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ABSTRACT During the first weeks of life, microbial colonization of the gut impacts
human immune system maturation and other developmental processes. In prema-
ture infants, aberrant colonization has been implicated in the onset of necrotizing
enterocolitis (NEC), a life-threatening intestinal disease. To study the premature in-
fant gut colonization process, genome-resolved metagenomics was conducted on
343 fecal samples collected during the first 3 months of life from 35 premature in-
fants housed in a neonatal intensive care unit, 14 of whom developed NEC, and
metaproteomic measurements were made on 87 samples. Microbial community compo-
sition and proteomic profiles remained relatively stable on the time scale of a week,
but the proteome was more variable. Although genetically similar organisms colo-
nized many infants, most infants were colonized by distinct strains with metabolic
profiles that could be distinguished using metaproteomics. Microbiome composition
correlated with infant, antibiotics administration, and NEC diagnosis. Communities
were found to cluster into seven primary types, and community type switched
within infants, sometimes multiple times. Interestingly, some communities sampled
from the same infant at subsequent time points clustered with those of other in-
fants. In some cases, switches preceded onset of NEC; however, no species or com-
munity type could account for NEC across the majority of infants. In addition to a
correlation of protein abundances with organism replication rates, we found that
organism proteomes correlated with overall community composition. Thus, this
genome-resolved proteomics study demonstrated that the contributions of individ-
ual organisms to microbiome development depend on microbial community con-
text.

IMPORTANCE Humans are colonized by microbes at birth, a process that is important
to health and development. However, much remains to be known about the fine-scale
microbial dynamics that occur during the colonization period. We conducted a genome-
resolved study of microbial community composition, replication rates, and proteomes
during the first 3 months of life of both healthy and sick premature infants. Infants were
found to be colonized by similar microbes, but each underwent a distinct colonization
trajectory. Interestingly, related microbes colonizing different infants were found to have
distinct proteomes, indicating that microbiome function is not only driven by which or-
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ganisms are present, but also largely depends on microbial responses to the unique set
of physiological conditions in the infant gut.

KEYWORDS human microbiome, metaproteomics, microbial colonization, microbial
genomics, necrotizing enterocolitis, neonates, iRep, metagenomics

Infants have high levels of between-individual variation in microbiome composition
compared with adult humans (1, 2). Variation in the infant microbiome exists at

both the species and strain levels (3, 4). During the first 1 to 2 years of life, the gut
microbiome of infants begins to converge upon an adult-like state (2, 5). However,
aberrations in this process may contribute to diseases such as type 1 and 2 diabetes,
irritable bowel disease, and necrotizing enterocolitis (NEC) in premature infants (6–11).
Because establishment of the microbiome is a key driver of immune system develop-
ment, changes in the process of colonization may have lifelong implications, even if
they do not result in a drastically different microbiome composition later in life (12, 13).

Infants born prematurely have microbial communities that are lower in diversity
than those of full-term infants and are susceptible to life-threatening diseases such as
NEC (4, 14–17). While it has long been thought that bacterial infection may contribute
to NEC pathogenesis, strain-resolved microbial community analysis has not identified a
single pathogen that is responsible for the disease (3). However, it is still likely that
microbial communities play an important role, with the context-dependent metabolism
of specific strains potentially critical to infant health and disease. Recent studies have
applied proteomics and metabolomics to premature infant gut microbiomes to mea-
sure functional profiles in healthy premature infants and in those that went on to
develop NEC (18, 19). Those studies reported temporal variation in the infant proteome
and identified metabolites associated with NEC. However, further study is required to
better understand the range of functional and developmental patterns during the
microbial colonization process.

To investigate microbial community assembly and how microbes modulate their
metabolism and replication rate during colonization, we conducted a combined met-
agenomics and metaproteomics study of the microbiome of both healthy premature
infants and infants that went on to develop NEC. Microbiome samples were collected
during the first 3 months of life with the goal of measuring the physiological changes
in the dominant and ubiquitous bacterial species. Genomes assembled from metage-
nomes enabled analysis of microbial community membership and tracking of both
community composition and replication rates over time. The availability of genome
sequences made it possible to map protein abundance measurements to bacterial
species and strains. Microbial communities were clustered into distinct types in order
to provide the context for proteomics analyses. Statistical analyses showed that, while
the species-specific and strain-specific proteomic profiles correlated with overall com-
munity composition, the proteomes of members of the same species and strain were
largely infant specific. These analyses also showed that bacterial proteome features are
correlated with infant development, health status, and antibiotics administration.

RESULTS
Metagenome sequencing and genome binning. In order to study the developing

gut microbiome, stool samples were collected during the first 3 months of life from 35
infants born prematurely and housed in the neonatal intensive care unit at Magee-
Womens Hospital at the University of Pittsburgh Medical Center. Two of the infants in
the study cohort (N1_017 and N1_019) developed sepsis, and 14 infants developed
necrotizing enterocolitis (NEC) (Table 1). To study the gut microbiome, we analyzed
1,149 GBp of DNA sequences generated by our laboratory (3, 4, 20). These sequences
were from 343 metagenomes (average, 3.3 GBp sequencing per sample) (see Fig. S1
and File S1a in Data Set S1 in the supplemental material). Metagenomes were
assembled into 6.79 GBp of scaffolds of �1 kbp, which represented 92% of all
sequenced DNA.
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Scaffolds assembled from metagenomes were grouped into 3,643 bins, 1,457 of
which were �50% complete with �5% contamination (Fig. S2; see also File S2 at
https://doi.org/10.1101/217950). These genomes were assigned to 270 groups approx-
imating different bacterial subspecies based on sharing �98% average nucleotide
identity (ANI) (see File S1b in Data Set S1). These genomes accounted for 91% of the
total sequencing. Genomes suitable for index of replication (iRep) rate analysis (�75%
complete with �175 fragments/Mbp and �5% contamination) were available for 193
genome clusters (21).

Protein quantification by metaproteomics. Across all metagenomes, 5,233,047
proteins were predicted, 897,520 of which were from a nonredundant set of represen-
tative genomes clustered at 98% ANI. Proteins clustered into 121,746 putative families
(see File S3 at https://doi.org/10.1101/217950). Metaproteomics measurements were
conducted on 87 metagenome-matched samples that spanned 16 infants, 6 of whom
developed NEC and 1 of whom (N1_019) was diagnosed with sepsis (Fig. S1). Conduct-
ing metagenomics and metaproteomics on the same samples was critical for obtaining
an appropriate database for matching peptides to proteins. On average, 71,676 unique
bacterial spectral counts were detected per sample, with an average of 33% of
predicted bacterial proteins identified (Fig. S1; also see File S1b in Data Set S1 and
File S4 at https://doi.org/10.1101/217950).

Premature infants were colonized by genetically similar organisms, and mi-
crobial communities clustered into seven primary types. The majority of infants
were colonized by Enterococcus faecalis, Klebsiella pneumoniae, and Staphylococcus

TABLE 1 Infant medical informationa

Infant Study Sex Delivery
Mult.
gest.

Gestational
age (wks)

Birth
wt (g) Feeding Condition

NEC
diagnosis (DOL)

N1_003 NIH1 F C-section Single 26 822 Breast Control
N1_004 NIH1 F C-section N1_005 32 1,450 Formula Control
N1_008 NIH1 F Vaginal Single 32 1,230 Formula NEC 9
N1_009 NIH1 M C-section Single 29 1,820 Combination Control
N1_011 NIH1 M C-section N1_012 26 523 Combination NEC 34, 62
N1_014 NIH1 M Vaginal Single 32 2,035 Combination Control
N1_017 NIH1 F Vaginal Single 26 748 Combination NEC 11
N1_018 NIH1 M C-section Single 29 1,133 Combination Control
N1_019 NIH1 F C-section N1_020, N1_021 24 731 Combination Control
N1_021 NIH1 F C-section N1_019, N1_020 24 697 Breast NEC 32
N1_023 NIH1 F Vaginal Single 27 875 Breast Control
N2_031 NIH2 M C-section Single 26 773 Formula Control
N2_035 NIH2 M Vaginal Single 25 795 Breast Control
N2_038 NIH2 F C-section N2_039 30 1,381 Combination Control
N2_039 NIH2 F C-section N2_038 30 1,470 Combination NEC 24
N2_060 NIH2 M C-section Single 30 1,878 Combination Control
N2_061 NIH2 M Vaginal Single 28 1,184 Combination NEC 9, 34
N2_064 NIH2 M Vaginal Single 28 1,100 Combination Control
N2_065 NIH2 F Vaginal Single 25 841 Combination Control
N2_066 NIH2 F Vaginal Single 28 1,028 Breast Control
N2_069 NIH2 M C-section N2_070 26 637 Breast NEC 32
N2_070 NIH2 F C-section N2_069 26 633 Combination Control
N2_071 NIH2 M C-section Single 25 754 Combination NEC 31
N2_088 NIH2 F C-section N2_089 28 1,057 Formula Control
N2_093 NIH2 M C-section Single 26 924 Breast NEC 12
N3_172 NIH3 M C-section Single 28 1,250 Breast NEC 37, 54
N3_173 NIH3 M C-section Single 29 1,530 Breast NEC 25
N3_174 NIH3 F C-section Single 30 980 Breast Control
N3_175 NIH3 M Vaginal Single 29 1,480 Combination Control
N3_176 NIH3 M C-section Single 28 990 Combination Control
N3_177 NIH3 F Vaginal Single 28 900 Combination Control
N3_178 NIH3 M Vaginal Single 32 2,050 Combination NEC 16
N3_182 NIH3 M C-section Single 39 3,010 Combination NEC 6
N3_183 NIH3 M Vaginal Single 32 2,410 Combination NEC 11
S2_010 NIH3 M C-section Single 32 1,810 Combination Control
aMult. gest., multiple gestations; F, female; M, male.
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epidermidis (Fig. 1a and b). Overall, infants that developed NEC were colonized by
organisms genetically similar to those colonizing other infants, and most genotypes
were seen in only one infant. No individual species was strongly associated with NEC
(Fig. S3).

The premature infant microbiome was found to be highly variable. In some cases,
samples collected from an infant at subsequent time points were as different from
earlier samples as those collected from other infants (Fig. 1c). Communities were
clustered based on species membership and abundance in order to identify microbial
consortia common during the colonization process. In order to account for both
genomic differences and organism abundance, clustering was conducted based on
weighted UniFrac distances, where the tree used for calculating UniFrac was con-
structed using genome ANI. Nine distinct community types were identified, seven of
which were composed of samples collected from multiple infants and were thus
considered primary types (Fig. 1d; see also Fig. S4 and S5). Each community type was
characterized by the dominance of different community members (Fig. S6). Micro-
biomes from different infants clustered into the same community type, and the
microbiome of individual infants was found to switch types, sometimes multiple times,
during the colonization process (Fig. 2). Although infants shared community types,
overall colonization patterns were not replicated across infants. Microbiomes associ-
ated with infants that did and did not go on to develop NEC were often classified in the
same community type. In some cases, switches preceded onset of NEC, but no type or
switch could explain all cases of NEC.

Microbial replication rates and proteins. iRep is a newly developed method that
enables measurement of bacterial replication rates based on metagenome sequencing
data when high-quality draft genome sequences are available (21). We applied the iRep
method using genomes recovered from metagenomes sequenced for each infant in the
study and quantified 1,328 iRep replication rates from 330 samples. Sample clustering
was conducted based on community iRep profiles, identifying nine distinct iRep types
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FIG 1 Premature infant gut microbial communities associated into seven primary types. Genomes reconstructed from metagenomes were clustered into
subspecies groups based on sharing 98% average nucleotide identity (ANI). (a) The number of genomes assigned to each group. (b) The number of infants with
a reconstructed genome from the group. Groups composed of five or more genomes are shown. (c) Pairwise weighted UniFrac distances calculated between
all microbiome samples based on genome sequence ANI and abundance. (d) Principal-coordinate analysis (PCoA) clustering of samples based on weighted
UniFrac distances. Samples are colored based on community type assignment.
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that were correlated with community type (Mantel test P value of 1 � 10�3) (Fig. 2a).
Likewise, analysis of protein family abundance clustered samples into four distinct
proteome types, which also correlated with community type (Mantel test P value of 1 �

10�3) (Fig. 2b). Interestingly, there were several cases in which the iRep and/or
proteome type switched when the community type was constant or in which the
community type switched but the iRep and/or proteome type remained constant.

Microbiome development. Peptide spectral counts were matched to infant-
specific databases containing both human and microbial proteins. This allowed the
relative proportions of human and microbial proteins to be determined for each time
point. Samples were dominated by human proteins during the first 10 days of life
(DOL), and then microbial proteins became dominant around DOL 18. Ratios of human
versus bacterial protein abundances show that the premature infant gut microbiome is
established over a period of approximately 2 weeks (Fig. 3a).

The presence of multiple data types (microbial community abundance and iRep,
microbial community proteome composition, and human proteome composition) en-
abled tracking of various aspects of human and microbiome development during the
first months of life (Fig. 3b and c). All measurements from an infant were stable within
the time scale of a week but diverged over time. Interestingly, communities from
different infants neither converged nor diverged over time in terms of similarity based
on three of these five metrics. However, we observed that human proteome measure-
ments and microbial protein family abundances from different infants became increas-
ingly different when samples with time separations of greater than 3 weeks were
compared. Overall, the microbial proteome was more variable (higher variance) than
the community composition (Fig. 3d and e). After approximately 2 weeks, the microbial
community abundance data and proteome measurements collected from the same
infant became as different from each other as from those of samples collected from
other infants.

The majority of human and microbiome features recorded in our analyses were
correlated with one another (Fig. 3f). However, an exception was that microbial
community abundance and iRep were not correlated with human proteome compo-
sition (Mantel test P value � 0.01). This is interesting in that it shows that there is no
strong connection between the overall human proteome and either the composition or
replication activity of the microbiome.

As shown in Fig. 3g, microbial features were also correlated with a variety of infant
factors, including infant health and development (gestational age [Ga] and weight), as
well as with antibiotics administration (Mantel test or permutational multivariate
analysis of variance [PERMANOVA] P value � 0.01). Notably, whether or not an infant
developed NEC (condition) correlated with several microbiome factors (infant genome
inventory and both community composition and iRep) but not with proteome mea-
surements. However, these correlations were in part driven by antibiotics, as only iRep
was correlated with infant condition when excluding samples collected during or
within 5 days of antibiotics administration. Regardless of the influence of antibiotics on
the microbiome, microbial responses to treatment likely impact infant health.

Different species expressed various amounts of their proteome in the infant
gut. Microbes present in the gut environment are not expected to express their
complete complement of proteins at all times. In order to investigate the extent of
proteome expression for different bacteria, we compared the depth of proteome
sampling for each organism to the percentage of the predicted proteome that could be
detected (Fig. 4). The median level of proteome detection across all samples was 11%,
but this was largely due to low sampling depth. Higher depth of proteome sampling
corresponded with detection of a larger fraction of the predicted proteins. The median

FIG 2 Legend (Continued)
community type is shown along with iRep (a) and proteome (b) types. Infants are arranged based on hierarchical clustering of unweighted
UniFrac distances calculated based on the set of genomes recovered from each infant (Fig. S3). Antibiotics administration data are indicated
with pink bars and NEC diagnosis data with red bars. DOL, days of life.
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percentage of the proteome detected for organisms with the best detection in each
sample was 31% (maximum [max.], 48%). For several frequently detected colonists,
including Klebsiella pneumoniae, Klebsiella oxytoca, and members of the genus Entero-
bacter, maximum proteome expression was ~50%. However, Propionibacterium sp.,
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Anaerococcus vaginalis, and members of the genus Bifidobacterium expressed a greater
proportion of their genes than other organisms. We infer that these bacteria may be
specifically adapted to environments and resource availability within the infant gut,
whereas other bacteria may maintain capacities that enable adaption to other envi-
ronments.

Members of the same bacterial species replicated at different rates during
colonization. Across all infants, Streptococcus agalactiae, Pseudomonas aeruginosa,
Klebsiella pneumoniae, and members of the genera Veillonella and Clostridium exhibited
some of the highest replication rates (see File S1c in Data Set S1). iRep values for
organisms sampled in this cohort during or immediately after antibiotics administration
were not significantly different from those determined at other time points (Fig. 5a).
This indicates that populations present after antibiotics administration were both
resistant to antibiotics and continuing to replicate. Members of several species (Veillo-
nella sp., Streptococcus agalactiae, Finegoldia magna, and others) were replicating
quickly during or immediately following antibiotic treatment. However, we did not
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detect iRep values that were higher overall following antibiotics administration, al-
though this was reported previously (21). Most species were found to be replicating
only in the absence of antibiotics, consistent with their susceptibility to the treatment.

Species-specific proteomic profiles are associated with infant and microbiome
features. Relative protein abundance levels were determined for each genome and
tracked across samples. This identified population-specific proteome profiles and en-
abled us to test for correlations with various human and microbial properties (Fig. 3h;
see also Fig. S1 and File S1d in Data Set S1). Veillonella spp., Klebsiella pneumoniae,
Escherichia coli, and Propionibacterium sp. all had infant-specific profiles (PERMANOVA
P value � 0.01), indicating that although similar organisms were colonizing different
infants, each population was expressing a different complement of proteins. The
K. pneumoniae and Veillonella proteomes also correlated with community type, as did
the Bifidobacterium breve proteome (Mantel test P value � 0.01), showing that the
populations responded to overall microbial community context. Interestingly, both
Enterococcus faecalis and Propionibacterium sp. exhibited proteomes that were also
correlated with infant development, and the K. pneumoniae proteome correlated with
both iRep and infant health. Although overall microbial proteome correlated with
antibiotics administration, species-specific proteome profiles did not; however, this may
have been due to a lack of available data for the same species in multiple samples with
and without antibiotics.

Because of the existence of 35 samples in which �10% of the K. pneumoniae
proteome could be detected (max. � 38%; median � 25%), correlations between
individual protein abundances and iRep could be determined. Among the proteins
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FIG 5 Replication rates for bacteria colonizing premature infants. (a) Replication rates for bacteria sampled during periods with or without antibiotics
administration. (b) Replication rates associated with infants that did and did not go on to develop NEC. Statistically significant differences between replication
rates observed for individual species under different conditions are indicated with an asterisk (MW P value, �0.01). Data represent all species with at least five
observations.
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positively correlated with iRep were a transcriptional regulator (LysR), proteins involved
in cell wall biogenesis, and ribosomal proteins (Pearson value, �0.5; false-discovery-rate
[q] value � 0.01; observed in �15 samples) (see File S1e in Data Set S1).

Infants were colonized by different strains with distinct proteomes. The finding
that K. pneumoniae, E. coli, Propionibacterium sp., and Veillonella spp. have infant-
specific proteomes raised the issue of whether or not each infant was being colonized
by different strains. Genome sequences that were �50% complete with �5% contam-
ination that were assembled for each species from each infant were compared with one
another, and hierarchical clustering conducted on pairwise ANI values was used to
delineate strains (Fig. S7). Clustering showed that in most cases each infant was indeed
colonized by distinct strains, which proteomics analysis showed were functionally
distinct. However, there were a few notable exceptions. Twin infants N2_069 and
N2_070, as well as infant N1_003, were colonized by the same strain of K. pneumoniae.
The proteomic profiles for the strains colonizing N2_069 and N2_070 were more similar
to one another than they were to profiles recovered from other strains; however, they
were still distinguishable (Fig. 6). Likewise, the same strain of Propionibacterium sp.
colonized twin infants N2_038 and N2_039. As with shared strains of K. pneumoniae,
their functional profiles clustered together but were still distinguishable from one
another (Fig. S8).

Analysis showed that only a few proteins were responsible for distinguishing
proteomes of the same bacterial types in different infants (Fig. 6; see also Fig. S8 and
File S1d in Data Set S1). Common among these were proteins involved in nucleotide,
amino acid, carbohydrate, and lipid metabolism. Also notable were several proteins
produced by K. pneumoniae that were involved in central carbohydrate metabolism and
in both galactose degradation and D-galacturonate degradation, indicating different
carbon preferences for strains colonizing different infants (Fig. 6). Proteins involved in
bacterial secretion were differentially abundant between K. pneumoniae strains colo-
nizing different infants, indicating variations in secretion potential that could affect
human-microbe interactions. Relatedly, the abundances of proteins involved in trans-
port of metals, ions, citrate, and several sugars also differed between infants.

Low microbiome diversity was associated with both antibiotics administration
and NEC. Microbiome diversity was lower during or within 5 days of antibiotics
administration than at other time points (Mann-Whitney [MW] U test; MW P value, 2.6 �

10�9; Fig. 7a), and the microbiome of infants that developed NEC was typically less
diverse than that of healthy infants (MW P value, 4 � 10�4; Fig. 7b). However, the
difference in diversity between healthy and NEC infants was driven by the fact that NEC
infants more frequently receive antibiotics (Fig. 2). Comparing data corresponding to
the periods with and without antibiotics, the levels of microbiome diversity for healthy
and NEC infants (pre-NEC diagnosis) were indistinguishable (Fig. 7c). Excluding antibi-
otics samples, both groups of infants had higher diversity microbial communities later
in development (post-gestational age-corrected day of life [post-Ga� DOL] 220;
Fig. 7d).

Microbial community composition was correlated with infant health. Premature
infants that developed NEC had different microbial community abundance profiles
(PERMANOVA P value of 3 � 10�3; Fig. S4g). Interestingly, there were a variety of
species that were detected in healthy infants but never detected in those that devel-
oped NEC; however, the opposite was not true. It should be noted that species unique
to healthy infants were not consistently detected. No species identified 5 days prior to
NEC diagnosis showed a significant difference in abundance or was unique to NEC
infants.

Overall community composition was also correlated with each infant, antibiotics
administration, birth weight, gestational age, and gestational age corrected day of life
(Ga� DOL; PERMANOVA or Mantel test P value � 0.01; Fig. S4). Several species,
including Enterobacter sp., Propionibacterium sp., and Peptostreptococcus sp., repre-
sented more-abundant members of communities associated with infants that devel-
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oped NEC (q value � 0.01 after excluding samples collected within 5 days of antibiotics
administration) (see File S1f in Data Set S1). Vellonella sp. replicated faster in NEC
infants, while several groups of organisms were replicating faster in control infants,
including members of the genera Anaerococcus, Klebsiella, Actinomyces, Eggerthella,
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Threonine biosynthesis, aspartate => homoserine => threonine: semialdehyde dehydrogenase  3870
Threonine biosynthesis, aspartate => homoserine => threonine: aspartate kinase  421
Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP: hypothetical protein  10796
Pyrimidine deoxyribonuleotide biosynthesis, CDP/CTP => dCDP/dCTP,dTDP/dTTP: ribonucleotide-diphosphate reductase subunit beta (EC:1.17.4.1)  2709
Purine degradation, xanthine => urea: hydroxyisourate hydrolase  5562
Purine degradation, xanthine => urea: OHCU decarboxylase  4736
Purine degradation, xanthine => urea: 5-hydroxyisourate hydrolase  7013
Adenine ribonucleotide biosynthesis, IMP => ADP,ATP: adk; adenylate kinase (EC:2.7.4.3)  557
GABA (gamma-Aminobutyrate) shunt: glutamate decarboxylase (EC:4.1.1.15)  2893
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: semialdehyde dehydrogenase  3870
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: dihydrodipicolinate synthase  5190
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: dihydrodipicolinate reductase (EC:1.3.1.26)  886
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine: aspartate kinase  421
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: semialdehyde dehydrogenase  3870
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: dihydrodipicolinate synthase  5190
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: dihydrodipicolinate reductase (EC:1.3.1.26)  886
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine: aspartate kinase  421
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: semialdehyde dehydrogenase  3870
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: dihydrodipicolinate synthase  5190
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: dihydrodipicolinate reductase (EC:1.3.1.26)  886
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine: aspartate kinase  421
Histidine biosynthesis, PRPP => histidine: phosphoribosyl-AMP cyclohydrolase  971
Methionine biosynthesis, apartate => homoserine => methionine: semialdehyde dehydrogenase  3870
Methionine biosynthesis, apartate => homoserine => methionine: aspartate kinase  421
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP => pimeloyl-ACP: short-chain dehydrogenase  2690
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP => pimeloyl-ACP: enoyl-ACP reductase (EC:1.3.1.9)  1968
NAD biosynthesis, aspartate => NAD: nadE; NAD synthetase (EC:6.3.1.5)  1262
Menaquinone biosynthesis, chorismate => menaquinone: naphthoate synthase (EC:4.1.3.36)  276
Glutathione biosynthesis, glutamate => glutathione: glutamate--cysteine ligase (EC:6.3.2.2)  2462
Biotin biosynthesis, pimeloyl-ACP/CoA => biotin: 8-amino-7-oxononanoate synthase (EC:2.3.1.47)  314
Biotin biosynthesis, BioW pathway, pimelate => pimeloyl-CoA => biotin: 8-amino-7-oxononanoate synthase (EC:2.3.1.47)  314
Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate: aconitate hydratase  1118
Tryptophan biosynthesis, chorismate => tryptophan: tryptophan synthase subunit beta (EC:4.2.1.20)  560
Tryptophan biosynthesis, chorismate => tryptophan: trpA; tryptophan synthase subunit alpha (EC:4.2.1.20)  744
Shikimate pathway, phosphoenolpyruvate + erythrose-4P => chorismate: 3-dehydroquinate dehydratase  1699
Phenylalanine biosynthesis, chorismate => phenylalanine: putative ABC-type amino acid transport/signal transduction systems periplasmic component  8342
Homoprotocatechuate degradation, homoprotocatechuate => 2-oxohept-3-enedioate: 4-hydroxyphenylacetate degradation protein  2633
Proline biosynthesis, glutamate => proline: glutamate 5-kinase  563
tyrosyl-tRNA synthetase  205
threonyl-tRNA synthetase (EC:6.1.1.3)  116
aspartyl-tRNA synthetase  169
30S ribosomal protein S14  2142
30S ribosomal protein S6  4560
30S ribosomal protein S5  705
50S ribosomal protein L34  11065
50S ribosomal protein L30  3340
50S ribosomal protein L24  8728
50S ribosomal protein L18  896
50S ribosomal protein L16  895
50S ribosomal protein L15  943
rplM  27206
50S ribosomal protein L13  558
50S ribosomal protein L6  537
50S ribosomal protein L31  5323
50S ribosomal protein L29  6730
50S ribosomal protein L1  388
30S ribosomal protein S7  725
30S ribosomal protein S17  1082
30S ribosomal protein S16  3104
RNA processing Ski complex protein  1885
rpoB; DNA-directed RNA polymerase subunit beta (EC:2.7.7.6)  685
Cell division protein FtsH (EC:3.4.24.-)  4919
DNA polymerase III complex: ribosomal-protein-alanine acetyltransferase  976
DNA polymerase III complex protein  12022
DNA polymerase III subunit alpha (EC:2.7.7.7)  57
PgtB-PgtA (phosphoglycerate transport) two-component regulatory system: transcriptional regulator  9749
CitA-CitB (citrate fermentation) two-component regulatory system: signal transduction histidine kinase  824
CitA-CitB (citrate fermentation) two-component regulatory system: dpiA  3707
PTS system mannose/fructose/sorbose transporter subunit IIA (EC:2.7.1.69)  5503
PTS system galactitol-specific transporter subunit IIB  3409
PTS system lactose/cellobiose-specific transporter subunit IIB  893
PTS system lactose/cellobiose-specific transporter subunit IIA  335
phosphate transport system regulatory protein PhoU  809
D-Methionine transport system: NLPA lipoprotein  67
Spermidine/putrescine transport system: bacterial extracellular solute-binding family protein  197
Osmoprotectant transport system: osmoprotectant uptake system substrate-binding protein  3203
Iron III transport system: Ferric iron ABC transporter  7297
Nickel transport system: anaerobic cobalt chelatase (EC:4.99.1.3)  1348
Iron complex transport system: iron-hydroxamate transporter substrate-binding subunit  2784
Cobalt/nickel transport system: anaerobic cobalt chelatase (EC:4.99.1.3)  1348
Type VI secretion system: ATPase AAA  13
Type II general secretion pathway: type IV pilin biogenesis protein  358
Type II general secretion pathway: pullulanase  6218
Type II general secretion pathway: pullulanase  17135
Type II general secretion pathway: pullulanase  15660
Type II general secretion pathway: pullulanase  15342
Type II general secretion pathway protein  6987
Type II general secretion pathway protein  150
Type II general secretion pathway: protein M  11340
Type II general secretion pathway: protein GspL  15346
Type II general secretion pathway: protein GspI  19722
Type II general secretion pathway: protein G  6194
Type II general secretion pathway: protein D  2725
Sec system: preprotein translocase subunit SecA  63
cysN; sulfate adenylyltransferase subunit 1 (EC:2.7.7.4)  1883
nitrite reductase  462
beta-lactamase  437
Reductive pentose phosphate cycle: transketolase (EC:2.2.1.1)  120
succinate dehydrogenase flavoprotein subunit (EC:1.3.99.1)  803
C5 isoprenoid biosynthesis: rpsA; 30S ribosomal protein S1  187
C5 isoprenoid biosynthesis: ispG; 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (EC:1.17.7.1)  621
C5 isoprenoid biosynthesis: ispF; 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (EC:4.6.1.12)  974
C5 isoprenoid biosynthesis: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase  2940
Glyoxylate cycle: aconitate hydratase (EC:4.2.1.3)  2487
Glyoxylate cycle: aconitate hydratase (EC:4.2.1.3)  419
Galactose degradation, Leloir pathway, galactose => alpha-D-glucose-1P: galM; galactose-1-epimerase (EC:5.1.3.3)  747
D-Galacturonate degradation, D-galacturonate => pyruvate + D-glyceraldehyde 3P: altronate hydrolase  838
Fatty acid biosynthesis, elongation: short-chain dehydrogenase  2690
Fatty acid biosynthesis, elongation enoyl-ACP reductase (EC:1.3.1.9)  1968
Pyruvate oxidation, pyruvate => acetyl-CoA pyruvate dehydrogenase E1 component subunit alpha  1247
Pentose phosphate pathway, non-oxidative phase, fructose 6P => ribose 5P: transketolase (EC:2.2.1.1)  120
Pentose phosphate pathway: transketolase (EC:2.2.1.1)  120
Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate: aconitate hydratase (EC:4.2.1.3)  2487
Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate: aconitate hydratase (EC:4.2.1.3)  419
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Streptococcus, Clostridiales, and Bifidobacterium (MW P value � 0.01 [excluding samples
collected within 5 days of antibiotics administration]) (see File S1c in Data Set S1).
Several different species were active in control infants but were not detected in the
infants that went on to develop NEC. However, the combined iRep values collected
from infants that did and did not go on to develop NEC were not significantly different,
even considering only samples collected within the 5 days prior to NEC diagnosis
(Fig. 5b).

Microbial proteins associated with proteome type, antibiotics administration,
and NEC. As described above, we used protein abundance patterns to cluster microbial
community proteomes into functionally distinct proteome types. Statistical analysis
identified 3,085 differentially abundant proteins distinguishing proteome types (edgeR
false-discovery-rate [q] value � 0.01) (see File S1g in Data Set S1). Of these, 461 were
found to distinguish only one proteome type from all others. Notable among all of
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these proteins were those involved in central carbohydrate metabolism and energy
metabolism (Fig. S9). Proteome types differ in terms of the amount and variety of
carbon degradation enzymes as well as in the propensity for aerobic versus anaerobic
respiration (based on the abundance of oxidases and reductases).

Samples collected during antibiotics treatment were enriched in 56 different pro-
teins (identified in two or more treated infants; edgeR q value, �0.01) (see File S1g in
Data Set S1). Among these proteins were those involved in secretion, transcription, and
DNA degradation. Along with iRep results, the findings indicate that a subset of
organisms remained active in the presence of antibiotics.

Although overall community proteome abundance profiles were not correlated with
NEC, microbial proteins from 160 different protein families, many with no known
function, were more abundant in samples from infants that went on to develop NEC
(identified in two or more NEC infants; edgeR q value � 0.01) (see File S1g in
Data Set S1). Annotated proteins were dominantly involved in transport of ions, metals,
and other substrates; iron acquisition; and both motility and chemotaxis. Among the
proteins responsible for iron scavenging was subunit E of enterobactin synthase, a
high-affinity siderophore involved in iron acquisition, which is often used by patho-
genic organisms. Also more abundant was outer membrane receptor FepA, which is
involved in transporting iron bound by extracellular enterobactin. Subunit F of entero-
bactin synthase was also identified in NEC infants, as were an iron-enterobactin ABC
transporter substrate-binding protein and an enterobactin esterase. The abundance of
this protein suggests a possible role for iron acquisition by organisms that may
contribute to disease onset. Interestingly, 21 K. pneumoniae proteins were correlated
with NEC, including a ferrous iron transporter (family 2834) that was 3.9-fold more
abundant in two infants that developed NEC. The abundance of this protein was also
correlated with infant, proteome type, community type, and antibiotics administration.

DISCUSSION

Most studies to date have focused on the composition of the gut microbiome,
typically at the low resolution afforded by 16S rRNA gene amplicon methods. We used
genome-resolved time-series metagenomics in conjunction with iRep replication rate
and metaproteomics measurements to obtain a more comprehensive view of the
colonization process. The data set included information about the gut colonization
trajectories of both healthy infants and infants that went on to develop NEC, enabling
exploration of microbiome variability, at both the community composition and organ-
ism functional levels.

Microbial communities were classified into types based on the mixture of organisms
present. Interestingly, most types occurred in multiple infants, a result that indicates the
tendency of gut-colonizing bacteria to form networks of interaction, possibly based on
metabolic complementarity. An important factor determining the community type
present may be the specific organisms that are introduced and the extent to which they
are able to colonize. Other factors that may dictate the community type include human
genetic selection, diet, and antibiotics administration. Within a single infant, commu-
nity types often switched several times over the observation period. Given the lack of
evidence for consistent transitions from one type to another across multiple infants, the
high degree of variation in iRep replication rates observed for members of the same
species, and a lack of convergence of communities in different infants, we conclude
that colonization is a chaotic process.

Overall microbial physiology, as measured by whole proteome abundance patterns,
was more dynamic than community composition. Thus, metagenomics-enabled pro-
teomic analyses indicate that functional flexibility does not depend on addition or loss
of organisms. Shifts in the importance of specific pathways or metabolisms with
environmental conditions would not be apparent in studies that use only organism
identification or metabolic potential predictions.

It is possible that the onset of NEC is due to high growth rates of potential
pathogens within communities that are imbalanced due to low species richness,
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ultimately resulting in overgrowth by a pathogen. For this reason, we compared levels
of microbial community diversity and composition, growth rates, and metabolic fea-
tures in infants that did and did not develop NEC. A clear finding of this study that was
evident from prior research (17) was that microbial communities associated with infants
that develop NEC are of lower diversity than those of control infants. However, this was
due to the frequency of antibiotics administration for NEC infants. Regardless of the
cause of the lower-diversity communities, microbial activities throughout the coloni-
zation process, including during periods of antibiotics administration, are likely impor-
tant to infant health.

Several different species had higher relative abundance in infants that developed
NEC, but none of these species were consistently associated with the disease. The
correlation could have been the consequence of the loss of other organisms from the
community rather than of their higher absolute abundance. Interestingly, Veillonella
spp. were found to replicate more quickly in infants with NEC than in control infants.
This may be medically important, but additional examples are needed to establish a link
between rapid growth and NEC.

Surprisingly, whether or not an infant developed NEC was not correlated with
overall proteome composition. However, there were specific proteins that were asso-
ciated with NEC, notably several involved in iron scavenging. Given that this is an
important process often associated with pathogenesis, it is possible that increased
activity of iron-scavenging pathways could contribute to organism proliferation and
onset of NEC. In addition, the Klebsiella pneumoniae proteome, including a protein
involved in transport of iron, was correlated with NEC. This is intriguing, considering the
prior finding that supplementation of lactoferrin, an abundant breast milk protein
involved in modulating iron levels in the gut, decreases the risk of developing necro-
tizing enterocolitis (22, 23). Overall, these findings indicate that fine-scale, species-
specific proteins are important for understanding disease onset. Although the microbial
community and specific microbial proteins were correlated with NEC, no individual
organism or protein was significantly more abundant in all cases. This finding supports
the hypothesis that NEC is a multifaceted disease with multiple routes that lead to
onset.

Although species-specific proteome profiles were correlated with community com-
position, they were largely infant specific. This is an interesting observation because it
implies feedback between human physiological conditions in the gut, which likely vary
substantially from infant to infant and over time, and microbiome function.

MATERIALS AND METHODS
Sample collection and metagenome sequencing. Samples were collected, processed for metag-

enome sequencing, and sequenced as part of three prior studies (accession numbers are provided in
File S1a in Data Set S1 in the supplemental material) (3, 4, 20). Stool samples were collected from infants
and stored at �80°C. DNA was extracted from frozen fecal samples using a Mo Bio PowerSoil DNA
isolation kit, with modifications (4). DNA libraries were sequenced on an Illumina HiSeq instrument for
100 or 150 cycles (Illumina, San Diego, CA). All samples were collected with parental consent.

Metagenome assembly and genome binning. We reassembled and analyzed metagenomes
generated as part of a prior study, referred to as NIH1 (4). The data were processed in a manner
consistent with the two other prior studies analyzed, referred to as NIH2 (20) and NIH3 (3). All raw
sequencing reads were trimmed using Sickle (https://github.com/najoshi/sickle). Each metagenome was
assembled separately using IDBA_UD (24). Open reading frames (ORFs) were predicted using Prodigal
(25) with the option to run in metagenome mode. Predicted protein sequences were annotated based
on USEARCH (– ublast) (26, 27) searches against UniProt (28), UniRef100 (29), and KEGG (30, 31). Scaffold
coverage was calculated by mapping reads to the assembly using Bowtie2 (32) with default parameters
for paired reads.

Scaffolds from NIH1 infants were binned to genomes using emergent self-organizing maps (ESOMs)
generated based on time-series abundance profiles (15, 33). Reads from every sample were indepen-
dently mapped to every assembly using SNAP (34), and the resulting coverage data were combined.
Coverage was calculated over nonoverlapping 3 KBp windows. Coverage values were normalized by
sample first, and then the values for each scaffold fragment were normalized from 0 to 1. Combining
coverage data from scaffolds assembled from different samples prior to normalization made it possible
to generate a single ESOM map for binning genomes assembled independently from each sample.
ESOMs were trained for 10 epochs using the Somoclu algorithm (35) with the option to initialize the
codebook using principal-component analysis (PCA). Genomes were binned by manually selecting data
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points on the ESOM map using Databionics ESOM Tools (36). Binning was aided by coloring scaffold
fragments on the map based on BLAST (37) hits to the genomes assembled in the prior study.

As part of the NIH2 and NIH3 studies, scaffolds were binned based on their GC content, DNA
sequence coverage, and taxonomic affiliation using ggKbase tools (ggkbase.berkeley.edu). Genome bins
from all three data sets were classified based on the consensus of taxonomic assignments for predicted
protein sequences. Genome completeness and contamination were estimated for all genomes using
CheckM with the taxonomy_wf option (38). Genomes with extra single-copy genes, but with �175
fragments/Mbp (normalized for contamination) that were estimated to be �75% complete, were
manually curated based on scaffold GC content and coverage.

Clustering genomes into subspecies groups. Genomes were clustered into subspecies groups
based on sharing �98% average nucleotide identity (ANI), as estimated by MASH (39). Representative
genomes were selected for each cluster as the largest genome with the highest expected completeness
and smallest amount of contamination. Genomes were classified based on the lowest possible consensus
of taxonomic assignments for predicted protein sequences.

Taxonomic assignments for representative genomes were checked manually based on hits to
ribosomal protein S3 or on visual inspection of protein taxonomic assignments. In order to identify cases
in which the same bacterial strain was present in multiple samples, subspecies groups were further
analyzed with the ANIm algorithm (40) implemented in dRep (41).

Measuring microbial community abundance and replication rates. In order to achieve accurate
abundance and replication rate measurements from read mapping, databases of representative ge-
nomes were created for each sample. Each database was constructed in order to include a representative
genome from important subspecies groups. Priority was given to high-quality draft genome sequences
reconstructed from the same sample. Genomes were classified as high-quality drafts based on the
requirements for iRep replication rate analysis (https://github.com/christophertbrown/iRep): �75% com-
plete, �2.5% contamination, and �175 scaffolds per Mbp of sequence (21). Genomes were selected to
represent subspecies groups using the following priority scheme: (i) high-quality draft genome assem-
bled from the same sample, (ii) high-quality draft genome from the same infant, (iii) high-quality draft
genome representative of subspecies group from any infant (if group had �5 representatives), and (iv)
best genome from infant (if a genome was available). iRep was conducted using reads that mapped to
genome sequences with �1 mismatch per read sequence. In cases where iRep values were �3, coverage
plots were inspected and values were removed if there was evidence of strain variation.

We considered a bacterial subspecies to be present in a sample if �97% of the genome was covered
by an average of �2 reads. Abundance and iRep measurements were compared across samples by
linking sample-specific representative genomes to subspecies groups. Relative abundance measure-
ments for each subspecies group were calculated by converting DNA sequencing coverage values to a
percentage. UniFrac (42) analysis was conducted based on rarefied abundance data, and a tree was
constructed based on pairwise genome ANI values measured using MASH (-ms 5000000).

Metaproteomics analysis. Metaproteomics sequencing was conducted on 0.3 g of stool as previ-
ously described (18). Each sample was suspended in 10 ml cold phosphate-buffered saline. Samples were
filtered through a 20-�m-pore-size filter to enrich for microbial cells and proteins. Microbial cells were
collected by centrifugation, boiled in 4% sodium dodecyl sulfate for 5 min, and sonicated to lyse cells.
The resulting protein extract was precipitated with 20% trichloroacetic acid at �80°C overnight. The
protein pellet was washed with ice-cold acetone, solubilized in 8 M urea, and reduced with 5 mM
dithiothreitol, and cysteines were blocked with 20 mM iodoacetamide. Then, sequencing-grade trypsin
was used to digest the proteins into peptides. Proteolyzed peptides were then salted and acidified by
adjusting the sample to 200 mM NaCl– 0.1% formic acid followed by filtration through a 10-kDa-cutoff
spin column filter to collect tryptic peptides.

Peptides were quantified by bicinchoninic acid (BCA) assay, and 50 �g of peptides of each sample
was analyzed via the use of a two-dimensional nanospray liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) system and an LTQ-Orbitrap Elite mass spectrometer (Thermo Scientific). Each
peptide mixture was loaded onto a biphasic back column containing both strong-cation exchange and
reverse-phase resins (C18). As previously described, loaded peptides were separated and analyzed using
an 11-salt-pulse MudPIT protocol over a 22-h period (43). Mass spectra were acquired in data-dependent
mode with following parameters: full scans were acquired at 30-K resolution (1 microscan) in the
Orbitrap, followed by collision-induced dissociation (CID) fragmentation of the 20 most abundant ions (1
microscan). Charge state screening and monoisotopic precursor selection were enabled. Unassigned
charges and charges with a state of �1 were rejected. Dynamic exclusion was enabled with a mass
exclusion width of 10 ppm and exclusion duration of 30 s. Two technical replicates were conducted for
each sample.

Protein databases were generated for each infant from protein sequences predicted from assembled
metagenomes. The database also included human protein sequences (NCBI Refseq_2011), common
contaminants, and reverse protein sequences, which were used to control the false-discovery rate (FDR).
Collected MS/MS spectra were matched to peptides using MyriMatch v2.1 (44), filtered, and assembled
into proteins using IDPicker v3.0 (45). All searches included the following peptide modifications: a static
cysteine modification (�57.02 Da), an N-terminal dynamic carbamylation modification (�43.00 Da), and
a dynamic oxidation modification (�15.99). A maximum 2% peptide spectrum match level FDR and a
minimum of two distinct peptides per protein were applied to achieve confident peptide identifications
(FDR of �1%). To alleviate the ambiguity associated with shared peptides, proteins were clustered into
protein groups by 100% identity for microbial proteins and 90% amino acid sequence identity for human
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proteins using USEARCH (26). Spectral counts were balanced between shared proteins, and proteins were
considered to be present if �2 unique peptides were identified.

Identification of putative protein families. Putative protein families were identified in order to
track the presence and abundance of different protein types across samples. ORFs were preclustered
at 95% identity using USEARCH (-cluster_smallmem -target_cov 0.50 -query_cov 0.95 -id 0.95) first,
and then all-versus-all protein searches were conducted (– ublast -evalue 10e-10 -strand both).
Protein families were delineated from within the all-versus-all network graph using the MCL
clustering algorithm (-I 2 -te 10) (46). The most common annotation observed across all protein
sequences in the group was selected as the annotation for the putative protein family. Proteins were
also grouped based on sharing 97% amino acid identity using USEARCH (-cluster_smallmem
-target_cov 0.50 -query_cov 0.95 -id 0.97).

Tracking human and bacterial protein abundances. Human and bacterial protein abundances
were normalized using the weighted trimmed mean method from EdgeR (47). Species-specific proteomic
profiles were normalized as the percentage of total balanced spectral counts.

Sample clustering and statistical analyses. Sample clustering was conducted based on microbial
community abundance and iRep profiles and on bacterial protein family abundance profiles. In each
case, the number of clusters was determined using the gap statistic (48), and then samples were grouped
into the appropriate number of clusters using hierarchical clustering (average linkage method). Microbial
community data were clustered based on weighted UniFrac distances, and protein data were clustered
using Bray-Curtis distance. EdgeR was used to calculate statistically significant differences between
conditions using quasi-likelihood linear modeling (glmQLFTest).
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