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The p38a mitogen-activated protein kinase pathway not only regulates the

production of inflammatory mediators, but also controls processes related

to tissue homeostasis, such as cell proliferation, differentiation and sur-

vival, which are often disrupted during malignant transformation. The ver-

satility of this signaling pathway allows for the regulation of many specific

functions depending on the cell type and context. Here, we discuss mouse

models that have been used to identify in vivo functions of p38a signaling

in the pathogenesis of inflammatory diseases and cancer. Experiments using

genetically modified mice and pharmacological inhibitors support that tar-

geting the p38a pathway could be therapeutically useful for some inflam-

matory diseases and tumor types.
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Introduction

Mitogen-activated protein kinases (MAPKs) are evolu-

tionarily conserved kinases that control many cellular

processes. Eukaryotic cells contain several MAPK

pathways that function in parallel and are activated by

different extracellular stimuli. The p38 MAPK family

includes four members: p38a, p38b, p38d and p38c,
which are approximately 60% identical in their amino

acid sequences, are encoded by different genes, and

have different tissue expression patterns. Most cell

types express substantial levels of p38a, whereas the

other p38 MAPKs have more tissue-specific expression

patterns. p38a was originally identified as a protein

kinase implicated in stress and inflammatory responses

[1–4]. Activation of p38a is usually triggered by the

MAPK kinases MKK3 and MKK6, although some-

times by MKK4 or by autophosphorylation indepen-

dently of MAPK kinases. More than 100 proteins can

be directly phosphorylated by p38a, including other

protein kinases and many transcription factors [5,6].

The number and variety of p38a substrates identified is

consistent with the ability of this signaling pathway to

regulate numerous cellular processes. Indeed, the use of

pyridinyl imidazole inhibitors such as SB203580 and

SB202190, which inhibit p38a and p38b, has allowed

the identification of many functions potentially regu-

lated by p38 MAPKs beyond the stress response [7,8].

In vivo physiological roles for p38 MAPK signaling

have been determined by the generation of genetically

modified mice. Of note, p38a knockout (KO) mice are

embryonic lethal as a result of a defect in placenta

morphogenesis [9,10], whereas the KOs for other p38

MAPKs are viable [11,12]. The double KO for MKK3

and MKK6 is also embryonic lethal and shows a simi-

lar phenotype to the p38a KO [13]. Moreover, there is

evidence that p38a and p38b play overlapping in vivo

functions during mouse development [14]. Genetically

modified mice have provided evidence showing that

p38a signaling plays an important role controlling

inflammation, as well as the proliferation, differentia-

tion and survival of different cell types [15,16]. Here,

we discuss the roles of p38a in mouse models of inflam-

matory diseases and cancer.

p38a MAPK in inflammatory diseases

There is in vivo and in vitro evidence linking p38a signal-

ing to the production of inflammatory mediators and

pro-inflammatory cytokines in several cell types via tran-

scriptional and post-transcriptional mechanisms [7,16].

Mice deficient for the p38a substrate MK2 provided

the first in vivo evidence for the implication of this path-

way in inflammation. The MK2 KO mice are more

resistant to lipopolysaccharide (LPS)-induced endotoxic

shock as a result of the reduced production of tumor

necrosis factor-a (TNF-a) [17]. Additional studies show

that the MK2-related kinase MK3 contributes to regu-

lating LPS-induced TNF-a production in vivo, although

to a lesser extent than MK2 [18]. The use of mice defi-

cient for p38a either in myeloid cells or in epithelial cells

has further supported the implication of this pathway in

cytokine production and inflammatory responses in vivo

[19–21]. The connection of p38a with the production of

inflammatory mediators has prompted the use of mouse

models to investigate the in vivo functions of this path-

way in the pathogenesis of inflammatory diseases

(Fig. 1 and Table 1). It should be noted that p38b
appears to be required neither for the acute, nor chronic

inflammatory responses [11,22], whereas myeloid cells

deficient in p38c and p38d are impaired in the LPS-

induced production of several cytokines, which corre-

lates with reduced levels of the MAPK kinase kinase

(MAP3K) TPL-2 and extracellular signal-regulated

kinase (ERK)1/2 signaling [23]. Interestingly, p38a acti-

vation does not appear to be affected by p38c and p38d
downregulation [23], suggesting that they regulate the

inflammatory response by distinct mechanisms.

Rheumatoid arthritis (RA)

RA is an autoimmune and chronic inflammatory dis-

order that affects the joints of hands and feet. Both

p38 MAPK and the activators MKK3 and MKK6 are

phosphorylated in their activation residues in synovial

tissue from RA patients [24,25], suggesting the implica-

tion of p38 MAPK signaling in RA. In a collagen-

induced model of experimental arthritis (CIA), the p38

MAPK inhibitor SD-282 attenuates disease progres-

sion and reverses cartilage and bone destruction

[26,27]. There is evidence that only p38a but not p38b
is involved in collagen-antibody or TNF-a-driven
arthritis [22]. Deficiency of MK2 protects against CIA

p38
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Fig. 1. Implication of p38a MAPK in mouse models of inflammatory

diseases. For details, see Table 1.
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Table 1. p38a MAPK signaling in mouse models of inflammatory diseases and cancer. Specificity of mouse lines: Alb, hepatocytes; CD4, T

cells; CD11c, dendritic cells; K14, ectoderm and derivatives; Lck, T cells and thymocytes; LysM, myeloid cells; MMTV, breast epithelial

cells; More, embryos; Mx-Cre, liver and lymphocytes; RERTn, ubiquitously expressed; Rosa26, ubiquitously expressed; SP-C, type II alveolar

epithelial cells; Tie, endothelial cells; Villin, intestinal epithelial cells.

Mouse lines Models Phenotypes

Molecules/processes

involved References

p38a T106M (knock-in) CAIA; p38 MAPK inhibitor No effect Not applicable [22] Arthritis

MK2�/� CIA Reduced arthritis

severity and incidence

Reduced TNF-a, IL-6 [28]

MKK3�/� K/BxN passive arthritis Reduced arthritis severity Reduced P-p38,

IL-1b, CXCL-1,

IL-6, MMP3

[29]

MKK6�/� K/BxN passive arthritis Reduced arthritis, cartilage

destruction and bone erosion

Reduced P-p38,

P-MK2, P-MSK1,

IL-6, MMP3

[30]

ASK1�/� K/BxN passive arthritis Reduced arthritis, cartilage

destruction and bone erosion

Reduced IL-1b,

IL-6, CXCL-1,

TNF-a, CCL2

[31]

WT K/BxN passive arthritis;

p38 MAPK inhibitor

p38a (F/F) LysM-Cre K/BxN passive arthritis Enhanced arthritis severity Enhanced IL-6,

IL-1b, P-Stat3

[32]

Antigen-induced arthritis

WT EAE; p38 MAPK inhibitors Reduced EAE severity Reduced IL-17 [39,40] EAE

ASK1�/� EAE Reduced EAE severity Reduced MCP-1,

RANTES, MIP-1a

[41]

p38a+/� EAE Reduced EAE severity Reduced IL-17 [39]

Lck-p38a DN (transgenic) EAE Reduced EAE severity Reduced IL-17 and

P-p38 in T cells

[40]

MKK3�/� MKK6+/�

Lck-MKK6 CA

(transgenic)

Enhanced EAE

susceptibility

Enhanced IL-17

p38a/p38b Y323F

(knock-in)

EAE and CIA Reduced EAE and

CIA severity

Reduced IFN-c, TNF-a and

T-bet expression but

enhanced IL-10

[44]

p38a (F/F)

Rosa26-Cre-ERT2

EAE Reduced EAE

severity

Not determined [42]

p38a (F/F) CD4-Cre No effect Not applicable

p38a (F/F) LysM-Cre No effect Not applicable

p38a (F/F) CD11c-Cre Reduced EAE Reduced IL-6 and Th17

differentiation

MK2�/� EAE Delayed EAE onset and

prolonged activity

Reduced TNF-a, FasR,

enhanced leukocyte

infiltration

and reduced apoptosis

[43]

MK2�/� Ldlr�/� Reduced severity to

Atherosclerosis

Reduced VCAM-1,

ICAM-1, MCP-1

[45] Atherosclerosis

ApoE�/� Virus-induced acceleration in

ApoE�/� model; p38

MAPK inhibitor

Reduced viral load and

pro-atherogenic

molecules

Reduced E-selectin,

VCAM-1, ;ICAM-1,

MCP-1

[46]

p38a (F/F) LysM-Cre ApoE�/� No effect on

disease initiation

Not applicable [47]

enhanced apoptosis and

Advanced plaque

progression

Reduced AKT activity

p38a (F/F) LysM-Cre ApoE�/� No effect Not applicable [49]

p38a (F/F) Tie-Cre-ERT2

WT TS-induced COPD; p38

MAPK inhibitor

Reduced lung

inflammation

Reduced COX-2, IL-6 [53] COPD

and

asthmaSP-C-MKK6

CA (transgenic)

CSS/LPS- induced COPD Enhanced disease

severity

Increased IL-16, CXCL-1,

MMP-12, TCA-3, Leptin

[54]

1843FEBS Journal 282 (2015) 1841–1857 ª 2015 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

J. Gupta and A. R. Nebreda p38a signaling in inflammation and cancer



Table 1. (Continued).

Mouse lines Models Phenotypes

Molecules/processes

involved References

WT LPS-induced

lung inflammation;

p38 MAPK inhibitor

Reduced lung

inflammation

Reduced TNF-a, IL-1b and

neutrophil accumulation

[55]

WT Ova-induced asthma; p38a

antisense oligonucleotide

Reduced disease

symptoms

Reduced IL-4, IL-5, IL-13 and

eosinophil recruitment

[56]

WT Ova/ozone-induced asthma;

p38 MAPK inhibitor and

dexamethasone

Reduced disease

symptoms

Reduced TNF-a, IL-13, CXCL-1,

GM-CSF and MKP-1

[57]

p38a(F/F) LysM-Cre SDS- and UVB-induced

skin injury

Reduced inflammatory

response

Enhanced P-JNK, P-ERK and

Reduced CXCL-1, CXCL-2, IL-10

[20] Sepsis and

skin

inflammation

p38a (F/F) K14-Cre

MSK1�/� MSK2�/� LPS-induced sepsis Reduced resistance

to sepsis

Enhanced TNF-a, IL-6, IL-12,

Reduced IL-10

[33]

CLP-induced sepsis Increased resistance

to sepsis

Reduced IL-10 but no

differences

in IL-6, IL-12, TNF-a

PMA-induced eczema Increased inflammation Enhanced MPO activity

and infiltration

p38a (F/F) LysM-Cre LPS- and CLP-induced

sepsis

Increased resistance

to sepsis

Reduced TNF-a,

AP-1, C/EBP-b

and CREB activity

[19]

MK2�/� LPS- induced sepsis Increased resistance

to sepsis

Reduced TNF-a,

IFN-c, IL-6, NO

[17]

MK2�/� MK3�/� LPS- induced sepsis Not determined Further reduced TNF-a and TTP

compared to MK2�/�
[18]

p38a (F/F) Villin-Cre DSS-induced colitis Increased colitis Enhanced apoptosis,

increased

Bak, IL-6, COX-2 and

JNK activation

[21,91,92] Colitis

p38a (F/F) LysM-Cre Reduced colitis Reduced AP-1, NFkB activity,

IL-6, COX-2

[21]

p38a (F/F) Alb-Cre LPS/TNF-induced

liver damage

No effect Enhanced JNK activation [86] Liver

damagep38a (F/F) IKK2

(F/F) Alb-Cre

Enhanced liver toxicity Enhanced hepatocyte apoptosis,

Reduced c-FLIP(L) levels

Wip1�/� MMTV-ErbB2 and

MMTV-Hras

Reduced breast

tumorigenesis

Enhanced P-p38, reduced

proliferation and increased

apoptosis

[68] Breast

cancer

MMTV-Wip1

(transgenic)

MMTV-ErbB2 Enhanced breast

tumorigenesis

Increased proliferation [69]

MMTV-MKK6

(transgenic)

No effect Increased Wip1

MMTV-Wip1

MMTV-MKK6

(transgenic)

Reduced tumorigenesis

compared to MMTV-Wip1

Reduced proliferation

GADD45a�/� MMTV-Ras Enhanced breast

Tumorigenesis

Reduced P-p38 and

Ras-induced senescence

[70]

WT MMTV-PyMT; p38 MAPK

inhibitor and

cisplatin treatment

Reduced tumor growth

and malignancy

Enhanced apoptosis and

JNK activity

[71]

p38a (F/F)

RERTn-Cre-ERT2

Kras LSL-G12V Enhanced lung

tumorigenesis

Reduced C/EBPa, HNF3b,

Increased AKT/EGFR signaling

[67] Lung

cancer

MK2 (CV/CV) p53 (F/F) No effect on

tumor initiation

Not applicable [80]
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Table 1. (Continued).

Mouse lines Models Phenotypes

Molecules/processes

involved References

Kras LSL-G12D +

Adeno-Cre

(intratracheal)

MK2/p53 double

KO tumors

grow faster

(tumor progression)

Increased proliferation;

increased apoptosis in

response to cisplatin

p38a (F/F) Alb-Cre DEN/Pb Increased liver cancer Enhanced proliferation and

JNK-c-Jun signaling

[66] Liver

cancerp38a (F/F) Mx-Cre

p38a (F/F) Alb-Cre DEN Increased liver cancer Increased ROS, hepatocype

death, IL-a secretion and

hepatocyte Compensatory

proliferation

[84]

p38a (F/F) Mx-Cre No effect Reduced IL-6, IL-1b, HGF

p38a (F/F) Alb-Cre Thioacetamide Increased liver

cancer

Enhanced SOX-2, c-Jun [85]

p38a (F/F) Villin-Cre AOM/DSS Increased colon cancer Altered colon homeostasis

and barrier function

[92,94] Colon

cancerp38a (F/F) Villin-Cre-ERT2

p38a (F/F) Villin-Cre-ERT2 p38a deletion in

AOM/DSS-induced

colon tumors

Reduced colon cancer Reduced proliferation, P-Stat3,

IL-6, Mcl-1, increased apoptosis

and P-JNK

[92]

ASK1�/� AOM/DSS Increased colon cancer Increased coltitis, macrophage

apoptosis and enhanced TNF-a,

IL-6, COX2, IL-1b

[95]

APCmin AOM/APCmin; p38

MAPK inhibitor

Reduced colon cancer Reduced proliferation, enhanced

p21, PTEN, nuclear FoxO3A

[96]

WT AOM/DSS; p38 MAPK

inhibitor and MEK1

inhibitor

Reduced colon cancer enhanced apoptosis, reduced

proliferation

[97]

PRAK (MK5) �/� DMBA Increased skin cancer Impaired Ras-induced

senescence,

enhanced Ki67, reduced

DcR2, p16

[107] Skin cancer

PRAK (MK5) �/� DMBA/TPA Reduced skin cancer

progression

Impaired angiogenesis,

enhanced apoptosis

[108]

ASK1�/� DMBA/TPA Dual function;

ASK1 alone- tumor

promoting role.

Reduced inflammation

Reduced P-p38, P-JNK,

TNF-a, IL-6

[110]

ASK2�/� ASK2 in cooperation with

ASK1- tumor

suppressive role

Reduced P-p38, P-JNK,

reduced apoptosis

GADD45a�/� UV Increased skin cancer Reduced apoptosis, P-p38,

P-JNK, p53

[111]

p53�/� SKH-1 UV; p38

MAPK inhibitor

Increased skin cancer Increased P-c-Jun,

cyclin D1, NOX-2

[112]

MK2�/� DMBA/TPA Reduced skin cancer Increased apoptosis and p53,

reduced IL-1b, IL-6, TNF-a

[113]

K14-p38a DN

(transgenic)

UVB Reduced skin cancer Reduced AP-1 activity,

reduced COX-2

[115]

K14-p38a DN

(transgenic)

Solar UV Reduced skin cancer Reduced edema, inflammation

and proliferation

[116]

MSK1�/� MSK2�/� DMBA/TPA Reduced skin cancer Enhanced IL-1b, TNF-a,

increased MPO activity

[114]
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by reducing the serum levels of interleukin (IL)-6 and

TNF-a [28], suggesting that MK2 plays a critical role

downstream of p38a signaling in arthritis. Disruption

of the p38 MAPK activators MKK3 and MKK6 or

the MAP3K apoptosis signal-regulating kinase 1

(ASK1) also protects against experimental arthritis

[29–31]. These studies suggest that inhibition of p38

MAPK signaling may have therapeutic potential in

arthritis patients. However, a recent study shows that

p38a downregulation in myeloid cells exacerbates the

severity of arthritis symptoms [32]. This p38a effect

could be mediated through the substrates mitogen-

and stress-activated protein kinase (MSK)-1 and -2,

which control transcriptional activation of the anti-

inflammatory cytokine IL-10 [33]. Collectively, p38a
signaling appears to have both pro- and anti-inflam-

matory roles, which could explain the modest effect of

p38 MAPK inhibitors in RA patients [34,35]. Target-

ing of the activators MKK3 and MKK6 or the sub-

strate MK2 has been proposed as alternative

therapeutic strategy in RA aiming to avoid the anti-

inflammatory effects of p38a [32,36]. In support of this

idea, treatment of rats with the MK2 inhibitor PF-

3644022 reduces both LPS-induced TNF-a production

and chronic inflammation in the streptococcal cell

wall-induced arthritis model [37].

Multiple sclerosis (MS)

MS is an inflammatory disease of the central nervous

system that affects young adults. MS can be modeled

in mice by immunization with myelin antigen com-

bined with adjuvant, termed experimental autoimmune

(or allergic) encephalomyelitis (EAE). EAE develop-

ment requires elevated cytokine expression levels,

which are also detected in MS patients. Interestingly,

p38a is upregulated in MS lesions and the levels of

phosphorylated p38 MAPK are enhanced in EAE rat

models [38], suggesting the implication of p38 MAPK

in EAE. In agreement with this idea, p38 MAPK

inhibitors markedly suppress EAE in mouse models,

correlating with decreased IL-17 levels [39,40]. Fur-

thermore, downregulation of p38a or its activator

ASK1 ameliorates the severity of EAE [39,41,42]. By

contrast to the above results, mice deficient in the

p38a substrate MK2 show a delayed onset of EAE but

prolonged disease activity, which is probably the result

of a lack of TNF-a and an altered immune response

in the central nervous system [43]. These results sug-

gest a predominant role for p38a substrates other than

MK2 in the regulation of EAE development.

Recent studies show that p38a autophosphorylation

is required for the production of IL-17 by T cells and

impairment of this alternative activation pathway

reduces EAE severity in mice [44]. Expression in T

cells of a nonphosphorylatable p38a mutant, which is

considered to work in a dominant-negative manner, or

the deletion of the activators MKK3 and MKK6,

greatly reduces phosphorylation of p38 MAPK, pro-

duction of IL-17 and EAE symptoms in mice [40].

Conversely, forced activation of p38 MAPK in mouse

T cells by expression of constitutively active MKK6

results in enhanced IL-17 production and an increased

susceptibility to EAE [40]. However, specific deletion

of p38a in T cells does not affect EAE development

[42]. This might be explained by insufficient downregu-

lation of p38a in T cells or by compensation via other

p38 MAPK family members because p38b has a par-

tial redundant role in T cell function [44]. Deletion of

p38a in macrophages does not affect EAE develop-

ment, whereas deletion of p38a in CD11c+ dendritic

cells (DCs) reduces EAE symptoms, as well as the

expression of IL-6 and differentiation of T cells pro-

ducing IL-17 (TH17) [42]. These results suggest that

p38a-dependent expression of IL-6 in DCs is required

for TH17 differentiation and EAE development [42].

Altogether, p38a activation in DCs and T cells appears

to be important for the pathogenesis of EAE, suggest-

ing that targeting this pathway might have therapeutic

value in MS.

Atherosclerosis

Atherosclerosis is a chronic inflammatory cardiovascu-

lar disease and a leading cause of both mortality and

morbidity worldwide. The atherogenic process has

been widely studied using mice deficient either for apo-

lipoprotein E (ApoE), which develop spontaneous ath-

erosclerosis, or for low-density lipoprotein receptor

(Ldlr), which need a cholesterol diet to develop hyper-

cholesterolemia and atherosclerosis.

Mice deficient for the p38a substrate MK2, which are

impaired in pro-inflammatory cytokine production [17],

are resistant to atherosclerosis by reducing vascular lipid

deposition and macrophages in hypercholesterolemic

Ldlr�/� mice. MK2 also regulates aortic expression of

the vascular cell adhesion molecule (VCAM)-1 and the

chemokine monocyte chemoattractant protein (MCP)-

1, which are key for the recruitment of monocytes/mac-

rophages to the vascular wall [45]. p38 MAPK has also

been suggested to regulate the pro-atherogenic mole-

cules VCAM-1 and MCP-1 in ApoE�/� mice [46]. These

studies support the implication of p38 MAPK signaling

in the development of atherosclerosis, although the cell

type responsible remains unclear. Phosphorylated MK2

is detected in the endothelium and macrophage-rich pla-
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que areas within aortas of hypercholesterolemic Ldlr�/�

mice, suggesting that atherosclerosis development might

involve p38a activation in these cells. Surprisingly, p38a
downregulation in macrophages does not affect the for-

mation of atherosclerotic plaques or macrophage

recruitment in ApoE�/� mice but, instead, leads to mac-

rophage apoptosis and other markers of advanced pla-

que progression, which were not checked in the MK2

KO mice, by suppressing AKT activation [47]. It was

subsequently shown that the inhibition of p38a or both

MK2 and MK3 impairs the LPS-induced activation of

AKT in bone-marrow derived macrophages, although

KO of either MK2 or MK3 alone has little effect on

AKT phosphorylation [48]. It is therefore possible that

p38a plays a pro-survival role in the macrophages of

advanced atherosclerotic plaques, whereas a deficiency

of MK2 alone does not affect the AKT survival path-

way. Thus, the phenotype of MK2 KO mice might be a

result of the role of MK2 in other cells, such as endothe-

lial cells. By contrast to this possibility, a recent study

reports that endothelial or macrophage specific-downre-

gulation of p38a affects neither the development, nor

the characteristics of atherosclerotic plaques in ApoE�/

� mice [49]. The controversial findings could be

explained by the different genetic backgrounds of the

mice used in the studies, which can influence the extent

of atherosclerosis in ApoE�/� mice [50]. More studies

are warranted to define the role of p38a signaling in ath-

erosclerosis, especially regarding the analysis of other

cell types that could be involved, such as smooth muscle

cells.

Chronic obstructive pulmonary
disease (COPD)

The p38 MAPK pathway has been linked to lung

inflammatory diseases such as COPD and asthma.

Phosphorylated p38 MAPK has been detected in both

alveolar macrophages and the alveolar walls of COPD

patients [51]. Increased activation of p38 MAPK has

been also reported in alveolar macrophages of patients

with severe asthma [52]. Activation of p38 MAPK in

alveolar macrophages may induce the secretion of pro-

inflammatory cytokines and chemokines required for

the pathogenesis of COPD. Inhibition of p38 MAPK

using SD-282 reduces inflammation in a model of

tobacco smoke-induced airway inflammation with

decreased expression of cyclooxygenase-2 (COX-2) and

IL-6 mRNAs [53]. Studies using pharmacological

inhibitors have also implicated p38 MAPK in mouse

models of COPD, asthma and acute lung inflammation

[54–57], suggesting that p38 MAPK inhibition could

have therapeutic effects in lung inflammatory diseases.

p38a MAPK in cancer

Cell proliferation, differentiation and survival are

tightly regulated under physiological conditions to

maintain tissue homeostasis and dysregulation of these

processes is a hallmark of cancer. Immune and inflam-

matory responses are also important for cancer initia-

tion and progression. During tumorigenesis, cells of

both the innate (macrophages, neutrophils, DCs) and

adaptive (T and B lymphocytes) immune systems infil-

trate the tumor microenvironment and regulate tumor

cell fate either directly or via the production of extra-

cellular factors. Immune cells rely on the p38a path-

way to regulate multiple functions and to produce

cytokines and chemokines [58–61], which may either

promote or suppress tumor growth. For example,

COX-2, IL-6 and IL-17 can be regulated by p38a and

have important effects on tumorigenesis [62–64]. How-

ever, the precise contribution of p38a-mediated

immune responses to tumor initiation and progression

is still poorly characterized. This review will focus on

the role of p38a in tumor cells. There is evidence

implicating p38a in the regulation of cell proliferation,

differentiation, survival, migration and invasion in var-

ious cancer cell lines [7,8,15,16,65]. Initial experiments

using mouse models of cancer indicated that p38a can

suppress lung and liver tumor formation in vivo

[66,67]. However, additional studies show that p38a
may play tumor suppressor or tumor promoter roles

depending on the tissue and the tumorigenesis stage

(Fig. 2 and Table 1).

Breast cancer

Mouse models have provided in vivo evidence for the

implication of p38 MAPK signaling in breast cancer.

Studies using mice deficient in Wip1, a phosphatase

that can target p38a, show significantly reduced breast

tumorigenesis upon expression of Erbb2 or H-Ras,

which correlates with higher p38 MAPK activation

[68]. The p38a and p38b inhibitor SB203580 restores

the Erbb2 driven tumorigenesis in Wip1 KO mice, sug-

gesting that p38 MAPK hyperactivation contributes to

the reduced breast tumorigenesis observed in the

absence of Wip1. Conversely, mice overexpressing

Wip1 in the breast epithelium are more susceptible to

breast tumor development induced by ErbB2, a pheno-

type that was attenuated upon co-expression of consti-

tutively active MKK6 to activate the p38 MAPK

pathway [69]. Mice deficient in Gadd45a, an activator

of the c-Jun N-terminal kinase (JNK) and p38 MAPK

pathways, also show accelerated breast tumorigenesis

induced by Ras, which correlates with reduced activa-
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tion of p38 MAPK and reduced levels of Ras-induced

senescence [70].

By contrast to the above tumor suppressive role in

breast tumor initiation, recent reports suggest that p38

MAPK signaling may also play pro-tumorigenic roles.

For example, the p38a and p38b inhibitor PH797804

impairs the growth of breast tumors induced by poly-

oma middle T (PyMT), which correlates with increased

apoptosis and decreased proliferation of tumor cells

[71]. Interestingly, p38 MAPK inhibition potentiates

the chemotherapeutic drug cisplatin, reducing the size

and malignancy of PyMT-induced breast tumors. At

the molecular level, inhibition of p38 MAPK results in

reactive oxygen species (ROS)-dependent upregulation

of the JNK pathway, which in turn mediates cisplatin-

induced apoptosis [71]. The inhibitor LY2228820 also

reduces tumor growth in a xenograft model based on

the MDA-MB-468 breast cancer cell line [72]. These

results indicate that p38 MAPK signaling contributes

to breast tumor progression in mouse models.

The pro-tumorigenic role of p38 MAPK is also

supported by experiments showing that inhibition of

this pathway impairs the proliferation of p53 mutant

and estrogen receptor-negative breast cancer cell lines

in vitro [73]. Of note, both MDA-MB-468 cells and

PyMT breast tumors are estrogen receptor-negative.

Moreover, high levels of active p38 MAPK have been

correlated with invasive and poor prognostic breast

cancers, lymph node metastasis and tamoxifen resis-

tance in patients [74–77]. Activation of p38 MAPK

signaling downstream of the ubiquitin-conjugating

enzyme Ubc13 has been shown to contribute to metas-

tasis and lung colonization by human and mouse

breast cancer cells [78]. Taken together, it appears that

p38 MAPK inhibitors, either alone or in combination

with chemotherapeutic drugs, could help to reduce

breast tumor growth and metastasis.

Lung cancer

Studies using p38a conditional KO mice have pro-

vided in vivo evidence for the involvement of p38

MAPK in lung homeostasis [66,67]. Embryo-specific

deletion of p38a results in perinatal death as a result

of distorted alveolar structures and massive infiltra-

tion of hematopoietic cells in the lungs [66]. Postnatal

deletion of p38a results in increased proliferation and

defective differentiation of the lung stem and progeni-

tor cells, which can be accounted for by the upregula-

tion of epidermal growth factor receptor (EGFR) and

lower expression of the transcription factor C/EBPa
[67]. Moreover, p38a signaling in lung stem cells

induces the expression of CXCL-12 that activates the

stromal fibroblasts, whereas the endogenous p38a in

lung fibroblasts is required for the induction of cyto-

kines, which in turn trigger the recruitment of endo-

thelial cells [79]. These results support a key role for

p38a in maintaining a functional lung microenviron-

ment, suggesting that disruption of this signaling

pathway may lead to lung diseases. In line with this

idea, the altered lung homeostasis observed upon

p38a downregulation facilitates lung tumorigenesis
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induced by oncogenic K-rasG12V [67]. The p38a-defi-
cient lung tumors exhibit poor differentiation and

higher mitotic indices, which correlate with reduced

levels of the differentiation markers C/EBPa and

hepatocyte nuclear factor 3b (HNF3b), and with

increased activation of AKT and EGFR signaling

[67]. The phenotype observed in p38a-deficient lungs

mimics the early stages of K-rasG12V induced trans-

formation, suggesting that the enhanced tumorigenesis

might be related to changes in the lung cellular

microenvironment rather than to the negative regula-

tion of oncogenic signaling by p38a in tumor cells.

Deletion of the p38a substrate MK2 has no effect

on the initiation of lung tumorigenesis in a similar

mouse model, irrespective of the p53 status. However,

MK2 restrains the progression of lung tumors in the

absence of p53 but has no effect when p53 is

expressed. MK2 disruption not only makes p53-defi-

cient lung tumors grow faster, but also sensitizes to

DNA damage-inducing drugs such as cisplatin [80].

Increased p38 MAPK phosphorylation has been

reported in human lung tumors compared to normal

tissue [81], suggesting that p38 MAPK might contrib-

ute to lung tumor progression. The regulation of lung

inflammation by p38 MAPK signaling may also

impinge on tumorigenesis, although it is unclear

whether lung inflammatory diseases such as COPD

and asthma are linked to increased risk of lung cancer

[82]. Further work is required to elucidate whether p38

MAPK inhibition might help lung cancer patients.

Liver cancer

p38a negatively regulates hepatocyte proliferation in

adult mice during liver regeneration after partial hepa-

tectomy or N-nitrosodiethylamine (DEN)-induced liver

injury. Inactivation of c-Jun in p38a deficient livers

results in normal hepatocyte proliferation, suggesting

that activation of the JNK-c-Jun pathway is responsi-

ble for the enhanced proliferation of p38a deficient he-

patocytes [66].

Uncontrolled hepatocyte proliferation is considered

to be important for liver cancer development. Hepato-

cellular carcinoma (HCC) is one of the most common

forms of primary liver cancer in humans, with 70–
90% of HCC cases occurring in patients with chronic

liver diseases and cirrhosis, mainly as a result of hep-

atitis B virus infection and alcoholic liver disease [83].

To study HCC in mice, DEN is used as an initiator

and phenobarbital (Pb) as a promoting agent. Hepa-

tocyte-specific deletion of p38a facilitates DEN/Pb-

induced HCC, in which upregulation of the JNK-c-

Jun pathway plays an important role by enhancing

proliferation of p38a-deficient tumor cells [66]. p38a
has been proposed to suppress ROS accumulation

by modulating Hsp27 expression and cell death in

DEN-treated hepatocytes. Dying hepatocytes release

IL-1a, which stimulates DEN-induced hepatocyte pro-

liferation, facilitating HCC development [84]. Similar

results have been observed in a model of HCC related

to liver cirrhosis, in which p38a deficiency in hepato-

cytes leads to ROS accumulation and enhanced thioace-

tamide-induced liver damage and fibrosis [85]. Another

study using a model of LPS/TNF-induced liver damage

has shown that hyperactivation of the JNK pathway in

p38a-deficient hepatocytes is not sufficient to mediate

TNF-induced liver toxicity [86]. However, the com-

bined downregulation of p38a and IKK2 in hepato-

cytes results in liver failure upon LPS injection,

suggesting that p38a collaborates with the nuclear fac-

tor kappa B (NF-kB) pathway to protect the liver from

cytokine-induced damage by antagonizing JNK activa-

tion [86]. These studies indicate that p38a can suppress

HCC by regulating different molecular mechanisms

depending on the stimuli.

In agreement with the observation that p38a sup-

presses HCC development in mouse models, reduced

p38 MAPK and MKK6 activities have been reported

in human HCC compared to nontumoral tissue [87].

Moreover, phosphorylation of the p38a pathway tar-

get Hsp27 has been inversely correlated with tumor

size, invasion and tumor stages of human HCCs [88].

By contrast, another study positively correlated p38

MAPK phosphorylation with HCC tumor size and

poor survival, although nontumoral areas were not

analyzed [89]. A larger cohort of human HCC samples

should be analyzed to obtain conclusive data on the

role of p38 MAPK signaling in human HCC progres-

sion.

Colon cancer

The colon is part of the lower gastrointestinal tract.

The intestinal epithelia serve as a barrier and play an

important role in protecting the intestinal tract against

luminal invading pathogens and ingested toxin, which

can promote inflammatory responses. Colon inflamma-

tory diseases such as inflammatory bowel disease

(IBD) are associated with higher risk of colorectal can-

cer (CRC) development [90].

In vivo roles of p38a in colon homeostasis and

tumor development have been studied using mice with

p38a downregulation in intestinal epithelial cells

(IECs) [21,91,92]. These mice appear healthy but show

changes in intestinal homeostasis, including increased

IEC proliferation, which is associated with increased
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ERK1/2 and EGFR signaling [91], as well as reduced

numbers of mucus producing goblet cells [21,91,92].

Moreover, p38a regulates the assembly of intestinal

epithelial tight junctions, probably by controlling the

expression of ZO-1 and other tight junction molecules

[92].

Mice with IEC-specific p38a downregulation are

more susceptible to dextran sodium sulfate (DSS)-

induced colitis [21,91,92]. DSS is toxic and induces epi-

thelial cell apoptosis, which initiates intestinal inflam-

mation and colitis in mice, and there is evidence that

p38a plays a critical role protecting from epithelial

apoptosis, thus preventing DSS-induced colitis

[21,91,92]. Increased apoptosis correlates with

increased JNK activation and accumulation of the

pro-apoptotic protein Bak in p38a-deficient IEC

[91,92]. Importantly, the enhanced colitis observed in

these mice can be rescued by the administration of

probiotics, which restore the altered epithelial perme-

ability, supporting that regulation of the epithelial bar-

rier function by p38a is critical for protection against

DSS-induced colitis [92]. By contrast to the role of

p38a in IEC, downregulation of p38a in myeloid cells

reduces inflammatory responses and colon epithelial

damage during DSS-induced colitis [21]. This corre-

lates with reduced activity of NF-kB and reduced

expression of the inflammatory mediators COX-2 and

IL-6 in the DSS-treated mice [21]. Thus, p38a signal-

ing in different cell types appears to affect colitis pro-

gression differently. Of note, p38a in IEC not only

regulates colon epithelial homeostasis, but also con-

trols the expression of chemokines, which are essential

for the recruitment of immune cells such as CD4+ T

cells and subsequent clearance of Citrobacter roden-

tium infection [93]. These studies indicate that p38a
signaling in IEC is critical for the protection against

DSS-induced colitis and mucosal infections.

Chronic infection and inflammation can lead to colon

tumor development. The initial stages of inflammation-

associated colon tumorigenesis are suppressed by p38a
[92,94]. This is probably a result of the ability of p38a to

regulate colon homeostasis and the epithelial barrier

function [92]. Similarly, mice deficient in the p38a acti-

vator ASK1 show enhanced DSS-induced epithelial

injury and inflammation and are more susceptible to

inflammation-associated colon tumorigenesis [95].

By contrast to the negative role of p38a in colon

tumor initiation, p38 MAPK signaling can also per-

form pro-tumorigenic functions in established colon

tumors. Mice xenografted with colon cancer cell lines

or expressing APCmin that are treated with the inhibi-

tor SB202190 show reduced tumor growth, which cor-

relates with a switch from HIF1a- to FoxO-dependent

transcription that affects glycolytic metabolism [96].

Importantly, downregulation of p38a in colon tumor

cells or pharmacological inhibition using PH797804

reduces tumor burden in mice, which correlates with

activation of the JNK pathway, reduced expression of

the anti-apoptotic protein Mcl-1 and downregulation

of IL-6/STAT3 signaling [92]. Colon tumor growth is

also reduced in azoxymethane-treated APCmin mice by

the combined inhibition of p38 MAPK using SB202190

and ERK1/2 signaling using PD0325901 [97]. These

studies suggest a dual role for epithelial p38a signaling,

suppressing inflammation-associated colon tumor initi-

ation but supporting colon tumor progression.

There is also evidence implicating p38a in colon can-

cer metastasis. In particular, reduced levels of p38

MAPK activity in colon cancer cells facilitate lung colo-

nization from established liver metastasis by enhancing

production of the cytokine PTHLH, which in turn

induces endothelial cell death, enabling tumor cell

extravasation to the lung [98]. Taken together, p38a sig-

naling appears to control colon tumor cell survival, pro-

liferation and metastasis through distinct mechanisms.

As noted above, IBD patients have higher risk of

developing CRC [90]. The activating phosphorylation

of p38 MAPK in IBD patients has been evaluated in

several studies that yield contradictory results [99–101].
Accordingly, the use of p38 MAPK inhibitors in clini-

cal trials has not shown promising results. In patients

with Crohn’s disease, the p38 MAPK and JNK inhibi-

tor CNI-1493 showed some clinical improvement [102],

whereas the p38 MAPK inhibitor BIRB796 showed no

improvement [103]. Mouse studies indicate that, during

DSS-induced colitis, p38a contributes to different

functions in various cell types, which could explain the

controversial effects reported using p38 MAPK inhibi-

tors for therapy. In human CRC, enhanced levels of

phosphorylated p38 MAPK have been reported both

in tumor cells and in stromal cells [97,104–106], sug-
gesting a pro-tumorigenic role of p38 MAPK. More-

over, high levels of phosphorylated p38 MAPK have

been correlated with resistance to the chemotherapeu-

tic drug irinotecan, as well as with poor overall sur-

vival in colon cancer patients [104,106]. Collectively,

p38 MAPK inhibition in colon cancer patients appears

as an attractive therapeutic possibility, although cau-

tion is warranted because p38 MAPK inhibition can

result in adverse effects.

Skin cancer

Mice deficient for the p38 MAPK substrate PRAK

(also known as MK5) show enhanced 7,12-dimethyl-

benz[a]anthracene (DMBA)-induced skin carcinogene-
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sis, which correlates with compromised senescence

induction. In primary cells, inactivation of PRAK pre-

vents senescence and promotes oncogenic transforma-

tion. The direct phosphorylation of p53 by PRAK has

been proposed to mediate these effects [107]. Interest-

ingly, PRAK can also promote the growth of skin

tumors induced by DMBA and 12-O-tetradecanoyl-

phorbol-13-acetate (TPA) via regulation of tumor

angiogenesis. However, this effect is mediated by

PRAK signaling in endothelial cells rather than in

keratinocytes. Thus, in endothelial cells, tumor-secreted

pro-angiogenic factors activate vascular endothelial

growth factor receptor 2, which in turn activates

PRAK inducing migration of the endothelial cells and

their incorporation into tumor vasculature. This PRAK

function may be mediated by the phosphorylation of

the focal adhesion kinase FAK and cytoskeletal reorga-

nization [108]. Of note, PRAK has been reported to

also be a substrate of the MAPKs ERK3 and ERK4

[109], and further studies are required to validate the

contribution of p38a to PRAK activation in skin carci-

nogenesis. The p38a activator ASK1 has been also pro-

posed to have a dual role in DMBA/TPA-induced skin

carcinogenesis, facilitating tumor promotion via regula-

tion of the inflammatory response at the same time as

playing a tumor suppressive role by cooperating with

ASK2 in keratinocytes [110].

Mice deficient in Gadd45a show increased UV-

induced skin carcinogenesis, which correlates with

reduced levels of phosphorylated JNK and p38

MAPK, as well as reduced p53 levels and apoptosis

[111]. Additionally, inhibition of p38 MAPK signaling

has been associated with impaired capacity to repair

UV-induced DNA damage, a primary risk factor for

human skin cancers. The levels of p38a are decreased

in human cutaneous squamous cell carcinomas (SCC)

and UV irradiation of p53-deficient A431 keratino-

cytes (derived from SCC) decreases p38a expression.

Consistently, treatment of p53�/� SKH-1 mice with

the p38 MAPK inhibitor SB203580 accelerates UV-

induced SCC carcinogenesis and increases the expres-

sion of the NAPDH oxidase Nox2. These findings sup-

port a tumor-suppressive role for p38a in SCC

pathogenesis, which is associated with the regulation

of Nox2 [112].

By contrast to the above observations, another

study has implicated the p38a substrate MK2 in skin

tumor development. MK2 deficient mice show reduced

skin carcinogenesis after treatment with DMBA/TPA,

which has been explained by the implication of MK2

in the production of pro-inflammatory cytokines and

in the regulation of p53-dependent apoptosis [113].

Similarly, combined deficiency of the p38a substrates

MSK1 and MSK2 results in reduced skin carcinogene-

sis [114]. However, the expression of IL-1b and TNF-a
is upregulated in MSK1/2 double KO mice, probably

as a result of weakened negative feedback loops that

limit the inflammatory response [33]. Therefore, a

defective inflammatory response is unlikely to account

for the reduced skin tumorigenesis observed in MSK1/

2 double KO mice, which might be a result of

impaired p38 MAPK-triggered keratinocyte prolifera-

tion. Indeed, p38 MAPK signaling in keratinocytes

has been reported to contribute to skin carcinogenesis

by inducing activation of the transcription factor acti-

vator protein-1 (AP-1) and expression of COX-2,

which stimulate the proliferation of UVB-irradiated

epidermal keratinocytes [115]. Mice expressing a p38a
mutant protein, which may work in a dominant-nega-

tive manner, also show reduced skin tumorigenesis in

response to solar UV irradiation, suggesting that p38

MAPK activation by solar UV contributes to skin car-

cinogenesis [116].

Conclusions

There is good evidence implicating p38a signaling in

inflammatory diseases, as well as during tumor initia-

tion and progression (Table 1). The in vivo experi-

ments using genetically modified mice and the use of

pharmacological inhibitors suggest that targeting p38a
signaling could be useful for the treatment of some

inflammatory diseases. Several p38 MAPK inhibitors

have been tested in clinical trials but have failed

mainly as a result of side effects, such as skin rashes

and liver toxicity. However, it is not clear whether

these side effects are a result of the systemic inhibition

of p38 MAPK signaling or the off-target effects of the

inhibitors. Nevertheless, promising results have been

obtained in some cases [117], although systemic inhibi-

tion of the p38 MAPK pathway may not be beneficial

in all the cases. Based on the studies using mouse

models, p38a appears to have distinct roles in different

cell types even within the same tissue. For example,

inhibition of p38a in myeloid cells ameliorates the

effects of colitis, whereas inhibition of p38a in IEC

can have deleterious effects in the same model. This

dual effect could explain the failure of p38 MAPK

inhibitors in IBD patients.

Given the contribution of inflammation to tumori-

genesis, inhibition of p38a signaling would be expected

to benefit inflammation-associated cancers. However,

mouse studies indicate that the role of p38a signaling

in cancer initiation and progression is cell type- and

tumor type-dependent. Because p38a may suppress

some type of tumors at the same time as working as a
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tumor promoter in other cancers, the inhibitors should

be used with caution. Thus, new strategies to target

p38a signaling in cell type or tissue specific manners

should be devised. Moreover, considering the cross-

talk among signaling pathways, it might be beneficial

to use combination therapies for simultaneously target-

ing p38a and other signaling molecules. It should be

noted that genetic analysis in mice have also impli-

cated p38c and p38d in the in vivo regulation of coli-

tis-associated colon tumorigenesis [118] and skin

cancer [119]. It remains to be established whether dif-

ferent p38 MAPK family members might interplay

during tumor development.

Recent studies have improved our understanding of

the in vivo roles of p38a signaling in inflammation and

cancer. Tumor-suppressing and tumor-promoting func-

tions of the p38a pathway can be temporally and spa-

tially separated during tumor development, depending

on the tissue type and the tumor stage. More mechanis-

tic studies are required to define the functions of p38a,
as well as its key regulators and targets in mouse models

of cancer. Future studies should also focus on the devel-

opment of new models to regulate the p38 MAPK path-

way in a time- and cell type-dependent manner. These

new models should provide valuable information on the

role of p38a signaling at various stages of the disease

and in different cell types, which in turn should be use-

ful for developing improved therapeutic strategies.
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