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We examined associations between B and T  cell phenotypic profiles and antibody 
responses to the pentavalent rotavirus vaccine (RV5) in perinatally HIV-infected 
(PHIV) infants on antiretroviral therapy and in HIV-exposed uninfected (PHEU) infants 
enrolled in International Maternal Pediatric Adolescent AIDS Clinical Trials P1072 study 
(NCT00880698). Of 17 B and T cell subsets analyzed, PHIV and PHEU differed only in 
the number of CD4+ T cells and frequency of naive B cells, which were higher in PHEU 
than in PHIV. In contrast, the B and T cell phenotypic profiles of PHIV and PHEU markedly 
differed from those of geographically matched contemporary HIV-unexposed infants. 
The frequency of regulatory T and B cells (Treg, Breg) of PHIV and PHEU displayed two 
patterns of associations: FOXP3+ CD25+ Treg positively correlated with CD4+ T cell 
numbers; while TGFβ+ Treg and IL10+ Treg and Breg positively correlated with the 
frequencies of inflammatory and activated T cells. Moreover, the frequencies of activated 
and inflammatory T  cells of PHIV and PHEU positively correlated with the frequency 
of immature B cells. Correlations were not affected by HIV status and persisted over 
time. PHIV and PHEU antibody responses to RV5 positively correlated with CD4+ T cell 
counts and negatively with the proportion of immature B  cells, similarly to what has 
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been previously described in chronic HIV infection. Unique to PHIV and PHEU, anti-RV5 
antibodies positively correlated with CD4+/CD8+FOXP3+CD25+% and negatively with 
CD4+IL10+% Tregs. In conclusion, PHEU shared with PHIV abnormal B and T cell phe-
notypic profiles. PHIV and PHEU antibody responses to RV5 were modulated by typical 
HIV-associated immune response modifiers except for the association between CD4+/
CD8+FOXP3+CD25+Treg and increased antibody production.

Keywords: human, B cells, T cells, aiDs, antibodies, vaccination

inTrODUcTiOn

In the absence of antiretroviral therapy (ART), HIV-infected 
persons maintain high levels of inflammation and increased 
activation, exhaustion, and immune senescence (1–6). The 
distribution of many B and T  cell subsets tends to normalize 
after initiation of ART, although not completely (7, 8). Although 
immune responses to vaccines and infections also improve with 
ART, their relationship with the reconstitution of B and T  cell 
phenotypic profiles is incompletely understood. In our previ-
ous studies, we showed complex interactions between adaptive 
immune responses to vaccines and T cell activation and regula-
tion (9). For example, humoral and cellular immune responses 
to inactivated influenza vaccines in HIV-infected children, ado-
lescents and pregnant women were lower in vaccines with higher 
proportions of nonspecific activated and regulatory T cells (Treg) 
and exhausted B cells in the peripheral blood (9–11). Conversely, 
vaccination increased influenza-specific Treg and activated 
T cells proportional to the increase in effector T cells. Muyanja 
et al. showed that antibody responses to yellow fever vaccine of 
HIV-infected and uninfected adults were lower in vaccinees with 
higher activation markers at the time of vaccination, although 
their study did not control for the HIV status of the participants 
(12). We also showed inverse correlations of plasma IFNγ and 
IL10 levels with neutralizing antibody responses to the penta-
valent rotavirus vaccine (RV5) (13). Despite recent advances in 
understanding factors that modulate immune responses, many 
questions remain regarding the relationship between B and T cell 
phenotypic profiles and protective immune responses to vaccines 
in HIV-infected individuals.

Much less is known about the immune system of perinatally 
HIV-infected (PHIV) infants who start ART early in life, except 
that they mount higher antibody responses to vaccines com-
pared with PHIV with delayed therapy (14). There is conflicting 
information about vaccine responses in HIV-exposed uninfected 
(PHEU) infants, with some studies showing antibody responses 
comparable to those of HIV-unexposed children and other studies 
reporting lower antibody and cell-mediated immune responses 
(15–21). Both PHIV and PHEU have increased risk of severe 
infections, hospitalizations and death suggestive of immune 
deficiency (22–25). Although there are reports that PHEU have 
decreased CD4+T cells and increased T cell activation compared 
with their HIV-unexposed age-matched controls, overall there 
is very little information about B and T cell phenotypic profiles 
in PHEU and PHIV and how they correlate with their immune 
responses (26–36). Regardless of HIV infection status, infants 

have decreased immune responses to vaccines and are more 
susceptible to infections compared with older children and young 
adults. Infants also have increased Treg at birth compared with 
older children and young adults, which may contribute to their 
decreased responses to vaccines. However, very few studies have 
addressed this question. Fetuses need tolerogenic Tregs to survive 
in the maternal environment. The tolerogenic role of Tregs was 
originally described in autoimmune diseases, for which a paucity 
of critical natural Tregs leads to excessive anti-self T cell responses 
and inflammation (37–39). By inhibiting conventional T  cell, 
B  cell and antigen presenting cell function, Tregs also play an 
important role in tolerance and allograft retention (40, 41). Treg 
differentiation starts in the thymus from CD4+T cells. In addi-
tion, inducible Tregs with anti-inflammatory activity can be gen-
erated to prevent excessive tissue destruction that may result from 
vigorous immune responses against infectious agents and other 
foreign antigens (42–47). The Treg hallmark is the transcription 
factor FOXP3, which inhibits Ifng and Il2 gene transcription and 
prevents the T cells from differentiating into conventional T cells 
(48). There are multiple Treg subsets that express additional 
markers, some of which are associated with their mechanisms of 
action, including CD25, which binds IL2 with high affinity mak-
ing it less available to conventional T cells and B cells; CTLA4, 
which inhibits expression of the activation markers CD80 and 
CD86 on antigen presenting cells; CD39 and CD73, ectoenzymes 
that cooperatively dephosphorylate ATP to adenosine, which is 
immunotoxic to other mononuclear cells; granzyme B, which 
induces apoptosis of the cytotoxic Treg targets; galectin-3, which 
prevents the formation of the immunologic synapses; LAG-3, 
which binds to MHCII inhibiting MHCII-expressing immune 
cells; PD-1, which binds to PDL-1 and inhibits conventional 
T cells and induces tolerogenic antigen presenting cells; TNFRII, 
which induces apoptosis; and the inhibitory cytokines IL10, IL35 
and TGFβ (42).

To start addressing the potential role of Treg and B  cells in 
the decreased immune responses of PHIV and PHEU and the 
potential interactions between the different T and B cell subsets, 
which were investigated here de novo with the intention of gen-
erating new hypotheses, we examined in an exploratory fashion 
select B and T cell subsets in PHIV and PHEU before and after 
vaccination with RV5. The parent study was a double-blind 
placebo-controlled trial that enrolled PHEU and PHIV on or 
initiating ART (49). The study showed that PHIV and PHEU tol-
erated RV5 equally well and mounted similar antibody responses. 
This report addresses additional objectives included in the parent 
study: (1) to compare T cell activation and regulation and B cell 
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clone HIT3a), anti-CD8-APC/AF750 (Invitrogen; clone 3B5), 
anti-CD8-PE/Cy7 (Invitrogen; clone 3B5), anti-CD19-PE/Cy5 
(BD Biosciences; clone HIB19), anti-CD19-PE/Cy7 (eBioscience; 
clone HIB19), anti-CD-10-APC/Cy7 (Biolegend; clone HI10a), 
anti-CD25-APC/Cy7 (BD Biosciences; clone M-A251), CD21-PE/
Cy5 (BD Biosciences; clone B-ly4), CD38-PE (Invitrogen; clone 
HIT2), CD27-APC (BD Biosciences; clone L128); HLA-DR-PE/
Cy5 (BD Biosciences; clone G46-6). Cells were fixed and per-
meabilized using a Fixation/Permeabilization kit (eBioscience), 
and stained with IL-10-APC (BD Biosciences; clone JES3-19F1), 
IL-17-PE/Cy7 (Biolegend; clone BL168), FOXP3-APC (eBiosci-
ence; clone PCH101), TGFβ-PE (Cedarlane; clone TB21) and 
analyzed with Guava easyCyte 8HT and FlowJo (Treestar) in three 
independent panels containing the following markers: (1) CD3, 
CD8, CD38, CD25, HLA-DR, and FOXP3; (2) CD3, CD8, CD19, 
TGFβ, IL-10, and IL-17; (3) CD19, CD10, CD21, and CD27. T 
and B  cell subsets were expressed as percentages of the parent 
CD4+, CD8+, or CD19+ cell populations. The gating strategy 
for each of the three independent six-color panels is presented in 
Figure S1 in Supplementary Material.

statistical analysis
Analyses focused on univariate comparisons as the small sample 
sizes limited use of multivariate techniques. Correlations with 
significance levels of p < 0.1 were highlighted in the figures and 
text. The less stringent significance level was used as we did not 
want to miss signals of potential biological significance. Because 
of the large number of markers and the exploratory nature of the 
analyses, results should be viewed as hypothesis-generating.

Distributions of biomarkers at entry were compared by HIV-1 
status using Wilcoxon rank sum tests. Spearman correlations 
were calculated among biomarkers and other participant char-
acteristics. To assess changes in marker levels over time, mixed 
models with random intercepts and slopes were fit on the log10-
transformed measurements to determine whether the slopes were 
associated with HIV-1 status or vaccine administration. To reflect 
marker level at entry and over time, the area under the curve 
(AUC) was calculated using individual-level effects from the 
mixed models, and the AUC correlated with antibody responses 
to RV5 in vaccine recipients.

resUlTs

Demographic and hiV Disease 
characteristics
This analysis included data from 89 of the 202 participants in 
the parent study (47 of 76 PHIV and 42 of 126 PHEU) who 
received all three doses of vaccine or placebo per-protocol and 
had cryopreserved PBMCs at entry, postdose 1 and postdose 3 
(Figure 1). Table 1 shows that the demographic characteristics 
of the participants with flow cytometry data were similar to those 
who did not contribute PBMC for this analysis. Overall, PHIV 
and PHEU differed with respect to maternal ART for preven-
tion of mother to child HIV transmission, which was more 
frequently used in PHEU. Weight z-scores were lower in PHIV 
as were CD4+ T cells, with 15% of PHIV and none of the PHEU 

differentiation in PHIV and PHEU; (2) to determine the effect of 
RV5 administration on B and T cell subsets; and (3) to determine 
the role of regulatory, activated and inflammatory T cells, and of 
B cell differentiation, on the antibody response to RV5.

ParTiciPanTs anD MeThODs

study Design
The parent clinical trial (P1072), sponsored by the International 
Maternal Pediatric Adolescent AIDS Clinical Trials network, 
was a Phase II randomized, placebo-controlled, double-blind 
study of RV5 in infants born to HIV-infected mothers in 4 
African countries where rotavirus vaccination was not part of 
the national immunization program (49). Infants between 2 and 
<15  weeks of age at screening were determined to be PHEU 
or PHIV. Infants in each stratum were randomized to receive 
three doses of RV5 or placebo according to the recommended 
schedule of immunization for RV5. Participants were followed 
until 6  weeks after the last dose, with visits at 7, 14, 21, and 
42 days after each dose, to record clinical signs, symptoms and 
new significant diagnoses. Blood for immunogenicity, plasma 
cytokines and lymphocyte phenotypic profiles was collected 
at entry, 21  days after the first dose of vaccine and 14 and/or 
42 days after the third dose.

Samples included in these analyses were obtained from 
infants who received all three doses of vaccine per-protocol, 
had sufficient numbers of peripheral blood mononuclear cell 
(PBMC) for flow cytometry at ≥3 time points and had blood 
collections performed within allowable time intervals (before the 
first dose, 14–28 days after the first dose, 11–21 and 28–70 days 
after the third dose). To ensure roughly equal numbers of PHIV 
and PHEU, only participants enrolled between February 2009 
and January 2013 were included. After January 2013, enrollment 
mostly consisted of PHEU.

To place the B and T  cell subset distribution of PHIV and 
PHEU in the context of HIV-unexposed hosts, we used a conveni-
ence set of cryopreserved PBMC from 6-month infants born to 
HIV-uninfected mothers who were enrolled in an observational 
study (“Tshipidi”) in Botswana (50).

antibody Measurements
Antibody responses to RV5, measured on serum obtained at 
baseline and 14 or 42 days after the third dose of vaccine, included 
serum neutralizing antibodies targeting the viral capsid proteins 
G1, G2, G3, G4, and P1A, and IgA antibodies that recognize RV5 
epitopes in RV5-infected fibroblasts. Antibody responses were 
expressed in units/mL (49).

Flow cytometric analysis
Peripheral blood mononuclear cells were cryopreserved at 
clinical site laboratories approved by the DAIDS-sponsored cryo-
preservation quality assurance program for protocol work. B and 
T cell subsets were enumerated in freshly thawed cryopreserved 
PBMC that met previously described testing criteria (51). After 
washing and counting viable cells, PBMC were surface-stained 
with the following conjugated mAbs: anti-CD3-AF488 (Biolegend; 
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displaying CD4+ T  cells <20%. PHIV were either on ART at 
study entry or started ART with the administration of the first 
dose of vaccine. Median plasma HIV RNA of PHIV at entry was 
33,491 cp/mL.

Baseline B and T cell Phenotypic Profiles
B and T cell profiles were identified by flow cytometry in freshly 
thawed PBMC and presented as proportions of the parent B, 
CD4+ or CD8+ T  cell populations. At entry, there were no 

statistically significant differences between PHEU and PHIV 
infants in the proportions of activated and inflammatory T cells, 
Breg and Treg (Table 2). Compared with PHEU, PHIV had lower 
proportions of CD19+ CD10−CD21+ CD27− naive B  cells 
(medians of 25.5 vs. 21.4%; p = 0.04). The similarity of the B and 
T cell phenotypic profiles in PHIV and PHEU was unexpected. 
To interpret these results, we tested a convenience sample of 
four 6-month old HIV-unexposed infants from a contemporary 
observational study conducted at our Botswana study site (50). 
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TaBle 1 | Characteristics at study entry by HIV status.

characteristic PhiV (N = 76) PhiV: with flow (N = 47) PheU: with flow (N = 42) PheU (N = 126)

Country Botswana 33 (43%) 17 (36%) 11 (26%) 37 (29%)
Tanzania 6 (8%) 5 (11%) 5 (12%) 7 (6%)
Zambia 6 (8%) 3 (6%) 4 (10%) 8 (6%)
Zimbabwe 31 (41%) 22 (47%) 22 (52%) 74 (59%)

Sex Male 35 (46%) 20 (43%) 15 (36%) 59 (47%)
Female 41 (54%) 27 (57%) 27 (64%) 67 (53%)

Age at randomization (days) Median (min, max) 93 (39, 104) 93 (61, 104) 92 (52, 101) 80 (28, 103)
Ever breast fed Yes 48 (63%) 30 (64%) 23 (55%) 79 (63%)

No 28 (37%) 17 (36%) 19 (45%) 47 (37%)

PMTCT No 25 (33%) 14 (30%) 8 (19%) 13 (10%)
Yes 51 (67%) 33 (70%) 34 (81%) 113 (90%)

Mother on ARVs No 62 (82%) 38 (81%) 14 (33%) 49 (39%)
Yes 14 (18%) 9 (19%) 28 (67%) 77 (61%)

ARV (days)a Median (Min, Max) 4 (0, 50) 6 (0, 49)
TMP/SMX No 6 (8%) 3 (6%) 15 (36%) 34 (27%)

Yes 70 (92%) 44 (94%) 27 (64%) 92 (73%)

WHO weight-for-age z-score Median (Q1, Q3) −1.5 (−2.4, −0.3) −1.4 (−2.7, −0.2) −0.7 (−1.4, −0.1) −0.6 (−1.3, −0.1)
Screening CD4% Median (min, max) 29 (7, 58) 28 (7, 58) 36 (20, 66) 38 (19, 66)

<15% 3 (4%) 3 (6%) 0 (0%) 0 (0%)
15 to <20% 8 (11%) 4 (9%) 0 (0%) 1 (1%)
≥20% 65 (86%) 40 (85%) 42 (100%) 125 (99%)

Entry HIV-1 RNA (copies/ml) Median 48,314 33,491
<10 K 22 (31%) 15 (32%)
10 to <100 K 18 (25%) 14 (30%)
100 to <750 K 15 (21%) 10 (21%)
≥750 K 17 (24%) 8 (17%)
Not measured 4 0

Vaccine group RotaTeq 37 (49%) 23 (49%) 19 (45%) 62 (49%)
Placebo 39 (51%) 24 (51%) 23 (55%) 64 (51%)

aSix infants were not on ARVs when they received the first study vaccination.
PMTCT, prevention of mother-to-child transmission; ARV, antiretroviral therapy; TMP/SMX, cotrimoxazole; PHEU, perinatally HIV-exposed uninfected; PHIV, perinatally HIV-infected infants.

TaBle 2 | B and T cell phenotypic characteristics [median (Q1, Q3) N] by HIV exposure.

assay Median (Q1, Q3); N p-Values

PheU PhiV hUU PhiV:PheU PhiV:hUU PheU:hUU

CD4+: %CD38+ HLADR+ (activated T cells) 7.1 (5.0, 10.8); 38 7.9 (4.3, 10.8); 39 27.5 (22.9, 39.8); 4 0.87 0.002 0.002
CD4+: %IL17+ (mucosal inflammatory T cells) 2.8 (1.3, 5.9); 40 3.2 (1.6, 6.8); 42 0.7 (0.4, 1.2); 4 0.71 0.013 0.014
CD4+: %CD25+ FOXP3+ (regulatory T cells) 0.1 (0.0, 0.2); 38 0.1 (0.0, 0.2); 39 0.3 (0.2, 0.4); 4 0.43 0.11 0.06
CD4+: %IL10+ (regulatory T cells) 2.3 (1.0, 3.4); 40 2.0 (1.3, 3.2); 42 5.8 (5.2, 7.5); 4 0.71 0.004 0.014
CD4+: %TGFβ+ (regulatory T cells) 2.8 (1.6, 4.3); 40 2.5 (1.5, 5.2); 42 4.5 (2.6, 5.6); 4 0.85 0.51 0.37
CD8+: %CD38+ HLADR+ (activated T cells) 14.4 (10.8, 21.6); 37 13.1 (10.4, 19.3); 38 23.4 (21.9, 39.1); 4 0.62 0.030 0.043
CD8+: %IL17+ (mucosal inflammatory T cells) 4.8 (2.4, 11.1); 41 4.7 (2.2, 10.3); 43 3.3 (1.9, 5.1); 4 0.92 0.35 0.34
CD8+: %CD25+ FOXP3+ (regulatory T cells) 0.3 (0.1, 0.5); 37 0.2 (0.1, 0.4); 38 0.4 (0.3, 0.5); 4 0.21 0.16 0.46
CD8+: %IL10+ (regulatory T cells) 2.3 (1.5, 6.0); 41 1.8 (1.3, 5.6); 43 3.1 (2.0, 4.7); 4 0.66 0.61 0.81
CD8+: %TGFβ+ (regulatory T cells) 3.2 (2.0, 5.6); 41 3.8 (1.7, 8.2); 43 5.5 (2.9, 7.4); 4 0.73 0.70 0.40
CD19+: %CD10+ (immature B cells) 11.3 (6.6, 25.2); 41 11.9 (6.1, 23.9); 42 12.1 (10.1, 15.0); 4 0.89 0.82 0.97
CD19+: %C10− CD21+ CD27− (naive B cells) 25.5 (19.0, 33.3); 41 21.4 (11.5, 27.4); 42 51.4 (45.5, 60.2); 4 0.040 0.004 0.006
CD19+: %C10− CD21+ CD27+ (memory B cells) 32.4 (14.5, 52.5); 41 35.0 (17.3, 49.2); 42 15.4 (10.8, 18.2); 4 0.82 0.07 0.10
CD19+: %C10− CD21− CD27− (exhausted 
B cells)

31.6 (21.4, 48.9); 41 27.4 (20.7, 51.8); 42 21.9 (20.8, 23.3); 4 0.95 0.14 0.15

CD19+: %IL10+ (regulatory B cells) 2.5 (1.5, 3.3); 41 2.6 (1.7, 3.6); 39 5.3 (4.0, 7.5); 4 0.89 0.013 0.013
CD19+: %TGFβ+ (active B cells) 4.2 (2.0, 14.8); 41 3.7 (1.5, 11.2); 39 10.0 (4.9, 13.9); 4 0.61 0.24 0.52

Analyses were performed in perinatally HIV-infected infants (PHIV) and perinatally HIV-exposed uninfected (PHEU) data obtained at study entry; HIV-uninfected unexposed (HUU) had 
only one data set available at 6 months of life. Comparisons with p-values < 0.05 are bolded.
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We found significant differences in the proportions of multiple 
B and T  cell subsets of PHIV and PHEU compared with the 
HIV-uninfected unexposed (HUU) infants, including higher 

inflammatory CD4+ IL17+ % T cells and lower naive B cells, 
activated CD4+/CD8+ CD38+ HLADR+ % T cells and IL10+ 
% Treg and Breg (Table 2).
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FigUre 2 | Correlations of B and T cell phenotypic profiles with select demographic and HIV disease characteristics. Data derived from 47 perinatally HIV-infected 
infants and 42 perinatally HIV-exposed uninfected infants are displayed as a heatmap based on Spearman correlations. Lymphocyte phenotypes are indicated on 
the y axis and demographic and HIV disease characteristics on the x axis. Heatmap color legend corresponding to the correlation coefficients is presented on the 
right side of the graph. The numbers inside the squares indicate coefficients of correlation (p-values). Numbers are shown only for correlations with p < 0.10.
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Using correlation analyses, we further explored the rela-
tionship of baseline B and T  cell phenotypic profiles of PHIV 
and PHEU with demographic and HIV disease characteristics 
(Figure  2). Older age was at least marginally associated with 
higher CD4+/CD8+ IL10+ % Treg and with lower CD19+ 
CD10+ % immature B  cells. Maternal ART for prevention of 
mother to child transmission was associated with higher CD4+/
CD8+ FOXP3+ CD25+ % Treg and higher naive B cells. Use of 
cotrimoxazole in infancy was associated with higher exhausted 
and lower resting memory B  cells and marginally associated 
with lower CD4+/CD8+ FOXP3+ CD25+ % Treg. In PHIV, 
higher HIV plasma RNA c/mL was strongly associated with 
higher activated CD8+ CD38+ HLADR+ % and with immature 
B cells, while the number of days on ART was associated with 
lower inflammatory CD4+ IL17+ % and higher resting memory 
B  cells. The number of days on ART was also associated with 
lower activated T cells, but it did not reach statistical significance. 
There were no differences by gender or breastfeeding status.

correlations among the Proportions of  
B and T cell subsets of PhiV and PheU 
before and after Vaccination
To determine if HIV infection affects the interactions between B 
and T cell subsets, and if these interactions change over time under 
the effect of ART or vaccination, we investigated B and T cell sub-
set correlations at entry (Figure 3A) and over time using the AUC 
as the outcome measure (Figure 3B). In general, the directions 
of the correlations were similar at baseline and over time, but the 
magnitude of the coefficients of correlation and p values differed 
between baseline and over time in some cases. The following is 
a summary of the most notable correlations. Treg revealed two 
main clusters of association: (a) high proportions of CD4+/CD8+ 
FOXP3+ CD25+ Treg positively correlated with CD4+ T  cell 
counts; (b) high proportions of TGFβ+ and IL10+ Treg positively 
correlated with inflammatory CD4+/CD8+ IL17+ % cells. IL10+ 
Breg followed the same pattern of associations as the IL10+ Treg. 
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In contrast, CD19+ TGFβ+ % Breg cells correlated only with 
exhausted B cells. Notable associations of B cells in different stages 
of maturation included the positive correlations of immature 
B cells with activated and inflammatory T cells and the negative 
correlations of immature B cells with mature naive B cells.

effect of Vaccination on the Proportions  
of B and T cell subsets
To determine whether vaccination was associated with a change 
in the proportions of B and T  cell subsets in PHIV or PHEU, 
we used mixed models to investigate HIV status and treatment 
group interactions with the slope of each B and T cell marker over 
time. There was a statistically significant interaction for CD4+ 
IL10+ % Treg, such that only PHIV vaccine recipients showed an 
increase in the proportions of this subset after each dose of vac-
cine (p = 0.013; Figure 4). There were no significant interactions 
of HIV status with treatment group (vaccine or placebo) for any 
other B and T cell subsets.

relationship between the Proportions  
of B and T cell subsets and antibody 
responses to rV5
As we previously reported (49), 81% of the PHIV and PHEU 
in this study had IgA responses to RV5, defined as ≥3-fold 
increases from pre- to postvaccination. Interpretation of the 
IgG neutralizing antibody responses after vaccination was 
complicated by pre-existing maternal antibodies. Median 
anti-G1 and G4 IgG neutralizing antibody levels increased 
from pre- to postimmunization in PHIV and PHEU vac-
cinees, but not in placebo recipients. Anti-G2, G3 and P1 
neutralizing antibodies did not show absolute increases from 
pre- to postimmunization in vaccinees, but showed decreases 
in placebo-recipients. Taken together, the data showed higher 
neutralizing titer differences from pre- to postimmunization in 
vaccinees compared to placebo-recipients for all RV5 antigens 
in PHEU, and for G1, G3, G4, and P1 in PHIV (Table S1 in 
Supplementary Material).
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Spearman correlations between AUC flow measurements and 
anti-RV5 antibody levels after the third dose of vaccine in PHIV 
and PHEU vaccinees (n  =  42) are presented in Figure  5. The 
strongest correlations were observed for CD4+/CD8+ FOXP3+ 
CD25+ %, which were marginally or significantly positively 
associated with IgG neutralizing antibody responses to four out of 
five viral strains in RV5 and were significantly positively associated 
with IgA antibody responses. CD4+ % was marginally or signifi-
cantly positively associated with higher IgG neutralizing antibody 
responses to three out of five viral strains in RV5. Correlations 
of CD4+/CD8+ FOXP3+ CD25+ % Treg with IgG and/or IgA 
antibody responses to RV5 remained at least marginally significant 
after adjustment for CD4+ T cell counts or percentages. Negative 
correlations with antibody titers were noted for CD4+ IL10+ % 
Treg, immature CD19+ CD10+ % and naive CD19+ CD10− 
CD21+ CD27− % B cells.

DiscUssiOn

The primary objective of this analysis was to compare the fre-
quency of B and T cell phenotypic subsets of PHIV and PHEU and 
to identify the phenotypes that correlate with antibody responses 
to RV5. Contrary to our expectations, PHIV and PHEU had simi-
lar proportions of Treg, Breg, activated and inflammatory T cells, 
and of immature and exhausted B cells in the first 3–6 months of 
life. Furthermore, the post hoc comparison of PHIV and PHEU 
B and T cell phenotypic profiles with those of a contemporary 
group of 6-month-old HUU of similar ethnicity and geographic 
location showed marked differences, indicating that PHIV and 
PHEU shared immunologic abnormalities as compared with 
HUU. This is an important observation because PHEU, like 
the PHIV, have an increased burden of infections compared to 
HUU, for which the immune basis is poorly understood (52). 
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Our observations provide new information about the immune 
abnormalities that characterize PHEU and the effect of in utero 
and/or early infancy exposure to maternal HIV infection in shap-
ing the neonate immune system.

IL17 + inflammatory T cells, putatively of mucosal origin, had 
similar frequencies in PHEU and PHIV and lower frequencies in 
HUU indicating that PHIV and PHEU might have higher levels of 
mucosal inflammation. It is important to note that HIV-infected 
individuals also have higher levels of gut mucosal inflammation 
compared with healthy hosts (53). Moreover, similar to indi-
viduals with chronic HIV infection, PHIV and PHEU had lower 
proportions of naive B cells and higher proportions of immature 
and exhausted B cells compared with HUU. However, PHIV and 
PHEU also had lower activated T  cells compared with HUU, 
which differs from what is typically observed in the context of 
chronic HIV infection. Although the results of the comparison of 
HUU with PHIV and PHEU have to be interpreted with caution 
due to the small number of HUU, our observations suggest that 
PHIV and PHEU may experience persistent stimulation of B cells 
and inflammatory T cells that may contribute to their immune 
deficit.

Treg play an important role in the modulation of immune 
responses including protection or lack thereof against cancer and 
infectious agents (43, 54–58). Treg frequencies generally increase 
in the context of HIV infection. Their role has been alternatively 

assigned to protect against immune activation or downregulate 
immune defenses against HIV and other pathogens (59–61). The 
effect of Treg on vaccine immunogenicity was studied in animal 
models, where Treg depletion increased the immunogenicity 
of anti-tumor vaccines (62, 63). Less is known about the effect 
of Treg on the immunogenicity of vaccines in humans (11, 64). 
To address this gap, we investigated the association of Treg with 
the immunogenicity of RV5 in PHIV and PHEU. We found that 
phenotypically diverse Treg subsets had opposite associations 
with antibody responses to the vaccine. CD4+ IL10+ % Treg 
negatively correlated with antibody responses to RV5, whereas 
the prototypic CD4+/CD8+ FOXP3+ CD25+ % Treg positively 
correlated with antibody responses. This finding underscores the 
functional diversity of phenotypically distinct Treg. Treg were 
previously shown to develop in the thymus or differentiate from 
naive or conventional T  cells at the periphery of the immune 
system. Treg are also segregated according to their genesis into 
natural and induced Treg. Additional phenotypic characteristics 
differentiate Treg according to the targets of their regulatory 
activity (44, 65). Here we demonstrate that Treg with different 
phenotypes may have divergent effects on immune responses to 
a live attenuated vaccine.

The main function of Treg is to mitigate the deleterious effects 
of inflammation on the host. Consistent with this, we found 
strong positive correlations of IL10+ and TGFβ+ Treg and IL10+ 
Breg with inflammatory Th17 cells. Th17 cells typically increase 
in response to pathogenic signals at mucosal sites, particularly 
in the gut (66). Collectively these observations suggest that both 
IL10+ and TGFβ+ Treg may be generated or expanded in PHIV 
and PHEU in order to quench mucosal inflammation. However, 
these regulatory responses to inflammation may downregulate 
other immune responses through a bystander mechanism. This 
may explain the negative association of CD4+ IL10+ % Treg with 
IgG antibody responses to G2 in RV5. Although a direct negative 
effect of IL10 on B  cell antibody production is unlikely, since 
IL10 generally stimulates B  cells to secrete antibodies, IL10+ 
Treg may decrease the T cell help necessary for effective antibody 
production through a direct effect on conventional T cells and/or 
indirectly through a tolerogenic effect on antigen presenting cells.

It is important to note that CD4+ IL10+ Treg gradually 
increased over time in PHIV from pre-vaccination to post-dose 
3. The kinetics of CD4+ IL10+ Treg in PHIV vaccine recipients 
differed from the kinetics of these Treg in the PHEU vaccine 
recipients or in placebo recipients. The increase in CD4+ IL10+ 
Treg over time in PHIV vaccine recipients may have contributed 
to their lower IgG antibody responses to G2 in RV5 compared 
with PHEU.

In contrast to the IL10+ Treg, high CD4+/CD8+ FOXP3+ 
CD25+ % Treg were associated with high antibody responses 
to RV5. This was an unexpected finding, because it differs from 
previous studies. Our unpublished results and the study of Lelic 
et  al. (64) showed negative associations of CD4+ FOXP3+ 
CD25+ % with cell-mediated immune responses of older adults 
to the zoster vaccine, which, like RV5, is a live attenuated vac-
cine. This difference may be related to the age of the vaccinees, 
but also to their exposure to maternal HIV infection. Elevated 
proportions of CD4+/CD8+ FOXP3+ CD25+ % Treg in infants 
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may have a different connotation compared with adults. Fetuses 
use their CD4+/CD8+ FOXP3+ CD25+ % Treg to survive the 
allogeneic maternal environment. This property seems to extend 
to the neonatal period, when T  cells continue to differentiate 
into FOXP3+ CD25+ Treg in response to alloantigens (67). It 
has been hypothesized that this predominant Treg response 
contributes to decreased immunogenicity of vaccines in neonates 
born to healthy mothers (68). However, in PHEU and PHIV the 
FOXP3+ CD25+ Treg may protect the B cells and/or T helper cells 

against intense activation followed by apoptosis and allow them 
to preserve function. In support of this hypothesis was the posi-
tive association of the FOXP3+ CD25+ Treg with CD4+ T cell 
counts and percentages in PHEU and PHIV. Positive associations 
of FOXP3+ CD25+ Treg with CD4+ T cells were also described 
in the context of chronic HIV infection and were ascribed to the 
anti-inflammatory effect of the FOXP3+ CD25+ Treg (61).

We found significant correlations between high CD4+ % 
T  cells and counts and higher IgG antibody responses. This is 
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in agreement with previous studies in HIV-infected individuals 
whose responses to vaccines increased with higher CD4+ T cells 
(69, 70).

Similar to what has been previously described in individuals 
with chronic HIV infection (71), we found a negative associa-
tion between CD19+ CD10+ % immature B cells and antibody 
responses to RV5. We also found a negative association of the 
CD19+ CD21+ CD27− % naive B cells with antibody responses 
to RV5, which suggests that an impediment of B cell differentia-
tion might underpin lower antibody production.

Our study was limited by the small sample size and by the lack 
of existing data that might have allowed us to formulate a priori 
hypotheses, The small sample size did not allow us to conduct 
any type of multivariate analyses. For this reason, instead of using 
a formal factor analyses, we used the results of the correlation 
analyses to group the different variables based on our expert 
knowledge in the discussion. It is also important to note that we 
achieved our goal of generating new hypotheses.

In conclusion, our data show for the first time that PHIV and 
PHEU share many aspects previously described in the immune 
dysfunction that accompanies chronic HIV infection, including 
increased inflammatory T  cells, B  cell differentiation defects 
and immunologic factors that modulate responses to vaccines. 
We also showed that select B and T  cell subsets correlate with 
antibody responses to RV5 indicating that the abnormal pheno-
typic profiles of PHEU and PHIV may be functionally relevant. 
The defects of the PHIV and PHEU immune systems may also 
underlie the increased infectious morbidity and mortality of these 
children. Since this study was hypothesis-generating, our find-
ings need to be confirmed and expanded including larger cohorts 
and geographically distinct populations, in order to achieve a full 
understanding of the scope of the immune defects in PHEU and 
design interventions to increase their immune protection.
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