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Abstract

Introduction: The reasons for malaria resurgence mostly in Africa are yet to be well understood. 

Although the causes are often linked to regional climate change, it is important to understand the 

impact of climate variability on the dynamics of the disease. However, this is almost impossible 

without adequate long-term malaria data over the study areas.

Methods: In this study, we develop a climate-based mosquito-human malaria model to study 

malaria dynamics in the human population over KwaZulu-Natal, one of the epidemic provinces in 

South Africa, from 1970-2005. We compare the model output with available observed monthly 

malaria cases over the province from September 1999 to December 2003. We further use the 

model outputs to explore the relationship between the climate variables (rainfall and temperature) 

and malaria incidence over the province using principal component analysis, wavelet power 

spectrum and wavelet coherence analysis. The model produces a reasonable fit with the observed 

data and in particular, it captures all the spikes in malaria prevalence.
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Results: Our results highlight the importance of climate factors on malaria transmission and 

show the seasonality of malaria epidemics over the province. Results from the principal 

component analyses further suggest that, there are two principal factors associated with climates 

variables and the model outputs. One of the factors indicate high loadings on Susceptible, Exposed 

and Infected human, while the other is more correlated with Susceptible and Recovered humans. 

However, both factors reveal the inverse correlation between Susceptible-Infected and Susceptible-

Recovered humans respectively. Through the spectrum analysis, we notice a strong annual cycle of 

malaria incidence over the province and ascertain a dominant of one year periodicity. 

Consequently, our findings indicate that an average of 0 to 120-day lag is generally noted over the 

study period, but the 120-day lag is more associated with temperature than rainfall. This is 

consistence with other results obtained from our analyses that malaria transmission is more tightly 

coupled with temperature than with rainfall in KwaZulu-Natal province.
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1. INTRODUCTION

Malaria continues to be a serious concern as it causes almost one million deaths globally 

every year [1], It is also estimated that approximately half of the world’s population is at risk 

of contracting malaria [1]. The disease is closely associated with Africa, which is classified 

as a region carrying the largest share of the global malaria burden [1]. However, malaria is 

sensitive to climatic conditions and the occurrence is strongly influenced by climate 

variability [2]. For this reason, the recent concerns about global warming have triggered 

several studies on the impact of climate (variability and change) on inter-annual patterns of 

the disease [3–6].

Previous studies have examined year-to-year variation of seasonal epidemics over the 

African highlands [7], For example, Hay et al [8] confirmed the existence of cycle’s 

periodicity more than one year. Using the time-series modelling approach, Zhou et al [9] 

recently ascertained that rainfall and temperature play a significant role in the inter-annual 

variability of malaria across multiple East African highlands. Their results in contrast to [8] 

suggested that malaria epidemics in the highlands are initiated by climate variability. More 

recently, Pascual et al [7] combined both a time-series epidemiological model and a 

statistical approach to analyse monthly cases of malaria from 1970 to 2003 over a highland 

in Western Kenya. The findings from their study reveal the existence of multiyear cycles of 

malaria incidence over the study period. Their findings also demonstrate the impact of 

rainfall over malaria resurgence in 1990. It is concluded in line with the study of [9] that 

climate variables play significant roles at different temporal scales and should be considered 

when building predictive malaria models.

However, assessing the impact of climate variability on malaria transmission over a region is 

difficult without having a long-term data series of malaria cases of the region [9], For this 

reason, several studies have considered using dynamical malaria models to generate reported 
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cases of epidemic regions over a long period. For instance, in the study of Laneri et al [10], 

dynamical models are used to understudy the impact of climate variability and immunity on 

malaria transmission in Senegal over two decades. Their results highlight the chances of 

predicting malaria incidence on endemic regions after investigating the interaction between 

climate and immunity. Following the same trend, Roy et al [11] examined the impact of 

climate variability on malaria and predicted epidemic regions over various districts in India 

with the help of dynamical models. It is concluded in their study that climate variables and 

process-based models are useful under non-stationary conditions. Okuneye and Gumel [12] 

designed a new non-autonomous model to assess the impact of variability in temperature and 

rainfall on the transmission dynamics of malaria in KwaZulu-Natal province of South 

Africa. Similarly, in the recent study of Abiodun et al [13], a climate-based mosquito model 

was presented to explore the impact of temperature and rainfall on mosquito population 

dynamics over Dondotha village in KwaZulu-Natal province, South Africa. The model 

demonstrates and quantifies the influence of temperature and rainfall on the abundance of 

Anopheles arabiensis over time and presents the strong seasonal variability over the region.

The current study aims to further develop the mosquito model presented in [13] to 

investigate the impact of climate variability on malaria transmission over KwaZulu-Natal 

province during the period 1970-2005. The newly developed mosquito-human malaria 

model will be used to analyse the temporal dynamics of the diseases over the province.

2. MATERIALS AND METHODS

2.1. Study Area

KwaZulu-Natal is a province located at the northeast part of South Africa. It is surrounded 

by three countries (Mozambique, Swaziland and Lesotho) and provinces (Mpumalanga, Free 

State and Eastern Cape), as in Fig. (1A and B). The province with almost 600,000 

individuals living in malaria-risk areas, witnessed the highest malaria prevalence in 2001 in 

South Africa [14].

2.2. Climate and Malaria Data

Two different datasets were considered for the purpose of this study. To estimate the climate 

data of KwaZulu-Natal province, we averaged the climate data of three towns within malaria 

risk areas in the province. The towns namely; Ingwavuma (27.1322°S, 31.9942°E), Richards 

Bay (28.7807°S, 32.0383°E) and Ulundi (28.2997°S, 31.4342°E) are selected from 

Umkhanyakude, Uthungulu, and Zululand districts respectively (Fig. 1B). The 

Observational-Reanalysis hybrid datasets of each town is obtained from the Princeton 

University Global Meteorological Forcing Datasets ((PUGMFD), see [15] for details), and 

consist of the daily precipitation, minimum and maximum temperatures from 1970–2005. 

The averaged climate data of the three towns for the daily mean temperature and rainfall 

over the study period is shown in Fig. (2A and B) respectively. The monthly provincial 

malaria cases data of KwaZulu-Natal between September 1999 and 2003 were obtained 

from the South African Department of Health.
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2.3. Mosquito-Malaria Model Formulation

In this study, we develop a climate-based mosquito-human malaria model to examine 

malaria transmission over KwaZulu-Natal province. We incorporate into the mosquito model 

of [13], as described in [16] and in Table 1, where Nh is the total human population, 

consisting of Susceptible Sh Exposed Infected Ih and Recovered Rh individuals. The total 

population of mosquito, denoted by Nh consist of Eggs (E), Larvae (L), Pupae (P), 
Susceptible adult searching for host (Ah). Adult at resting state (Ar). Adult searching for 

oviposition site(Ao), Exposed adult (Ev) and Infected adult mosquitoes (Iv). We assume that 

a portion of Ah will feed on Sh while some feed directly on infected human Ih Those that fed 

on susceptible human will proceed to adult resting (Ar) to digest their meal, and later 

proceed to adult seeking oviposition site (Ao) to lay their eggs, while those that fed on 

infected human proceed to exposed mosquito (Ev)to digest their meal, and later proceed to 

Ao after leaving the infected stage (Iv). The dynamics of the mosquito-human malaria model 

are described by the following system of differential equations (1) with the flow diagram 

illustrated in Fig. (3). The mosquito climate-dependent functions considered for this model 

are generated from the laboratory experiments of [33], For details on this, and on the 

mathematical analyses of the model in the present study, we refer readers to [13, 16], 

Parameters are estimated and adopted from other studies as shown in Table 1.

Since mosquitoes and malaria parasites respond to weather conditions in days [2], the 

impact of climate variables on malaria transmission will be underestimated when using a 

monthly dataset. For this reason, we run our model with daily climate data to simulate the 

daily human population dynamics over the study region. Considering the parameters in 

Table 1, we chose the following initial conditions for the model simulations; Sh = 1000000, 

Eh = 600, Ih = 250 , Rh = 120, E = 10000000, L = 80000000, P = 6000000, Ah = 5000000, 

Ar = 4000000, Ao = 10000, Ev = 8000, Iv = 5000. Although the model output is obtained in 

daily basis, in order to ascertain the validity of the simulated data, we calculate the monthly 

number of infected humans over the province between September 1999 and December 2003 

and compare our results with the observed monthly malaria cases over the province.
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dSh
dt = Φh + ρRh

Rh − (βh + μh)Sh

dEh
dt = βhSh − (ρEh + μh)Eh

dIh
dt = ρEh

Eh − (ρIh + μh + α)Ih

dRh
dt = ρIh

Ih − (ρRh + μh)Rh

dE
dt = n(ρAo

Ao + ρIv
Iv) − (ρe + μe)E

dL
dt = ρeE − ρL + μL 1 + L

K L

dP
dt = ρLL − (ρP + μP)P

dAh
dt = ρpP + ρAo

Ao − (βv + Dv + μAh + ℘)Ah

dAr
dt = DvAh − ρAr

+ μAr + ℘ Ar

dAo
dt = ρAr

Ar − ρAo
+ μAo + ℘ Ao

dEv
dt = βvAh − ρEv

+ μEv + ℘ Ev

dIv
dt = ρEv

Ev − μIv + ℘ Iv

(1)

2.4. Analysis of the Model Outputs

In order to examine the influence of climate variability on the transmission of malaria; we 

perform the following analysis on the model outputs.

2.4.1. Principal Component Analysis (PCA)—In this study, Principal Component 

Analysis (PCA) is used to analyse the data generated from the model. The PCA is useful 

tool for determining similar modes of variability between variables [17–19]. It can also be 

used to contract umpteen numbers of inter-related variables to a few principal components 

that accommodate much of the variance in the primary dataset [18]. The analysis helps 

understand, interpret, and reconstruct large, multivariate datasets, both with spatial extent 

[20] and at single sites [21]. Here, PCA is applied to identify the climate variables that are 

coupled with the model outputs. To achieve this, we adopted Statistica software (that is 

StatSoft Inc., 2013) using the varimax rotation option to obtain a noticeable and clear pattern 

of loadings.

2.4.2. Wavelet Power Spectrum—Wavelet analysis is a technique used for 

decomposing a time-series into time-frequency space. The outlook offers valuable 
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perception of the dominant modes of the time-series and how the modes vary with time. 

Contrary to Fourier analysis, wavelet analysis highlights and identifies the signals whose 

spectra change with time. In addition, the time-frequency analysis reveals further 

characteristics such as the periodic components with time progression [3, 7, 22]. The 

wavelet power spectrum also calculates the distribution of variance between frequency f and 

different time locations τ. In order to compare the wavelet power spectrum with simple 

spectral techniques, the global wavelet spectrum is computed as the time average of the 

wavelet power spectrum for each frequency component [7]. For a better understanding of 

this method and analysis, see [23, 24].

Here in this study, we present the basic methods of using wavelet analysis to extricate 

periodic components from the climate variables and our model outputs. The wavelet analysis 

investigates the time-scale decomposition of the signal by calculating its spectral attributes 

as a function of time [22, 25].

2.4.3. Wavelet Cross-Coherence—Time-series analyses have been used to examine 

the dynamics of several disease epidemics, as it seemed to be the only substitute [26, 27], 

they are more useful in short-term analyses [28, 29]. They are typically noisy and complex 

[23]. For these reasons, and in order to qualitatively explore the correspondence of the 

wavelet spectra of rainfall and temperature on malaria incidence, we examine their cross-

coherence spectrum as shown in Figs. (7 and 8) using wavelet cross-coherence analysis.

Wavelet cross-coherence is a technique developed for analysing the coherence and time-

phase lag between two time-series as a function of both time and frequency [30]. As defined 

in Fourier analysis, the univariate wavelet power spectrum can be broaden to analyse 

statistical relationships between two time-series x(t) and y(t) by computing the wavelet 

coherence, using the formula:

Rx, y( f , τ) =
Wx, y( f , τ)

Wx( f , τ) 1 2 . Wy( f , τ) 1 2
,

where ⟨ ⟩ denotes smoothing in both time and frequency; Wx(f, τ) represents the wavelet 

transform of series x(t);Wy(f, τ) is the wavelet power transform of series y(t; and Wx,y(f, τ) 

= Wx(f, τ).Wy(f, τ) is the cross wavelet power spectrum. The wavelet coherence provides 

local information about the extent to which two non-stationary signals x(t) and y(t) are 

linearly correlated at a certain period or frequency. The Rxy(f, τ) is equal to 1 when there 

exists a perfect linear relationship at a particular time and frequency between the two signals 

[23].

3. RESULTS AND DISCUSSION

3.1. Model Validation

Comparing the model output with observed data, our results produce a similar curve (r = 

0.7) with the observed data as shown in (Fig. 4). For instance both curves highlight the sharp 

increase in malaria cases in 2000 followed by a decrease in 2001 to 2003. The sudden 
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reduction has been linked to the introduction of dichlorodiphenyltrichloroethane (DDT) in 

2000 [31] which was also captured in the model. However, we do notice some discrepancies 

between the simulated and observed data. The model over estimates malaria incidence as 

noted in September 2002 by showing almost 1000 infected humans when they were actually 

less than 200. Also, the malaria prevalence in 2000 picked up around December 1999 and 

ended in September 2000, while model pick-up time was around January 2000 and ended 

around October 2000. We consider these as part of the limitations of the model, which might 

be linked to the lack of other crucial factors affecting malaria in our model.

3.2. Malaria and Climate Variability

3.2.1 Correlation Between Climate Variables and Model Outputs—In order to 

investigate the possible correlation between malaria and climate, we perform principal 

component analyses on the model outputs.

Our results indicate that there is a process coordinating the relationship between climate 

variables and malaria. When the process is active, it leads to two principal factors. As 

indicated in Table 2, the first principal factor (PF1) shows high loadings on Eh and Ih. 

Furthermore, the activation of the process increases Eh and Ih but decreases Sh. The second 

principal factor (PF2) shows an increase in Sh, decreases the population of Rh. This is logical 

to the fact that recovered humans can be infected again if bitten by infected mosquito. Our 

findings here are also consistence with the previous studies of [32] that an increase in 

infected humans negatively influences the susceptible human population.

3.2.2. Wavelet Time Series Analysis of Climate Variables and Malaria—In 

general, two dominant peaks are noticed over the province from 1970-2005 as shown in Fig. 

(5c, f and i). The figures also reveal that 1-year periodicity is highly significant over the 

study period and describe the largest proportion of the time series. In addition, the monthly 

time-series, as shown in Fig. (5a, d and g) highlight a recurrent cycle with an apparent 1-

year period, and additional components of variability in some years.

The wavelet power spectrum, as illustrated in Fig. (5b, e and h) indicates the decomposition 

of the series in time (along the x-axis) and period (along the y-axis) scale. The results from 

the analyses identify a strong annual cycle and ascertained a dominant 1-year periodicity (in 

red). Additional components of variability at shorter periods are also highlighted in the 

figures. In particular, the cycles in Fig. (5b) over the study period are noticeable for rainfall 

between 1986-1996 and 2001-2003, while those of temperature are significantly noticeable 

from 1986-1991 as revealed in Fig. (5e). However, both climate variables show similar 

patterns in the cycles from 1986-1991. This is an indication that on a seasonal scale, around 

this period, both variables increase and decrease simultaneously over the province. Also, the 

cycle patterns of the infected human are slightly more similar to that of temperature than 

rainfall. This implies that malaria transmission over the province is more associated with 

temperature than rainfall.

3.2.3. The Lag and Cross-Correlation of Climate Variability and Malaria—Also, 

the results in Fig. (6) show that malaria transmission over KwaZulu-Natal province between 

1970 and 2005 is more influenced by temperature than rainfall. For instance, the highest 
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correlation between rainfall and malaria incidence as shown in the figure is below 0.4, while 

that of temperature is 0.9. In addition, the red and blue bars clearly indicate the existence of 

both positive and negative correlation between climate variables and infected humans over 

the study period. However, the positive correlation are more noticeable. This is an indication 

that both rainfall and temperature contribute positively to the transmission of malaria over 

the province. Furthermore, an average of 0 to 120-day lag is generally noticed over the 

years, however, 120-day lag is more associated with temperature than rainfall. Also, in some 

of the years, rainfall is negatively correlated with number of malaria cases at lags of 0 and 1 

month. This is consistence with the previous study of [34], However, our result here 

contradicts their findings that temperature is weakly correlated at lags of 0 to 4 months. A 

stronger correlation in the case of temperature is obtained in this study. Other study in line 

with our findings here is the study of Mohammadkhani et al [35]. It is established in their 

study that the maximum positive cross-correlation was observed between malaria and 

climatic factors with 1 to 4 months lag [35]. Further studies associated with these findings 

are [36–38].

In addition, the results in Figs. (7 and 8) show a strong relationship and significant cross-

coherence between the climate variables and malaria incidence over the province. The 

results, in line with our previous findings clearly indicate that malaria incidences over the 

province are more and closely associated with the temperature rather than with rainfall. For 

instance, the annual cycle is dominated and fairly consistent through the year for both 

rainfall and temperature. The biennial pattern are additionally noted and more pronounced 

for temperature than rainfall. Malaria occurrence period is also noticed to fall within 

256-512 days on both figures. Focusing more on the two figures, the cross-spectral analysis 

reveals that the correlation between malaria incidence and rainfall are noticeably stronger 

between 1971 - 1978 and 1987-2003, while that of temperature are noticeable all through the 

year. Although we notice a weak in-phase relationship between temperature and malaria 

incidence on the biennial cycle from 1984-1987 as shown in Fig. (7), no significant cycle or 

coherence is noted between this period for rainfall (Fig. 8). These results are consistent with 

the findings of Cazelles et al [3] that temperature and rainfall are highly significant on 

dengue transmission in Thailand. Their findings also made emphasis on the stronger 

relationship between temperature and dengue fever than that of rainfall. In addition, similar 

associations were documented for Colombia [39], India [40], and Venezuela [41], among 

others.

CONCLUSION

In this study, we have developed a climate-based mosquito-malaria model to examine 

malaria incidence over KwaZulu-Natal province from 1970 - 2005. The model is developed 

from the previous study of Abiodun et al [13] to investigate the human population dynamics 

of the province between the study periods.

The model outputs are further analysed with principal component analysis, wavelet power 

spectrum and wavelet cross-coherence analysis to investigate the relationship between the 

climate variables and malaria incidence over the province.
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Our results ascertain that malaria transmission in the province is seasonal as indicated in 

previous studies [12, 42–44], The findings also indicate that both temperature and rainfall 

are responsible for the transmission of the disease. However, malaria is more strongly 

influenced by temperature than rainfall over the province [42–44], It is further established in 

our findings that malaria incidence is positively correlated with climate factors between 1 to 

4 months lag.

The findings of this study would be useful in early warning or forecasting of malaria 

transmission over KwaZulu-Natal province. More importantly, attention should be paid to 

the more expected occurrences of malaria between the periods of 256-512 days.

Currently, the model ignores some other important factors influencing the dynamics of the 

vector population and malaria transmission over KwaZulu-Natal province. Several studies 

[2, 45, 46] have highlighted the importance of migration, relative humidity, land cover, 

irrigation and deforestation mosquito abundance and malaria incidence over a region. We 

therefore leave these aspects for further studies.
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Fig. (1). 
The map of KwaZulu-Natal province, South Africa. Source: GIS unit of the Medical 

Research Council of South Africa.
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Fig. (2). 
Time series of (a) daily mean temperature, and (b) rainfall of KwaZulu-Natal province from 

1970 - 2005.
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Fig. (3). 
Flow diagram of the mosquito-human malaria model.
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Fig. (4). 
The modelled and reported cases of malaria over KwaZulu-Natal province, South Africa 

from September 1999 to December 2003.
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Fig. (5). 
The wavelet analysis of the climate variables of KwaZulu-Natal province from 1970-2005}. 

The time series of average monthly (a) rainfall, (d) temperature and (g) simulated infected 

humans. The wavelet power spectrum of (b) rainfall, (e) temperature and (h) Infected 

humans time series. The cross-hatched region is the cone of influence, where zero padding 

has reduced the variance and only pattern above the region are considered reliable. The 

colour code values from blue (low values) to red (high values). The global wavelet power 

spectrum of (c) rainfall, (f) temperature and (i) Infected humans have been scaled. The black 
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contour line corresponds to 10% significance level, using the global wavelet as the 

background spectrum.

Abiodun et al. Page 17

Open Infect Dis J. Author manuscript; available in PMC 2019 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. (6). 
Cross-correlation coefficients of time series of daily climate variables and simulated infected 

human at several lags.
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Fig. (7). 
Wavelet coherence of rainfall and simulated infected human over KwaZulu-Natal province 

from 1970-2005. The arrows indicate the relative phasing of the variables, while the faded 

regions represent the cone of influence and are not considered for the analyses.
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Fig. (8). 
Wavelet coherence of temperature and simulated infected human over KwaZulu-Natal from 

1970-2005. The arrows indicate the relative phasing of the variables, while the faded regions 

represent the cone of influence and are not considered for the analyses.
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Table 1.

Parameters of the mosquito-malaria model.

Description Parameters/Functional Form Ref.

Number of eggs, n(Ta) −0.061411T3
a + 38.93T2

a − 801.27Ta + 5391.4 [1]

Egg development rate, ρe(Tw) 0.012T3
w − 0.81T2

w + 18Tw − 135.93 [1]

Larva development rate, ρL(Tw) −0.002T3
w + 0.14T2

w − 3Tw + 22 [1]

Pupa development rate, ρp(Tw) −0.0018T3
w + 0.12T2

w − 2.7Tw + 20 [1]

Egg mortality rate, μe(Tw) 0.0033T3
w − 0.23T2

w − 5.3Tw − 40 [1]

Larva mortality rate, μL(Tw 0.00081T3
w − 0.056T2

w + 1.3Tw − 8.6 [1]

Pupa mortality rate, μp(Tw 0.0034T3
w − 0.22T2

w − 4.9TW − 34 [1]

Gonotrophic rate, ρAo(Ta) 0.00054T3
a − 0.038T2

a − 0.88Ta [1]

Mosquito biting rate, Є 0.000203Ta(Ta − 11.7) 42.3 − T [37, 40]

Progression rate from Ev to Iv, μEv(Ta) Ta − Tmin
111

[37, 43, 50]

Min. temp. for P. falciparum survival, Tmin 16C [15, 37, 43]

Proportion of insecticides, ℘ 0.5 Est.

Rate adult mosquito seeks blood meal, ρAh 0.46 [14, 30]

Rate adult mosquito seeks resting site, ρAr 0.43 [14, 30]

Probability of human getting infected, β1 0.533 Nominal

Probability of mosquito getting infected, β2 0.09 [6, 33, 39]

Natural death rate in human, μh 1/49.1/365 per day [28, 55], Est.

Human recruitment rate, Φh 51.67 per day [28, 55], Est.

Contact rate of mosquito per human, κ 0.6 per day [13, 39]

Disease induced death rate, α 0.05 per day [33, 39]

Progression rate from Iv to Ev, ρIv 1/18 per day [6, 33, 39]

Recovered individuals’ loss of immunity, ρRh 1/730 per day [6, 33, 39]
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Table 2.

The principal component analyses (with varimax normalized loadings) showing the possible correlation 

between the model outputs.

Variable Principal Factor 1 (PF1) Principal Factor 2 (PF2)

Sh −0.68 0.62

Eh 0.94 0.15

Ih 0.76 −0.42

Rh 0.01 −0.97

Expl. Var 1.92 1.53

Prp. Totl 0.48 0.38
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