additional investigations. This point is crucial for the AHI <5 vs AHI >5 algorithm, the
first step in the evaluation of OSAS risk. To investigate the possible causes of misclassification, we inspected the AHI of
patients whose disease severity was underestimated by the AHI <5 vs AHI ≥5 algorithm (Table 5).

The vast majority of AHI underestimations presented mainly hypopnea events (11 participants out of 14), which are
a known source of higher disagreement between human and automatic scorers.25,56,57

Another possible limitation of the study is represented by the worse performance attained by our algorithms compared
to other non-wearable medical devices. Tang and Liu58 proposed a new index, derived from a temporal dependency
analysis method, achieving a sensitivity of 92.5% of OSAS screening. Gupta et al18 achieved an accuracy of 94.97%,
a sensitivity of 94.58% and a specificity of 94.95% training their OSACN-Net model on single-lead ECG data. These
studies outperformed our algorithms. Nevertheless, our performance is in line with that reached by other wearable
devices, as discussed. The possible explanation to this gap in performance might be found in the different kind of
information conveyed by wrist-worn smartbands. The information collected through electrocardiography allows the deep
neural network to extract features that are informative over the state of the autonomic nervous system, which is known to
be affected by the OSAS events.59 The nature of the wearable data is intrinsically simpler and comes with a lower
amount of information: wrist-worn smartbands collect heart rate with a one-minute sampling frequency, and accelero-
metric data of the wrist with a one-minute sampling frequency. We exclude that the deterioration of performance is

Table 4 Comparison of the AHI <5 vs AHI >5 Algorithm to Other ML-Algorithms Based on Wearable Devices

This Study Papini et al.25 Wu et al.50 Baty et al.28

Sensitivity 76.67% 77% 76.7% 70%
Specificity 66.67% 72% 89.6% 74%

PPV 88.46% 83% Not reported Not reported

Notes: This table compares the performance of our algorithm (AHI<5 vs AHI≥5) in identifying OSAS of any severity to the performance reached by
other wearable devices. Papini et al used ML-algorithms trained on reflective photoplethysmography; we reported the sensitivity, specificity, and
positive predictive value (PPV) achieved in the AHI≥5 classification. Wu et al analysed the short-term fluctuations in the heart rate through both static
and dynamic information-based similarity; heart rate data was derived from a wearable photoplethysmograph. Baty et al used a wearable band to collect
electrocardiographic data and then trained four different classifiers. The best performance in the latter study was reached in the AHI<15 vs AHI≥15
classification (healthy and mild OSAS vs moderate and severe OSAS). Our algorithms reached a performance comparable to the one achieved by other
ML-algorithms presented in literature.
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caused by an imbalance of AHI classes (healthy, mild OSAS, moderate OSAS and severe OSAS) insofar as in each
leave-one-out split we adopted a procedure (as already discussed in the methods section) that aimed at avoiding any
imbalance in the dataset fed into the algorithms.

In the clinical setting, actigraphic data (if available) could be retrospectively used in patients with a clinical suspicion
of OSAS without performing any further examination. Moreover, a combined use of both self-reported questionnaire and
physiological data could be implemented, further improving diagnostic value.

Even if trained on Fitbit Charge4TM and Fitbit AltaHRTM, our algorithms can be applied to other devices, given that
the sensors of Fitbit Inc. are not device-specific but are shared by different smartbands.33 Unfortunately, the recruited
patients were only Caucasian: it is not possible to predict the performance of these classifiers on other human populations
of skin tone, known to affect the quality of photoplethysmographic measures.60

Future developments in the proposed screening algorithms will likely incorporate descriptors such as oxygen
saturation and blood pressure, when the relative data collected by novel consumer sensors will become available.61

Conclusions
In this study, we trained a multistep machine learning algorithm to classify the severity of OSAS using cardiorespiratory
monitoring as ground truth reference. The classifiers were trained on data collected through wrist-worn smartbands. The
sensitivity and specificity achieved by our AHI <5 vs AHI >5 algorithm are in line with the ones of other algorithms
trained on data derived by wearable devices. The results indicate that these devices could be a promising source of
physiological data to train algorithms based on artificial intelligence architectures. These algorithms capable of identify-
ing OSAS patients among apparently healthy individuals and of evaluating the severity of the disease in OSAS patients,
might be useful to make a large-scale population screening for OSAS. The low invasiveness, and convenience of these
commercially available devices, along with their comparable performance to commonly used subjective self-reported
questionnaires make smartbands suitable for screening in the general population for OSAS.

Abbreviations
AASM, American Academy of Sleep Medicine; AHI, Apnoea Hypopnoea Index; API, Application Programming Interface;
CRM, Cardiorespiratory Monitoring; ERS, European Respiratory Society; FN, False Negative; FP, False Positive; HR, Heart
Rate; LOO, Leave-One-Out; MCC, Matthews correlation coefficient; mHRs, mean HR during sleep; mHRw, mean HR

Table 5 Apnoea Hypopnoea Index for Underestimated Patients by the AHI <5 vs
AHI ≥5 Algorithm

ID AHI Apnoea Index Hypopnoea Index

2 27.7/h 7.5/h 20.2/h

4 31.8/h 17.7/h 14.1/h

6 38.8/h 26.5/h 12.3/h
10 19.8/h 6.6/h 13.2/h

11 16.8/h 11.7/h 5.0/h

16 6.8/h 1.0/h 5.7/h
21 5.7/h 0/h 5.7/h

22 11.4/h 2.0/h 9.4/h
36 8.1/h 0.6/h 7.5/h

41 21.7/h 10.3/h 11.4/h

59 16.2/h 3.4/h 12.8/h
66 8.3/h 0.0/h 8.3/h

73 12.2/h 0.3/h 11.9/h

75 5.27h 0.7/h 4.5/h

Notes: Table 5 shows the apnoea hypopnoea index those patients that were underestimated by the
AHI<5 vs AHI≥5 algorithm. The large majority of underestimated patients suffers mainly from hypopneas,
which is a known source of disagreement between humans and algorithms.
Abbreviation: AHI, apnoea/hypopnea index.
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during sleep arousal; ML, Machine Learning; mLaw, mean length of awakenings after sleep onset; MLP, multi-layer
perceptron; Naw, number of awakenings; OSAS, Obstructive Sleep Apnoea Syndrome; PSG, Polysomnography; ReLU,
Rectified Linear Unit; SE, Sleep Efficiency; SFI, Sleep Fragmentation Index; SLIM, Supersparse Linear Integer Model; TN,
True Negative; TP, True Positive; TST, Total Sleep Time; WASO, Wake After Sleep Onset.
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