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Abstract
The skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by
restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here,
we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein. It is highly
expressed in the epithelium and binds to the minor capsid protein L2 and the DNA of human papillomaviruses (HPV), which
are the primary causative agents of cervical cancer and other tumors. The early promoter activity and early gene expression
of the oncogenic HPV types 16 and 18 is potently silenced by MYPOP. Cellular MYPOP-depletion relieves the restriction of
HPV16 infection, demonstrating that MYPOP acts as a restriction factor. Interestingly, we found that MYPOP protein levels
are significantly reduced in diverse HPV-transformed cell lines and in HPV-induced cervical cancer. Decades ago it became
clear that the early oncoproteins E6 and E7 cooperate to immortalize keratinocytes by promoting degradation of tumor
suppressor proteins. Our findings suggest that E7 stimulates MYPOP degradation. Moreover, overexpression of MYPOP
blocks colony formation of HPV and non-virally transformed keratinocytes, suggesting that MYPOP exhibits tumor
suppressor properties.

Introduction

The physical and chemical barrier of the skin mediates the
first line of defense against invading pathogens. This is
additionally supported by the cellular innate immunity [1].
Here, so-called restriction factors detect invading viruses and

restrict the viral replication cycle at different stages [1, 2]. For
HPV, it is known that a microwound is required to overcome
the physical barrier function of the skin to gain access to
mitotically active basal cells of the epithelium [3, 4]. How-
ever, only a limited number of cellular factors that restrict the
viral replication cycle in these cells are identified so far [1, 5].

Human papillomaviruses are small DNA viruses asso-
ciated with a wide range of benign and malignant epithelial
tumors. These viruses account for 5.2% of the worldwide
cancer burden [6]. Persistent infections with certain HPV
types are the main causative agents for cervical cancer (e.g.
HPV16 and 18) and genital warts (e.g. HPV6 and 11) [7, 8].
The virus consists of two capsid proteins comprising the
major capsid protein L1 and the minor capsid protein L2,
and a double-stranded DNA genome. The genome is sub-
divided into an early region, a late region, and a noncoding
region, the so-called long control region (LCR) or upstream
regulatory region [3, 4]. The LCR encompasses about
850 bp containing the major transcription start site of the
early promoter, enhancer, and silencer elements. Regulation
of early gene expression including expression of the onco-
genes E6 and E7 is mediated by binding of cellular and viral
factors to the LCR [9–15].
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The viral replication cycle starts with virus entry via
endocytosis [16–18]. After internalization, the capsid is dis-
assembled in endosomes [19] and the multifunctional L2
protein directs the viral DNA (vDNA) into the host cell
nucleus [20–24]. Once infection is established in basal kera-
tinocytes, viral transcription and replication is regulated by the
counterbalance of activating and repressing host and viral
proteins [5, 7, 10, 25, 26]. The low basal activity of the HPV
LCR and control of the early HPV genes facilitates persistent
infection [5, 27]. Expression of the early viral oncogenes
results in increased cell division by inactivating key cellular
players, which are involved in the regulation of apoptosis and
cell cycle control [28]. Uncontrolled oncogene expression
eventually leads to tumor progression [29–32]. Studies in
recent years have uncovered a number of proteins that con-
tribute to intrinsic cellular immunity and tumor suppression by
HPV early gene restriction [3, 5, 7]. However, further inves-
tigations are needed to identify novel antiviral proteins and to
better understand the counterbalance between viral proteins
and cellular restriction factors and/or tumor suppressors.

In this study, we identified the so far unknown human
Myb-related transcription factor (TF), MYPOP, as a novel
interaction partner of the minor capsid protein L2 and the
viral DNA. It was shown that MYPOP’s orthologous
murine protein p42POP is able to repress the consensus Myb
recognition element (MRE) when introduced into the
minimal herpesvirus thymidine kinase promoter [33]. We
uncovered that MYPOP acts as a restriction factor for the
oncogenic HPV types 16 and 18 as it represses the LCR
activity of both viruses. Furthermore, MYPOP mediates
reduction of HPV16 E6*I and E1^E4 early gene transcripts.
Interestingly, total MYPOP amounts are strongly reduced in
diverse HPV-transformed cell lines and cervical cancer,
suggesting MYPOP downregulation as a precondition for
oncogene expression, which is required for proliferation and
finally tumor progression. Accordingly, overexpression of
MYPOP resulted in a substantial decrease in the number of
HPV16- or HPV18-immortalized and non-virally trans-
formed keratinocytes, indicating that MYPOP is able to
block proliferation of tumor cells.

Fig. 1 MYPOP forms a complex with viral components and represses
the LCR of oncogenic HPV types. a–e MYPOP is a novel interaction
partner of the minor capsid protein L2 and the viral DNA. a Yeast
strain L40 expressing a negative control (LexA-lamin), a positive
control (LexA-Fos2), or the bait LexA-L2 280-473 fusion construct
was transformed with corresponding prey construct B42-HA-MYPOP.
Transformants were tested for the prototrophic marker histidine (−His)
reporting bait–prey interaction. b HaCaT cells were co-transfected
with MYPOP-GFP (green) and L2 (magenta). c HaCaTs were co-
transfected with pcDNA3.1 or HPV16 L2 and FLAG-tagged MYPOP
or empty FLAG vector as indicated. Western blot of lysates show
protein expression. Immune complexes were precipitated and detected
with a specific FLAG or L2 antibody. MYPOP shows a migration
behavior of about 60 kDa in the SDS-PAGE. d HaCaTs were trans-
fected with FLAG-MYPOP and then incubated with EdU-labeled
HPV16 LCR PsV for additional 24 h. Cells were processed for
detection of EdU-labeled vDNA (green), FLAG-MYPOP using
polyclonal rabbit FLAG (magenta) and L2 (blue). e Chromatin from
HPV18-transformed HeLa cells was prepared after transfection with
FLAG-MYPOP, FLAG-MYPOP and HPV16 L2, or control FLAG
vector as indicated. Binding of MYPOP to the integrated LCR of
HPV18 was analyzed by ChIP using a FLAG-specific or control
mouse IgG antibody. Control ChIP with anti-FLAG antibody was also
performed with the lysate of control-transfected cells. Precipitated and
purified DNA served as a template for qPCR using HPV18 LCR
primers. Part of the total chromatin was used as input. Changes were
expressed as the ratio of immunoprecipitated chromatin target from
MYPOP-transfected to control-transfected cells enriched with respect
to input chromatin. The experiment was repeated three times and
shown is one representative experiment. Data (n= 9) were analyzed
using Welch two-tailed t-test: p= 0.00297, t=−4.1924, dF= 8.0695
(Control IgG–Anti-FLAG w/o MYPOP), p= 5.187 × 10−11, t=
−46.091, dF= 8.0191 (Anti-FLAG w/o MYPOP–Anti-FLAG w/
MYPOP) or two-tailed unpaired t-test p= 2.2 × 10−16, t=−38.898,
dF= 16 (Control IgG–Anti-FLAG w/MYPOP) or Welch two-tailed t-
test p= 6.222E−7, t=−12.056, dF= 9.1745 (Anti-FLAG w/
MYPOP–Anti-FLAG w/MYPOP+ L2). f–j L2 represses the LCR
activity of oncogenic HPV types. f HaCaTs were transfected with

0.5 µg pGL4.20 luciferase reporter vector containing the long control
region of HPV16. The cells were co-transfected with either control
vector, FLAG-MYPOP, L2, or FLAG-MYPOP together with L2 as
indicated and lysed to monitor protein expression by western blot (left
panel). Luciferase activity was measured and normalized to lactate
dehydrogenase (LDH) activity (right panel). Control-transfected cells
were set to 100% and data (n= 12) were analyzed using two-tailed
unpaired t-test: p= 6.74 × 10−13, t= 14.766, dF= 22
(Control–MYPOP), p= 1.103 × 10−10, t= 11.375, dF= 22
(Control–L2) or Welch two-tailed t-test p= 1.866 × 10−13, t= 21.256,
dF= 16.566 (Control–MYPOP+ L2) or two-tailed unpaired t-test p
= 1.023 × 10−7, t= 7.7372, dF= 22 (MYPOP–MYPOP+ L2). g
HaCaTs were transfected with 0.5 µg pGL4.20 luciferase reporter
vector containing the long control region of HPV16 and co-transfected
with increasing amounts of FLAG-MYPOP as indicated. MYPOP
expression is shown by western blot (left panel). Luciferase activity
was measured as in f (right panel). The values obtained from two
independent experiments are given as mean ± SD and the mean for
pGL4.20 HPV16 LCR with empty FLAG vector was set to 100%.
Data (n= 7) were analyzed using two-tailed unpaired t-test: p=
0.1257, t= 1.6461, dF= 12 (0.01 µg), p= 0.3287, t= 1.0182, dF=
12 (0.05 µg), p= 0.02428, t=−2.576, dF= 12 (0.1 µg) or Welch
two-tailed t-test: p= 7.447 × 10−5, t= 7.4882, dF= 7.9069 (0.5 µg). h
HaCaTs were co-transfected with pGL4.20 HPV11 LCR (11 LCR) or
HPV18 LCR (18 LCR) together with control FLAG vector or FLAG-
MYPOP. Influence of MYPOP on LCR was measured as above. The
pGL4.20 11 LCR with empty FLAG vector or pGL4.20 18 LCR with
empty FLAG vector was set to 100%. Data were analyzed using two-
tailed unpaired t-test: p= 0.01191, t=−2.7971, dF= 18 (11 LCR, n
= 9–11) or Welch two-tailed t-test p= 2.005 × 10−6, t= 8.7196, dF=
11.565 (18 LCR, n= 11). The values obtained from three independent
experiments are given as boxplots (e, f, h). Monoclonal mouse anti-
body L2-1 and monoclonal mouse FLAG antibody was used (b, c, f,
g). Due to clarity and conciseness the western blot images are cropped
(c, f, g). Scale bar= 10 µm and nuclei are shown with dotted lines (b,
d). The lower panel shows β-actin as a loading control (f, g). *p ≤ 0.05,
**p ≤ 0.01; ***p ≤ 0.001 (e–h)

m

The Myb-related protein MYPOP is a novel intrinsic host restriction factor of oncogenic human. . . 6277



Results and discussion

MYPOP is a novel interaction partner of the HPV16
L2 protein and the viral DNA

During HPV entry, the minor capsid protein L2 accom-
panies the viral DNA into the host cell nucleus and is
accessible to cytoplasmic and nuclear proteins [20, 23, 24].
Using a Y2H screening approach, we identified novel
interaction partners of the HPV16 L2 protein [14, 34–36].

Among others, the Myb-related TF MYPOP was discovered
(Fig. 1a) [35]. As this is the first study of human MYPOP,
we characterized endogenous, overexpressed and purified
MYPOP in immunofluorescence and western blot (WB)
analyses (Suppl. Figure 1). MYPOP showed nuclear and
cytoplasmic localization and WB bands of about 60 kDa.
Co-localization and interaction analyses verified interaction
of L2 and MYPOP (Fig. 1b–d). Moreover, we detected
association of the incoming virally transduced DNA with
the TF MYPOP in the nucleus of infected cells (Fig. 1d).
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Chromatin immunoprecipitation (ChIP) studies in HeLa
cells, which are transformed by oncogenic HPV and harbor
the integrated viral genome within the host cell genome [37]
revealed binding of MYPOP to the LCR of the HPV genome
(Fig. 1e). The interaction of the TF to the HPV LCR was
additionally strengthened in the presence of L2. It has been
shown that only L2 is accessible to cytoplasmic or nuclear
proteins during virus entry and that the viral genome remains
protected in a vesicular structure until the loss of the limiting
membrane in the newly formed nucleus [38, 39]. Our finding
suggests that MYPOP senses incoming HPV16 by binding
to the capsid protein L2 and forms a tripartite complex with
the viral LCR to modulate viral gene expression.

MYPOP silences the LCR of oncogenic HPV types

Next, we investigated whether MYPOP directly regulates
the activity of the HPV16 LCR by performing promoter-
reporter gene assays. Non-virally transformed HaCaT ker-
atinocytes were co-transfected with the promoter-reporter

plasmid pGL4.20 containing the HPV16 long control region
(pGL4.20 HPV16 LCR), MYPOP and/or L2 expression
vectors (Fig. 1f). Measurements of the LCR activity (ana-
lyzed by relative luciferase activity) clearly demonstrated
that MYPOP acts as transcriptional repressor of the HPV16
LCR. Again, L2 significantly enhanced the repressive effect
(Fig. 1f). Transfection of increasing amounts of MYPOP
revealed that MYPOP functions in a concentration-
dependent manner (Fig. 1g). Likewise. earlier studies on
p42POP had showed that the MYPOP’s orthologous murine
protein represses transcription [33], suggesting a highly
conserved mechanism of gene regulation.

Direct binding of Myb TFs to viral and cellular promoters
is a well-characterized interaction of the DNA-binding
domain (DBD) with the MRE [40–42]. Our analyses using
MYPOP mutants demonstrated that the predicted DBD of
MYPOP is able and sufficient to repress the HPV16 LCR
while; the C-terminal part of MYPOP was inactive (Suppl.
Figure 2a–c). The MRE comprises a 5′-AAC-3′ core
sequence, flanked by a pyrimidine at the 5′-end, and a gua-
nine or thymine at the 3′-end [40, 41, 43]. We identified seven
putative binding sites (PyAACG/T) in the LCR of HPV16
(Suppl. Figure 2d). Using different LCR constructs, we found
that one binding motif located 85 bp upstream of the tran-
scription start site is sufficient to silence the LCR activity,
whereas removal of all putative binding sites led to a loss of
MYPOP-mediated LCR repression (Suppl. Figure 2e).

Next, we uncovered that the MYPOP-mediated silencing
of the LCR is not limited to HPV16, but was also observed
for the high-risk HPV18 LCR, which comprises three
MREs (Fig. 1h and Suppl. Figure 2f). By contrast, the low-
risk type HPV11 was not repressed although it exhibits one
putative MRE. This sequence may not function as a
MYPOP binding site or the long distance of the MRE to the
p1 promoter/TATA box may explain the MYPOP resistance
of HPV11. In line with this observation, it has been shown
that regions located more at the 5′-end of the HPV11 LCR
play no or minor roles on transcriptional activity [44]. One
might speculate that the observed sensitivity of high-risk
HPV to MYPOP and, therefore, reduced early gene
expression supports prolonged persistence. Time to clear-
ance is 12–18 months for high-risk HPV and 4–9 months
for low-risk HPV [8].

MYPOP restricts HPV16 PsV infection

The repressive effect of MYPOP on the transfected HPV
LCR was extended to incoming histone associated HPV-
transduced DNA. For this study, we replaced the viral
genome by the pGL4.20 HPV16 LCR plasmid, thereby
generating HPV16 LCR PsV. Next, we reduced the endo-
genous MYPOP level in HaCaT cells by RNA interference.
These experiments provided deeper insight into the nature

Fig. 2 MYPOP protein level negatively correlates with HPV16 PsV
infection and early gene expression. a–c MYPOP in HPV16 infection
assay. a HaCaTs were transfected with control siRNA or MYPOP-
specific siRNA #9 for 48 h and then re-transfected for additional 48 h.
Seventy-two hours after initial siRNA transfection, knockdown effi-
ciency of MYPOP was analyzed by western blot (upper panel) or
infected with HPV16 LCR PsV (lower panel). Relative luciferase
activity as measure for infection was assessed 24 h later and normal-
ized to lactate dehydrogenase (LDH) measurements. Control siRNA-
treated cells were set to 100% and data (n= 16) were analyzed using
Wilcoxon rank sum test: p= 0.0004666, W= 39 (#9). b HaCaT cells
were transduced with lentiviruses containing MYPOP-specific
shRNAs. Knockdown efficiency (upper panel) and relative luciferase
activity (lower panel) were measured as in a. Control shRNA-treated
cells were set to 100% and data (n= 8) were analyzed using Welch
two-tailed t-test: p= 0.0003732, t=−6.2553, dF= 7.216 (#1), p=
1.792 × 10−8, t=−19.682, dF= 8.6327 (#2), p= 1.893 × 10−5, t=
−9.4527, dF= 7.5528 (#4). c Western blot analysis of MYPOP
expression levels in HaCaT and NHEK cells (upper panel). HaCaT
and NHEK cells were infected with HPV16 LCR PsV. Luciferase
activity as a measure of infectivity was assessed 24 h later and nor-
malized by LDH measurement. HaCaT cells were set to 100% and data
(n= 11) were analyzed using Wilcoxon rank sum test p= 2.835 × 10
−6,W= 121. d, eMYPOP in HPV16 early gene expression. d SCC-13
cells were co-transfected with re-circularized HPV16 wt (114/B) and
FLAG-MYPOP or empty FLAG vector. After 48 h of transfection,
total cellular RNA was isolated and analyzed for HPV16 E6*I spliced
early transcripts. Control-transfected cells were set to 100% and data
(n= 6) were analyzed using two-tailed unpaired t-test: p= 1.067 × 10
−7, t= 13.348, dF= 10 (E6*I). e Experiments were performed as
described for panel d, but analyzed for HPV16 E1^E4 spliced early
transcripts. Control-transfected cells were set to 100% and data (n= 6)
were analyzed using two-tailed unpaired t-test: p= 7.417 × 10−6, t=
8.4307, dF= 10 (E1^E4). The values obtained from three (or two for
b) independent experiments are given as boxplots (a–c lower panel, d,
e). Detection of endogenous MYPOP was performed using polyclonal
MYPOP antibody (Abcam) (a–c). Due to clarity and conciseness the
western blot images are cropped (a–c upper panel). The lower panel
shows β-actin as a loading control (a, c). ***p ≤ 0.001 (a–e)
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of the TF (Fig. 2 and Suppl. Figure 3). First, four different
MYPOP-specific siRNAs led to a reduction of MYPOP
mRNA levels without affecting protein amounts and

infection when tested 48 h after siRNA transfection (Suppl.
Figure 3). Extended incubation times to 4 or 7 days with
MYPOP-specific siRNA combined with re-transfection of
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the siRNA after 48 h caused a reduction of the endogenous
MYPOP protein (Fig. 2a). These findings indicate an
unexpected high stability and low turnover rate of the TF
and might explain why MYPOP was not detected earlier by
siRNA screening. To further increase knockdown effi-
ciency, we used a lentiviral RNAi system. Incubation times
of more than 1 week were considerably more successful: all
shRNA constructs led to a decrease of MYPOP protein and
infectivity was increased by 300–400% compared to control
shRNA-treated cells (Fig. 2b), corroborating the antiviral
activity of MYPOP on incoming viral DNA.

To verify the negative correlation of the MYPOP expres-
sion level and HPV16 PsV infection in different cells, we
tested total cellular MYPOP amounts and infection effi-
ciencies of HaCaT cells and primary keratinocytes (NHEK)
(Fig. 2c). These results uncovered higher MYPOP expression
levels and lower infection rates of NHEK when compared to
HaCaT cells. Our data again provide strong evidence that

MYPOP limits the infection of human skin cells by HPV16
and acts as a viral restriction factor. Interactions of this factor
with other viral promoters may be important in mediating
intrinsic immunity against additional viruses.

MYPOP potently silences HPV16 early gene
expression

As our MYPOP-based ChIP and promoter studies demon-
strated binding to the HPV LCR and repression of the LCR
activity, we controlled the effect of MYPOP in the whole
HPV genome context on the expression of viral early genes.
We co-transfected squamous cell carcinoma cells SCC-13
[45] with HPV16 wt (isolate 114B) and FLAG-MYPOP or
empty FLAG vector. After 48 h, total cellular RNA was
isolated and analyzed for HPV16 E6*I and E1^E4 spliced
early transcripts (Fig. 3a). Measurement of these transcripts
is the standard method to analyze early gene expression of
HPV16 [46–48]. Corroborating our promoter-reporter gene
assays, MYPOP reduced HPV16 early genes transcription.
These findings strongly support the biological relevance of
MYPOP as viral restriction factor. Moreover, the tran-
scriptional suppressor efficiently silences LCR activity even
in the absence of L2 and this finding suggests that MYPOP
may play a role in different steps of the viral replication
cycle, including HPV-induced oncogenesis as the HPV
LCR likewise controls the viral oncogenes E6 and E7.

MYPOP is eliminated in HPV-transformed cells

It has been described that early viral oncoproteins E6 and
E7, which are expressed in HPV-transformed cells, elim-
inate detectable tumor suppressors p53 and pRb, respec-
tively [30]. Interestingly, we uncovered that MYPOP
protein- but not mRNA levels are almost absent in whole
cell lysates of HPV18-transformed HeLa and HPV16-
transformed SiHa and CaSki tumor cell lines [49] when
compared to primary keratinocytes (Fig. 3a). These results
indicate that MYPOP is eliminated in HPV-transformed
tumor cells on a post-transcriptional level. This observation
was further verified by immunohistochemistry of human
cervical carcinoma in situ, where MYPOP expression is
present in the keratinocytes of non-lesional cervical tissue
(Suppl. Figure 4a), whereas MYPOP expression is almost
absent in the carcinoma and only detectable in the non-
transformed peripheral keratinocytes (Fig. 3b).

The HPV16 onco-protein E7 induces downregulation
of MYPOP

The high-risk HPV E6 or E7 oncoproteins are potential
candidates to induce MYPOP downregulation. These proteins
are highly expressed in HPV-induced cancers and possess the

Fig. 3 MYPOP is reduced in HPV-transformed cell lines and cancer
tissue. a Quantification of MYPOP protein and mRNA in primary
keratinocytes (NHEK) and HPV-transformed cells lines HeLa
(HPV18), SiHa, and CaSki (both HPV16). Total cellular mRNA was
analyzed by quantitative real-time PCR (qPCR). NHEK were set to
100% and data (n= 6) were analyzed using two-tailed unpaired t-test:
p= 0.000944, t=−4.6245, dF= 10 (HeLa) or Welch two-tailed t-test
p= 0.01839, t=−3.3236, dF= 5.4495 (SiHa) or two-tailed unpaired
t-test p= 6.653 × 10−5, t= 6.5284, dF= 10 (CaSki). Densitometric
quantification of the western blots (a representative western blot is
shown in the upper panel) was performed with ImageJ software and
relative MYPOP band intensities were normalized to β-actin. NHEK
cells were set to 100% and data (n= 5) were analyzed using Welch
two-tailed t-test p= 9.81 × 10−7, t=−19.968, dF= 6.0255 (HeLa), p
= 9.71 × 10−7, t= 19.949, dF= 6.035 (SiHa), p= 92.11 × 10−7, t=
−17.647, dF= 7.5346 (CaSki). b Expression of MYPOP in human
cervical carcinoma in situ. Human cervical tissue sections were stained
for MYPOP (green). Nuclei were counterstained with Hoechst (blue).
Scale bar= 10 µm. c HaCaTs were transfected with FLAG-MYPOP
without and with 3xHA16E6 as indicated. The cells were lysed to
monitor protein expression by western blot using FLAG and HA
antibody. Densitometric quantification of western blot data from c.
Relative band intensities were assessed by normalizing FLAG-
MYPOP levels (# and $) to the β-actin using ImageJ software. Con-
trol+ FLAG-MYPOP-transfected cells were set to 100% for # and for
$. Data (n= 9) were analyzed using Welch two-tailed t-test: p=
0.1431, t=−1.5807, dF= 10.68 (#) or two-tailed unpaired t-test p=
0.5826, t=−0.56091, dF= 16 ($). d Same as c, but cells were
transfected with FLAG-MYPOP without and with FLAG-HA-HPV16
E7 as indicated. Densitometric quantification of western blot data was
performed as described in c, but FLAG-HA-HPV16 E7. Control+
FLAG-MYPOP-transfected cells were set to 100% for # and for $.
Data (n= 16) were analyzed using two-tailed unpaired t-test: p=
6.714 × 10−5, t= 4.6244, dF= 30 (#), or Welch two-tailed t-test p=
3.645 × 10−9, t= 9.583, dF= 21.241 ($). The values obtained from
three (or six for d) independent experiments are given as boxplots (a,
c, d). Due to clarity and conciseness the western blot images are
cropped (a, c, d) and the lower panel shows β-actin as a loading
control (a, c, d). # represents FLAG-MYPOP of higher molecular
weight; $ represents FLAG-MYPOP of lower molecular weight (c, d);
ns, not significant; **p ≤ 0.01; ***p ≤ 0.001
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ability to target tumor suppressors for degradation [5, 30, 50–
52]. Importantly, our quantitative western blot analyses
demonstrated that overexpression of HPV16 E6 protein had
no effect on MYPOP protein amounts (Fig. 3c), whereas
HPV16 E7 significantly reduced MYPOP expression levels
(Fig. 3d). Together these data provide strong indication that
the absence of MYPOP detected in HPV-transformed tumor
cell lines and in cervical cancer tissues results from the
expression of the papillomaviral oncogene E7.

MYPOP suppresses colony formation of tumor cells

The maintenance of early gene expression is a precondition
for proliferation and survival of HPV-induced cancer cells
[53–55] and seems to be linked to the decreased MYPOP
levels. On the other hand, re-expression of MYPOP might
result in reduced cell growth. We therefore overexpressed

MYPOP in HPV-transformed SiHa and HeLa cells and
tested arrest of proliferation in microscopy analyses or
standard quantitative colony formation assays, as described
previously [56, 57]. Indeed, MYPOP-GFP-expressing cells
displayed altered cell morphology and no tendency to form
colonies (Suppl. Figure 4b). Furthermore, expression of
MYPOP significantly reduced the number of cells measured
by analyzing the area of formed colonies (Fig. 4a, b).
MYPOP and GFP-MYPOP expression displayed compar-
able effects in the colony formation assays. Taken together,
our data provide strong indication that MYPOP act as a
tumor suppressor in HPV-induced cancer.

MYPOP’s repressive activity might be explained by
competition of MYPOP with activating TFs. For c-Myb, it
has been shown earlier that it binds to one MRE in the
HPV16 LCR and activates early gene expression [11].
Therefore, we conclude that c-Myb and MYPOP might be

Fig. 4 MYPOP inhibits colony
formation of HPV-transformed
and non-virally transformed
cells. a–c Cells were transfected
with either MYPOP expression
plasmid or a control plasmid and
selected for 6–12 days with
G418. Colonies of control or
MYPOP-transfected cells were
fixed with methanol and stained
using crystal violet (upper panel
a–c). Plates were quantified
using ImageJ plugin
“ColonyArea” (lower panel a–c)
and values are given as boxplots.
a Shown are representative
image of SiHa cells and the
values obtained from five
independent experiments.
Control-transfected cells were
set to 100%. Data (n= 20) were
analyzed using Wilcoxon rank
sum test p= 1.451 × 10−11, W
= 400. b Shown are
representative image of HeLa
cells and the values obtained
from nine independent
experiments. Control-transfected
cells were set to 100%. Data (n
= 30) were analyzed using
Wilcoxon rank sum test p=
2.2 × 10−16, W= 899. c Shown
are representative image of
HaCaT cells and the values
obtained from six independent
experiments. Control-transfected
cells were set to 100%. Data (n
= 22) were analyzed using
Welch two-tailed t-test p=
0.00105, t= 3.5361, dF=
39.71; **p ≤ 0.01, ***p ≤ 0.001

6282 E. Wüstenhagen et al.



opponents in HPV-associated carcinogenesis as (i) both
proteins bind to the same DNA motifs, (ii) cause contra-
dicting effects on the HPV16 LCR, and (iii) are inversely
regulated (c-Myb protein level is elevated and MYPOP is
reduced) in HPV-transformed cells. As c-Myb has been
described as proto-oncogene [58], MYPOP might function
as a more general tumor suppressor. Indeed, the expression
of MYPOP in non-virally transformed HaCaT cells led to a
significant reduction of formed colonies (Fig. 4c), sup-
porting the anti-proliferative tumor suppressor function of
the Myb-related TF MYPOP.

Overall, our study provides first indications for the so far
unknown roles of MYPOP by demonstrating that this Myb-
related protein senses incoming viruses and represses viral
gene transcription. Thereby, MYPOP acts as a restriction
factor and limits cells’ permissiveness to infection with
oncogenic HPV viruses. Mechanistically, we propose a
model in which MYPOP senses incoming oncogenic HPV
by interaction with the accessible cytoplasmic part of the L2
protein until release of the viral DNA within the nucleus.
Subsequently, MYPOP binds to the LCR via its DBD. This
results in silencing of HPV early/oncogene expression and
subsequently, suppression of cancer. During cell transfor-
mation, the HPV16 onco-protein E7 mediates degradation of
MYPOP by a mechanism that is yet to be determined, which
results in increased expression of the early viral genes, cell
proliferation, and finally oncogenesis. A detailed investiga-
tion and elucidation of this transcriptional repressor will be
crucial for better understanding of infections by oncogenic
papillomaviruses and tumor suppression in general.
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