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Basophils play a key role in the orientation of immune responses. Though the interaction of
SARS-CoV-2 with various immune cells has been relatively well studied, the response of
basophils to this pandemic virus is not characterized yet. In this study, we report that
SARS-CoV-2 induces cytokine responses and in particular IL-13, in both resting and IL-3
primed basophils. The response was prominent under IL-3 primed condition. However,
either SARS-CoV-2 or SARS-CoV-2-infected epithelial cells did not alter the expression of
surface markers associated with the activation of basophils, such as CD69, CD13 and/or
degranulation marker CD107a. We also validate that human basophils are not permissive
to SARS-CoV-2 replication. Though increased expression of immune checkpoint
molecule PD-L1 has been reported on the basophils from COVID-19 patients, we
observed that SARS-CoV-2 does not induce PD-L1 on the basophils. Our data
suggest that basophil cytokine responses to SARS-CoV-2 might help in reducing the
inflammation and also to promote antibody responses to the virus.
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INTRODUCTION

The current COVID-19 pandemic, caused by the new severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), presents an unprecedented danger to global health systems, with
over 5.2 million confirmed fatalities (10th December 2021) (1). Large number of studies have
dissected the spectrum of innate and adaptive immune responses in COVID-19 patients and their
role in the immunopathogenesis of the disease (2–7).

Basophils are rare immune cells. In addition to mediating the protection against helminth
infection, basophils are well known for their role in the pathogenesis of various allergic
inflammatory diseases of respiratory tract, gastro-intestinal tract and skin (8–10). A longitudinal
systems-level analyses of immune cells from the blood indicates that basophils are depleted during
acute and severe phases of COVID-19 (2) and in line with the established fact that basophils regulate
T and B cell responses, a correlation between anti-RBD (receptor-binding domain) IgG titers and
basophil number in the circulation has been observed (2). In addition, basophils also displayed an
activated phenotype in COVID-19 patients (11). However, the direct response of human basophils
to SARS-CoV-2 remains unexplored.
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In this study, we have investigated the response of human
basophils to SARS-CoV-2 infection. We found that SARS-CoV-2
induces IL-4 and IL-13 cytokines both in resting and IL-3-
primed basophils without modifying the expression of surface
markers including the checkpoint molecule PD-L1. In fact, PD-
L1 expression was at basal level. Our data indicate that activation
of basophils by SARS-CoV-2 might support Th2 and antibody
responses to the virus.
MATERIALS AND METHODS

Reagents and Antibodies
For flow cytometry, the following fluorochrome-conjugated
monoclonal antibodies were used. BD Biosciences (Le Pont de
Claix, France): CD13-APC (Clone: WM15), CD69-APC/Cy7
(Clone: FN50), CD274 (PD-L1)-FITC (Clone: MIH1); Miltenyi
Biotec: FcϵRIa-PE (Clone: CRA-1); eBioscience (Paris, France):
and fixable viability dye eFluor 506. Biolegend (Amsterdam,
Netherlands): CD107a-BV421 (clone H4A3). IL-3 was from
ImmunoTools (Friesoythe, Germany).

Cell Lines
Vero E6 (African green monkey kidney epithelial cells, ATCC,
CRL-1586) was maintained in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum (FBS),
1% penicillin-streptomycin (PS) (5 units/mL penicillin, and 5 mg/
mL streptomycin). Caco-2 (Human colon epithelial cells, ATCC,
HTB-37) was maintained in DMEM containing 20% FBS, 1%
penicillin-streptomycin. All cell lines were cultured at 37°C,
5% CO2.

Virus Strains
The primary stra in BetaCoV/France/IDF0372/2020
(EPI_ISL_410720 (GISAID ID); wild-type strain) was supplied
by the National Reference Centre for Respiratory Viruses hosted
by Institut Pasteur (Paris, France) and headed by Dr. Sylvie van
der Werf, and the human sample was isolated and provided by
Drs. Xavier Lescure, Yazdan Yazdanpanah from the Bichat
Hospital, Paris.

Virus Production
Viral stocks were produced using Vero E6 in DMEM without
FBS with a multiplicity of infection (MOI) 10-3 of the virus stock.
After 1 h incubation at 37°C under 5% CO2, all the medium used
for infection was removed before adding fresh DMEM
containing 2% FBS, 1% PS. Cells were incubated for further
72 h at 37°C, 5% CO2.

Virus Titration
Viral titers were assessed by plaque assay in 24-well plates on
Vero E6 cells (1.5x105 cells/well) in DMEM supplemented with
10% FBS and 1% penicillin-streptomycin. Ten-fold serial
dilutions in DMEM without FBS and 1% PS were used for the
titration. After 1 h of incubation at 37°C, 5% CO2, the medium
was replaced by overlaying the cells with carboxymethyl cellulose
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CMC/DMEM with 2% FBS (vol/vol). After 72 h of incubation,
the CMC/DMEM was removed and a mixture of crystal violet/
ethanol/formaldehyde was added for 30 min at room
temperature. Experiments with live SARS-CoV-2 were
performed according to Institut Pasteur guidelines for
Biosafety Level 3 work.

Purification of Basophils
The buffy coats of the healthy donors (Centre Trinité,
L’Établissement Français du Sang, Paris; EFS-INSERM ethical
committee permission 18/EFS/041) were used to isolate
peripheral blood mononuclear cells (PBMCs) by Ficoll density
gradient centrifugation. Basophils were isolated from the PBMCs
by negative selection using Basophil Isolation Kit II (Miltenyi
Biotec, Paris, France).

Basophil Infection
Freshly isolated basophils were plated in a 96-well plate at a
concentration of 0.1x106 cells/100 µl/well without FBS, and
directly infected with the SARS-CoV-2 (primary strain
IDF0372) at a MOI of one. Non-infected cells were used as a
control. In some conditions, basophils were primed with IL-3 (20
ng/ml) along with infection. Vero E6 cells were used as a control
of infection. After 1 h, the medium was replaced by fresh X-Vivo
medium and the cells were further incubated for 24 h at 37°C, 5%
CO2. After 24 h of culture, supernatants were collected and
stored at -80°C for subsequent cytokine quantification. The cells
were processed for surface staining of various markers, such as
FcϵR1, CD107a, CD13, CD69, and PD-L1. The cells were fixed
with 4% paraformaldehyde and were acquired using LSR II (BD
Biosciences). The data were analyzed by BD FACS DIVA and
FlowJo software.

Coculture of Basophils With Virus
Infected Caco-2
Human Caco-2 cells were plated a day before in 96-well plates.
Cells were infected in DMEMwithout FBS with the SARS-CoV-2
primary strain IDF0372 at a MOI of one. After 1 h, the medium
was replaced by fresh DMEM medium containing 2% FBS, 1%
PS and cells were incubated at 37°C, 5% CO2. After 24 h,
basophils (0.1x106 cells/100 µl/well) were added on the top of
infected Caco-2 (5x104 cells/100 µl/well). The basophils were
assessed for the expression of various surface markers after 24 h.

ELISA
Cell culture supernatants were inactivated with Triton X-100 1%
(v/v) for 2 h at room temperature. The virus inactivated
supernatants were analyzed for the cytokines, such as IL-13
and IL-4 (ELISA Ready-SET-Go, eBioscience).

Statistical Analysis
As highlighted in the figure legends, the experiments were
repeated in several times by using cells from independent
donors. Graphs and Statistical analyses were performed by the
paired Wilcoxon test (for comparison between two groups) or
one-way ANOVA Friedman test with Dunn’s multiple
February 2022 | Volume 13 | Article 838448
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comparisons post-test as indicated using Prism 8 (GraphPad
Software Inc, CA). P < 0.05 was considered significant.
RESULTS

SARS-CoV-2 Induces Limited Activation of
Resting Human Basophils
Basophils play a major role in the pathogenesis of various
respiratory diseases (8–10). Though the phenotype of basophils
was previously analyzed in COVID-19 patients (11), it was not
clear whether the activated basophil phenotype observed in the
COVID-19 patients was due to direct virus stimulation or a
repercussion of inflammatory responses. Therefore, to address
this question, we first evaluated the response of basophils to
SARS-CoV-2 infection. In our study, we isolated basophils from
the healthy donors’ blood and were treated with SARS-CoV-2 for
1 h followed by 24 h incubation. The phenotype of basophils was
analyzed by flow cytometry (Figure 1A). While the expression of
CD13 and CD69 was not modified by SARS-CoV-2, a modest
increase in the median fluorescence intensity of FceRI was
observed on SARS-CoV-2-infected basophils (Figure 1B).
SARS-CoV-2 had no cytopathic effects on the basophils as
either cell yield or viability as analyzed by fixable-viable dye
were not altered.

We analyzed whether SARS-CoV-2 infection induced
cytokine responses in basophils. We found that both IL-4 and
IL-13 cytokines were enhanced upon SARS-CoV-2 stimulation
(Figure 1C) thus confirming SARS-CoV-2 induces activation of
human basophils. These data together indicate that resting
human basophils undergo limited activation by SARS-CoV-2.
Our data also suggest that higher expression of activation
markers reported on basophils from COVID-19 patients was
possibly not due to the direct virus stimulation (11).

SARS-CoV-2 Enhances Cytokine
Production in IL-3 Primed Basophils
Under certain conditions, basophils require prior priming to
undergo activation by stimuli (12). We therefore investigated if
SARS-CoV-2 could induce activation of basophils if they were
primed. Data from various labs including ours have shown that
among various cytokines, IL-3 induces strong priming of human
basophils (12–15). Therefore, we primed the basophils with IL-3
along with SARS-CoV-2 stimulation. Priming with IL-3
enhanced the expression of various surface markers (compared
to unstimulated basophils, Figure 1B) such as CD13 and CD69
(Figures 2A, B). However, SARS-CoV-2 did not alter the
phenotype of IL-3-primed basophils (Figure 2B). Also, SARS-
CoV-2 did not induce degranulation of basophils as the
expression of CD107a, a marker associated with basophil
degranulation, was similar in both the experimental conditions.
We confirmed that basophils either resting or IL-3-primed were
not permissive to SARS-CoV-2 replication (Figure 2C).

Interestingly, SARS-CoV-2 significantly enhanced IL-4 and
IL-13 cytokine production in IL-3 primed basophils (Figure 2D).
Though significant, IL-4 enhancement was marginal compared
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to IL-13, which is not surprising as IL-4 induction in basophils is
dependent on FceRI-mediated signaling (16).

Lack of Basophil Activation by SARS-CoV-2
Infected Epithelial Cells
The entry of SARS-CoV-2 into the cell depends on two receptors,
angiotensin-converting enzyme 2 (ACE2) and type II
transmembrane serine protease (TMPRSS2), which are
involved in binding to RBD of the Spike (S) protein and
activation of the S protein by proteolytic priming, respectively.
Epithelial cells are the major target of SARS-CoV-2 infection and
several studies have highlighted cross-talk between the epithelial
cells and basophils (17–19). Therefore, we surmised that
epithelial cells infected with SARS-CoV-2 could affect
activation of basophils. Though A549 lung epithelial cells have
been reported to induce activation of human basophils (18), they
lack both ACE2 and TMPRSS2 receptors (20). On the other
hand, human colorectal adenocarcinoma cells (Caco-2 cells)
were reported to express both ACE2 and TMPRSS2 receptors
and support SARS-CoV-2 replication (20). Virus titration
experiments have confirmed that Caco-2 are permissive to
SARS-CoV-2 infection (Figure 3A). However, SARS-CoV-2-
infected Caco-2 cells did not alter either phenotype of
basophils (Figure 3B) or cytokines secreted (Figure 3C).

SARS-CoV-2 Does Not Induce PD-L1 on
the Basophils
Immuno-phenotyping studies have revealed that programmed
death receptor ligand 1 (PD-L1, CD274, B7-H1; family of B7
costimulatory molecule) is dysregulated on monocytes,
neutrophils, and T cells in COVID-19 patients (21). In
addition, an enhanced expression of PD-L1 was also observed
on the peripheral blood basophils of severe COVID-19 patients
(11, 22–24), though this observation was not confirmed by
another report (11). Therefore, we investigated the
repercussion of SARS-CoV-2 infection on the expression of
PD-L1 on the basophils at 24 h. We found that both resting as
well as SARS-CoV-2-infected basophils lacked the expression of
PD-L1 (Figure 4A). Similar results were also obtained with IL-3-
primed basophils (Figure 4B) and basophils co-cultured with
virus-infected Caco-2 (Figure 4C). Our control experiments
have indicated that the expression of PD-L1 on the basophils
did not differ at 24 and 48 h. These data together suggest that
SARS-CoV-2 does not induce PD-L1 on the basophils and
altered expression of this molecule observed on the basophils
from COVID-19 patients was possibly due to the inflammatory
cytokine responses.
DISCUSSION

Various studies have confirmed the dysregulation of immune
system, particularly cells of the innate immune system and
cytokine storm in severe COVID-19 patients (25). Systems-
level immuno-monitoring of adult COVID-19 patients by
mass-cytometry revealed that polymorphonuclear granulocytes
February 2022 | Volume 13 | Article 838448
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(neutrophils, eosinophils, and basophils) are differentially
regulated in the circulation during infection (2). Both absolute
count and relative frequencies of basophils are decreased in
moderate and severe COVID-19 patients (11, 26). However, in
contrast to neutrophils, basophils are increased from acute to
recovery phase though another cohort reported no difference in
the basophil count in COVID-19 patients during acute phase as
compared to healthy donors (27). An activated phenotype of
basophils was also documented in COVID-19 patients (11)
though the underlying mechanisms are not known. In view of
activation of complement pathway in COVID-19 patients (28–
30) and that human basophils express C5aR and C3aR (31),
Frontiers in Immunology | www.frontiersin.org 4
indirect activation of basophils in COVID-19 patients through
complement components cannot be ruled out. However, direct
or indirect interaction of basophils with SARS-CoV-2 has not
been investigated yet, despite their vital role in the pulmonary
pathologies and regulation of immune responses. The low
frequency of basophils (0.2 to 0.5% of leukocytes) in the
circulation is one of the main limitations for researchers to
study the basophils.

Direct capture of human immunodeficiency virus (HIV)-1 by
basophils has been described (32), though the identity of pattern
recognition receptor (PRR) that mediates virus capture is not
clear (33). Human basophils produce histamine when cells are
A

B

C

FIGURE 1 | Resting human basophils undergo limited activation upon stimulation with SARS-CoV-2. Basophils (0.1x106 cells/100 µl) isolated from PBMCs of
healthy donors were cultured with or without SARS-CoV-2 at a MOI of 1. Cell phenotype was evaluated by flow cytometry after 24 h. (A) Representative histogram
overlays displaying the expression pattern of FcϵR1, CD13 and CD69 on basophils under various experimental conditions. (B) Expression of FcϵR1, CD13 and CD69
on basophils (% positive cells and median fluorescence intensities (MFI), mean ± SD; n = 6 independent donors). (C) The amount (pg/ml) of secreted IL-4 and IL-13
in the cell-free supernatant from the above experiments (mean ± SD, n = 6 independent donors). ns, not significant, *P < 0.05, paired Wilcoxon test.
February 2022 | Volume 13 | Article 838448
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incubated with paramyxoviruses, thus indicating that basophils
have a capacity to respond to virus stimuli (34). In addition,
human basophilic cell line (KU812) has been demonstrated to be
permissive to rhinovirus infection in vitro (35). In view of these
observations and the role of basophils in various respiratory
pathologies, we investigated the cross-talk between SARS-CoV-2
and basophils. Our data suggest that SARS-CoV-2 could induce
partial activation of basophils leading to the secretion of
cytokines, IL-4 and IL-13, both in resting and IL-3-primed
basophils. The effect of SARS-CoV-2 on IL-13 induction was
particularly remarkable in IL-3 primed condition. The
mechanism by which SARS-CoV-2 induces basophil activation
is the subject of future investigation.
Frontiers in Immunology | www.frontiersin.org 5
Previous data have shown inability of SARS-CoV-2 to
replicate in various immune cells (36). Also, proteomic and
genomic data clearly highlighted the absence of ACE2 receptor
on the basophils (37). Therefore, we believe that SARS-CoV-2
could induce basophil activation by signaling through PRR in
coordination with cytokines like IL-3. Activated T cells are the
major source of IL-3 (14, 38, 39) and flow cytometric data
showed that IL-3 in COVID-19 patients is contributed mainly
by CD4+ T cells (40). Of note, low levels of IL-3 in the circulation
of COVID-19 patients is associated with enhanced severity of the
disease and mortality (40). Mechanistically, it was proposed that
IL-3 enhances the recruitment of plasmacytoid dendritic cells
into the airways and hence boosts the anti-viral innate immunity.
A

B

DC

FIGURE 2 | SARS-CoV-2 enhances cytokines in IL-3-primed basophils. Basophils (0.1x106 cells/100 µl) from the healthy donors were primed with IL-3 (20 ng/ml)
along with infection with SARS-CoV-2 at a MOI of 1. Non-infected basophils were used as a control. Cell phenotype was evaluated by flow cytometry after 24 h.
(A) Representative histogram overlays displaying the expression pattern of FcϵR1, CD107a, CD13 and CD69 on basophils under different experimental conditions.
(B) Expression of FcϵR1, CD107a, CD13 and CD69 on the basophils (% positive cells and median fluorescence intensities (MFI), mean ± SD; n = 6 independent
donors). (C) Basophils are not permissive to SARS-CoV-2 replication. Either resting basophils (0.1x106 cells/well/96 well plate) or IL-3-primed basophils were
infected with SARS-CoV-2 (mean ± SD, n=6 independent donors). Viral titers were evaluated after 24 h post-infection. Infected and non-infected Vero E6 cells were
used as controls for the infection (n = 3). (D) The amount (pg/ml) of secreted IL-4 and IL-13 in the cell-free supernatant from the above experiments (mean ± SD,
n = 6 independent donors). ns, not significant, *P < 0.05, paired Wilcoxon test.
February 2022 | Volume 13 | Article 838448
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Our data imply that IL-3 also primes basophils to secrete higher
amounts of cytokines IL-13 and IL-4 in response to virus
stimulation that might help in reducing the inflammation and
also to promote antibody responses to the SARS-CoV-2.

Interaction between the checkpoint molecules programmed
cell death protein PD-1 and PD-L1 plays a key role in
maintaining immune tolerance (41–43). However, immune
Frontiers in Immunology | www.frontiersin.org 6
exhaustion by signaling through checkpoint molecules could
prevent effective clearance of the pathogens leading to
exacerbated immune responses (44, 45). PD-L1 and PD-1
interaction also supports regulatory T cell responses (46–50).
Of note, PD-L1 expression was significantly higher in a group of
severe COVID-19 patients as compared to milder patients and
was positively correlated with the WHO and Sequential Organ
A

B

C

FIGURE 3 | Lack of basophil activation by SARS-CoV-2 infected epithelial cells. (A) Caco-2 cells permit SARS-CoV-2 replication. Caco-2 cells (1.5x105 cells per
well/24 well plate) in duplicates were infected with SARS-CoV-2 at the MOI of 0.1, 1 and 5. Viral titers were evaluated after 72 h post-infection. Data were presented
as mean ± SD. Infection of Vero E6 cells with SARS-CoV-2 was used as a control. (B, C) Basophils were cultured as follows: basophils alone (0.1x106 cells/100 µl),
basophils (0.1x106 cells/100 µl) + Caco-2 (5x104 cells/100 µl), and basophils + Caco-2 infected with SARS-CoV-2. Cell phenotype was evaluated by flow cytometry
after 24 h. (B) Expression of FcϵR1, CD107a, CD13, CD69 on basophils (% positive cells and/or median fluorescence intensities (MFI), mean ± SD; n = 3 independent
donors). (C) The amount (pg/ml) of secreted IL-4 and IL-13 in the cell-free supernatant from the above experiments (mean ± SD, n = 3 independent donors). ns, not
significant, one-way ANOVA Friedman test with Dunn’s multiple comparisons post-test.
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Failure Assessment (SOFA) clinical scores (22). It is likely that
the induced expression of PD-L1 in severe COVID-19 patients
might be responsible for the T cell exhaustion. The trigger that
induces PD-L1 on the basophils from COVID-19 patients is not
known. Our data however suggest that SARS-CoV-2 infection
does not induce PD-L1 on the basophils (51). However, PD-L1
on basophils may not influence the effector CD4+ T cell
responses as basophils lack the features of antigen presenting
cells (52–56). In view of these facts, the significance of basophil-
PD-L1 in the pathogenesis of COVID-19 remains unclear.

SARS-CoV-2 entry is facilitated by the presence of ACE2 and
TMPRSS2 receptors on the host cells. These receptors are highly
expressed by epithelial cells that are present in the lungs and
gastrointestinal tract. Several innate stimuli including epithelial
derived inflammatory cytokines (IL-33, IL-18, Thymic stromal
lymphopoietin, and GM-CSF), growth factors (IL-3, IL-7, TGF-
b, and VEGF) activate the mouse basophils (57). Also, airway
epithelial cell line A549 has been reported to induce activation of
human basophils (18). Whether other epithelial cells also display
similar capacity to induce basophil activation is not known. Our
results however suggest that Caco-2 cells lack the ability to
induce basophil activation. Primary lung epithelial cells need to
be used to examine the cross-talk between SARS-CoV-2-infected
airway epithelial cells and basophils, and is the limitation of
our study.
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