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Abstract: The combination of in vitro maturation (IVM) techniques and oocyte vitrification (OV)
could increase the number of useful oocytes in different types of patients. IVM and subsequent OV
is the most widely used clinical strategy. Would the results improve if we reverse the order of the
techniques? Here, we evaluated survival, in vitro maturation, time to extrude the first polar body
(PB), and the metaphase plate configuration of human prophase I (GV) oocytes before or after their
vitrification. Specific, 195 GV oocytes from 104 patients subjected to controlled ovarian stimulation
cycles were included. We stablished three experimental groups: GV oocytes vitrified and IVM
(Group GV-Vit), GV oocytes IVM and vitrified at MII stage (Group MII-Vit), and GV oocytes IVM
(Group not-Vit). All of them were in vitro matured for a maximum of 48 h and fixed to study the
metaphase plate by confocal microscopy. According to our results, the vitrification of immature
oocytes and their subsequent maturation presented similar survival, maturation, and metaphase
plate conformation rates, but a significantly higher percentage of normal spindle than the standard
strategy. Additionally, the extension of IVM time to 48 h did not seem to negatively affect the oocyte
metaphase plate configuration.

Keywords: in vitro maturation; cryopreservation; spindle configuration

1. Introduction

Oocytes vitrification (OV) protocols developed during the last decade have allowed
the introduction of this technique in all assisted reproduction (AR) laboratories. This is
based on the quick freezing of the oocytes in a medium with high cryoprotectants (CRP)
concentrations, preventing ice crystals formation [1]. Previous studies have focused on
avoiding the toxic effects of the CRP, reducing the exposure and freezing time [2–4]. OV
has required a lengthier optimization and implantation period than embryo vitrification
(EV). One of the greatest challenges of OV is the disruption of the meiotic spindle [5–9].
The spindle, which is formed mainly by microtubules, is responsible of chromosome
segregation [10]. The microtubules are very sensitive to temperature so, therefore, oocyte
preservation is associated with an increase in embryonic aneuploidies [11–13]. However, it
is also known that this structure is dynamic and can repolymerize when the physiological
conditions are recovered [14–19].

Oocyte preservation can be performed in immature oocytes or after their in vitro
maturation (IVM). Conventionally, prophase I (GV) oocytes have been considered more
suitable for preservation than metaphase II (MII) oocytes, since during meiosis arresting at
GV, chromatin is protected in the germinal vesicle and the spindle is not formed yet [20–22].
Nevertheless, even if this problem was hypothetically avoided with GV oocytes, the
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possible alteration in the cortical granules distribution, cytoplasmic organelles, RNA, and
proteins may compromise their maturation [8,23–25].

Immature oocytes collection and in vitro maturation are techniques with multiple
potential indications: Patients at risk of ovarian hyperstimulation (OHSS) or with Polycystic
Ovary Syndrome (PCOS); women that underwent invasive surgery; patients at risk of
exposure to estrogens; oocyte donation program; optimization of stimulated cycles; classic
in vitro fertilization (IVF) or assisted by intracytoplasmic sperm microinjection (ICSI),
and fertility preservation for social reasons or cancer patients [26–28]. In this last group,
patients for oocyte vitrification and ovarian cortex preservation are included. However, this
technique is still under development, and is not a clear alternative to other AR techniques.
IVM involves nuclear and cytoplasmic changes that, as previously mentioned, are necessary
for the subsequent proper embryonic development. The understanding of the molecular
basis of the chromosome segregation process during IVM would reveal the full potential
of this technique. Consequently, the quality of the collected MII oocytes will depend not
only on the intrinsic characteristics of the original GV oocyte, but also on the vitrification
protocol chosen and the conditions of the IVM process. Both processes can contribute to a
deficient embryonic development or to the start of apoptotic processes [29].

In the recent years, many children were born after OV [30–33], IVM [34–39], or a
combination of both [40,41]. However, this combination remains controversial [42,43]. In
previous studies performed by our group, the vitrification before or after the IVM for 48 h
of GV did not show significant differences in some constituents of their ultrastructure [25].
In the present work, we aimed to evaluate the impact of IVM time and/or vitrification
on the following rates: Survival, maturation, spindle configuration, and chromosomes
distribution. To that end, we distributed the oocytes in three experimental groups: Group
GV-Vit (frozen GV oocytes and then matured in vitro), Group MII-Vit (frozen MII oocytes
after being matured in vitro), and Group not-Vit (GV oocytes matured in vitro and not
vitrified) (see Figure 1).
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Figure 1. Experimental design that describes in detail the different study groups and the methodology used at the different
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in vitro maturation; FIX, fixation; Vit, vitrification.
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Our results showed comparable vitrification survival, maturation, and metaphase
plate configuration rates whether oocytes were cryopreserved before or after IVM, sug-
gesting a possible benefit if oocytes were vitrified at GV. Furthermore, we showed that
extending IVM could increase the number of available oocytes without altering their quality,
at least regarding the metaphase plate configuration.

2. Results
2.1. Survival Rate (SR)

Depending on the maturation stage on which the oocytes were vitrified, the survival rate
(SR) after their warming did not show significant differences in GV (Group GV-Vit) and MII
(Group MII-Vit) [Group GV-Vit 77.6% (45/58) vs. Group MII-Vit 68.2% (30/44)] (Table 1).

Table 1. Rates calculated according to the groups of study. Survival rate (SR), maturation rates (MR):
MR by germinal vesicle breakdown (GVBD); after 24 h and 48 h. Average percentage by group and
p-value. (*) p-value < 0.05 Group GV-Vit vs. Group MII-Vit. (–) data not possible.

Group GV-Vit Group MII-Vit Group Not-Vit

SR 45/58 (77.6%) 30/44 (68.2%) –

MR
GVBD 40/45 (88.9%) * 61/85 (71.8%) * 43/52 (82.7%)

24 h 27/45 (60%) 56/85 (65.9%) 31/52 (59.6%)
48 h 33/45 (73.3%) 65/85 (76.5%) 36/52 (69.2%)

Similarly, the SR was calculated according to the maturation time (24 or 48 h). For this
analysis, only IVM oocytes from Group MII-Vit (n = 44) were selected, since Group GV-Vit
maturation could be conditioned by the previous vitrification of the oocytes. This study
did not show differences depending on the maturation time [24 h 65% (26/40) vs. 48 h
100% (4/4)].

2.2. Maturation Rate (MR)

Regardless of the study groups or prior state of the oocyte, fresh (Group MII-Vit
+ Group not-Vit) or warmed (Group GV-Vit), no significant differences were observed
in maturation rates (Table 1). However, the germinal vesicle breakdown (GVBD) was
significantly higher in the Group GV-Vit vs. Group MII-Vit [88.9% (40/45) vs. 71.8%
(61/85); p-value < 0.05] (see Table 1).

The percentage of oocytes that matured during the first 24 h of culture was 62.6%
(114/182), with an increase of 11% (20/182) during 25–48 h. Thus, 73.6% (134/182) of the
initial GV oocytes matured after 48 h.

2.3. Spindle Characteristics and Chromosome Arrangement

The reconstruction of Z-stacks sections allowed us to observe spindle configuration
and chromosome alignment in each oocyte. Regarding the normal spindle conformation,
if the spindle was oriented parallel to the focal plane, the complex looked as a typical
barrel-shaped (Figure 2A,B). On the contrary, if the spindle was oriented perpendicular
to the focal plane the fibers became circular in shape (Figure 2C). Abnormal spindles had
a disorganized appearance (Figure 2D) or were shorter than usual (Figure 2E). Normal
chromosomes arrangement showed the genetic material aligned in a compact metaphase
plate at the spindle equator (Figure 2A,B,E) or in a perfect circle depending on the focal
plane (Figure 2C). If some chromosomes were found to be slightly displaced from the
metaphase plate, this configuration was classified as partially abnormal (Figure 2F) and, in
the case of being completely disorganized, as abnormal (Figure 2D).
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Figure 2. Confocal micrographs of spindle chromosome complexes. Anti-α/β-tubulin antibody and 
Alexa Fluor 488 to visualize the spindle (green) and DAPI to stain the chromosomes (blue). (A,B) 
Normal barrel-shaped spindle configuration with chromosomes arranged at the equator of the 
structure. (C) Normal spindle complex oriented perpendicular to the focal plane and chromosomes 
arranged in a circular way. (D) Spindle showing completely disorganized appearance with 
abnormal chromosomes configuration. (E) Spindle complex displaying reduction in the longitudinal 
dimension of the spindle and compact metaphase plate. (F) Normal spindle conformation with some 
chromosomes slightly displaced from the plane of the metaphase plate (arrows). 

As a result of these observations, four categories regarding spindle and chromosome 
status were established. The first category involved oocytes with normal configuration of 
both structures (N/N, Figure 3A). More in detail, a barrel-polymerized spindle positioned 
perpendicular to the first PB and aligned chromosomes at the equator of the meiotic 
spindle. The second included oocytes containing a normal spindle and partially abnormal 
chromosomal arrangement (N/PA, Figure 3A). In this case, some chromosomes are 
located outside of the spindle equatorial plane (Figure 3). The third category included 
abnormal spindle configuration (depolymerized spindle) and partially abnormal 
chromosome distribution (A/PA, Figure 3A). The last category corresponded to oocytes 
with abnormal spindle and chromosome alignment (A/A, Figure 3A). 

Figure 2. Confocal micrographs of spindle chromosome complexes. Anti-α/β-tubulin antibody and Alexa Fluor 488 to
visualize the spindle (green) and DAPI to stain the chromosomes (blue). (A,B) Normal barrel-shaped spindle configuration
with chromosomes arranged at the equator of the structure. (C) Normal spindle complex oriented perpendicular to the
focal plane and chromosomes arranged in a circular way. (D) Spindle showing completely disorganized appearance with
abnormal chromosomes configuration. (E) Spindle complex displaying reduction in the longitudinal dimension of the
spindle and compact metaphase plate. (F) Normal spindle conformation with some chromosomes slightly displaced from
the plane of the metaphase plate (arrows).

As a result of these observations, four categories regarding spindle and chromosome
status were established. The first category involved oocytes with normal configuration of
both structures (N/N, Figure 3A). More in detail, a barrel-polymerized spindle positioned
perpendicular to the first PB and aligned chromosomes at the equator of the meiotic spindle.
The second included oocytes containing a normal spindle and partially abnormal chromo-
somal arrangement (N/PA, Figure 3A). In this case, some chromosomes are located outside
of the spindle equatorial plane (Figure 3). The third category included abnormal spindle
configuration (depolymerized spindle) and partially abnormal chromosome distribution
(A/PA, Figure 3A). The last category corresponded to oocytes with abnormal spindle and
chromosome alignment (A/A, Figure 3A).

The comparison of the mean percentage of oocytes with normal metaphase plate con-
figuration rate (N/N) between the three study groups did not show significant differences
(see Figure 3B). No differences were found once the rest of the categories were compared
(N/PA; A/PA or A/A) in the three groups. It is worth mentioning that despite not reaching
statistical significance, oocytes frozen at GV (Group GV-Vit) or non-frozen (Group not-Vit)
seemed to show a normal metaphase plate configuration in a higher percentage than the
one obtained when the oocytes were matured and subsequently vitrified (Group MII-Vit).
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Figure 3. Oocyte categories according to the whole spindle chromosomes complex configuration. N/N: Polymerized 
spindle and normal chromosome distribution; N/PA: Polymerized spindle and partially abnormal chromosome 
distribution; A/PA: Depolymerized spindle and partially abnormal chromosome distribution; A/A: Depolymerized 
spindle and abnormal chromosome distribution. (A) Oocyte morphology by bright field microscopy and confocal 
micrographs of spindle chromosomes complexes. Anti-α/β-tubulin antibody and Alexa Fluor 488 to visualize the spindle 

Figure 3. Oocyte categories according to the whole spindle chromosomes complex configuration. N/N: Polymerized spindle
and normal chromosome distribution; N/PA: Polymerized spindle and partially abnormal chromosome distribution; A/PA:
Depolymerized spindle and partially abnormal chromosome distribution; A/A: Depolymerized spindle and abnormal
chromosome distribution. (A) Oocyte morphology by bright field microscopy and confocal micrographs of spindle
chromosomes complexes. Anti-α/β-tubulin antibody and Alexa Fluor 488 to visualize the spindle configuration (green) and
DAPI to stain the chromosomes arrangement (blue). Chromosomes slightly displaced from the plane of the metaphase plate
(write arrow). In the dotted box, the mitotic spindle and chromosomes were amplified for easy viewing. (B) Proportion of
oocytes according to their Spindle chromosomes complex configuration in the three groups of study (Group GV-Vit, Group
MII-Vit, and Group not-Vit), p-value > 0.05. This graph also contains, inside the bar, information on the number of oocytes
included in each group.
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The study of the chromosomal distribution, regardless of the spindle conformation,
did not show significant differences in any of the cases (Figure 4A). However, the exclusive
evaluation of the normal spindle polymerization (barrel structure of the metaphase plate)
showed significant differences between the groups studied (see Figure 4B). This significance
was higher when we compared them one by one (Group GV-Vit vs. Group MII-Vit p-value
= 0.038 and Group MII-Vit vs. Group not-Vit p-value = 0.030). Thus, the results exposed
that MIIIVM oocytes that were vitrified at GV (Group GV-Vit) were similar to than those
MIIIVM that were not vitrified (Group not-Vit), presenting a better polymerized spindle
than the MIIIVM vitrified at MII (Group MII-Vit).
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Figure 4. Chromosomes and spindle normal configuration of the oocytes in the three groups of study (Group GV-Vit, Group
MII-Vit, and Group not-Vit). (A) Chromosomes normal configuration, p-value > 0.05. (B) Spindle normal configuration
* p-value Group GV-Vit vs. Group MII-Vit = 0.038 and ** p-value Group MII-Vit vs. Group not-Vit = 0.03.

2.4. Influence of In Vitro Maturation (IVM) Time on the Configuration Metaphase Plate

Counting the 74 oocytes from the immunofluorescence study (Group GV-Vit = 26,
Group MII-Vit = 27, and Group not-Vit = 21), regardless of the group that they belonged to
and depending on the IVM time, 24 or 48 h, the analysis of the four different metaphase
plate configurations showed significant differences between both study times [N/N: IVM24
h 39.3% (24/61) vs. IVM48 h: 38.5% (5/13); N/PA: IVM24 h 24.6% (15/61) vs. IVM48 h:
53.8% (7/13); A/PA IVM24 h 31.1% (19/61) vs. IVM48 h: 0% (0/13); A/A IVM24 h 4.9%
(3/61) vs. IVM48 h: 7.7% (1/13); p-value < 0.05].

When the results were analyzed separately, the study of the chromosomal distribution,
regardless of the spindle conformation, did not show significant differences between the
groups (see Table 2). On the other hand, the evaluation of the spindle polymerization,
regardless of the chromosomal distribution, showed a significantly higher percentage of
oocytes with an optimal spindle configuration in the oocytes that matured at 48 h compared
to those that did it during the first 24 h of culture (Table 2). However, these results have to
be interpreted very carefully since the number of oocytes that maturated after 48 h was
fairly low (n = 13).

Table 2. Normal spindle configuration and chromosomal position of oocytes depending on the in vitro
maturation time (IVM), 24 or 48 h. * p-value < 0.05. IVM, in vitro maturation; CHR, chromosomes.

IVM n CHR SPINDLE

24 h 61 24/61 (39.3%) 39/61 (63.9%) *
48 h 13 5/13 (38.5%) 12/13 (92.3%) *
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3. Discussion

The use of in vitro matured oocytes in reproductive cycles with or without stimulation,
combined with the vitrification technique, involves novel ways of action and allows
us to maximize the efficiency of the AR laboratories’ techniques. Their clinical use is
conditioned to the collection of competent MII oocytes, which are able to sustain early
embryonic development. Currently, the use of immature oocytes (rescue oocytes) is one
of the research fields with the greatest potential to develop and optimize emerging AR
techniques in humans. Therefore, there are several aspects to improve, specially IVM
technique. However, there is high controversy in the literature regarding vitrification
before or after IVM [42,44,45]. For that, this study was divided into different experimental
groups depending on their maturation state prior to vitrification: Group GV-Vit (GV
oocytes frozen and then matured in vitro), Group MII-Vit (frozen MII oocytes after being
matured in vitro), and Group not-Vit (GV oocytes matured in vitro and not vitrified).

The surface/volume ratio is similar in immature (GV) oocytes or after their in vitro
maturation (MII). However, the microstructure confers a priori advantages to GV oocytes
over MII: (1) Chromatin protected by the nuclear membrane inside the GV and (2) absence
of the microtubule assembly complex during meiosis. Nevertheless, there is no consensus
in the literature about this topic [21,46–49]. Our results did not show statistical significance
when comparing the survival rate of GV oocytes vs. MIIIVM, which agreed with other
studies published in humans, where survival after GV warming was comparable to the one
showed by MIIIVM, either with oocytes from stimulated [44,49–51] or non-stimulated [21]
cycles. Therefore, in stimulated or non-stimulated cycles, we assumed that the preservation
stage did not affect oocyte survival. However, it is necessary to inquiry whether their
competence might be compromised.

In this study, progression to MII at 48 h did not show significant differences depending
on the previous state of the oocytes (fresh or warmed). Most of the published studies
support this result, obtaining similar [52,53] or higher [44,54,55] maturation rates, if oocytes
were cryopreserved at MII stage. However, a recent meta-analysis questions the fact that
vitrified GV oocytes show worse results [42]. In fact, our results suggested a higher GVBD in
those cases where oocytes were vitrified prior to their maturation. This agrees with previous
studies, which showed that the reagents used for vitrification induce cytoplasmic changes
that favor GVBD. Specifically, they indicate an increase in the intracellular levels of Ca2+ and
intra-oocyte cAMP degradation, favoring the activation of the maturation promoting factor
(MPF) and meiosis resumption [54,56]. Following this line, other research has shown that
the short-term presence of the cryoprotectants dimethyl sulfoxide (DMSO) and ethylene
glycol (EG) facilitate Ca2+ traffic, having an impact on the increase of the MR [57,58]. DMSO
would mobilize the intra-oocyte Ca2+ deposits, especially the endoplasmic reticulum, while
EG would favor the entry of extracellular Ca2+ inside the oocyte [58].

In this work, we stablished a time for IVM of 48 h, generally longer than the one recom-
mended by most of the published literature, which is usually stablished at a maximum of
24/32 h [59,60]. Under these conditions, maturation of both vitrified and fresh GV oocytes
was similar at 24 h and 48 h. This result contradicts the hypothesis that vitrified GV oocytes
before their IVM need more time to extrude the first polar body [44,49]. Furthermore, in
opposition to this hypothesis, the results published by Lowther and colleagues showed
differences in time regarding the GVBD, but only during the first 2 h of culture, which
is the time of adaptation to the physiological culture conditions re-established after the
warming. However, 6.5 h later, the rates were similar, even slightly higher than the group
with frozen oocytes [53]. Meanwhile, after studying if culture time affects survival rate, our
results did not show significant differences when comparing Group MII-Vit MIIIVM oocytes
at 24 vs. 48 h. Hence, contrary to what is indicated by the studies mentioned above, our
results suggest that extending the culture time does not alter the structures more sensitive
to cryogenic damage.

Once the maturation obstacle is overcome and in order to continue evaluating the
competence of the collected oocytes, it is necessary to evaluate the possible deficiencies
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that vitrification and IVM may have caused in the oocytes, and observe whether altering
the order of these leads to better results. Understanding how human oocytes perform
chromosomal segregation is greatly important, since errors during this process explain
most of the human aneuploidies [61]. Microtubular depolymerization caused by tem-
perature changes has been described both in mature and immature oocytes [52,62–65].
However, repolymerization of the spindle once physiological conditions are recovered has
also been reported [5,66,67]. Despite this, previous studies describe that frozen oocytes,
both GV and MIIIVM, show abnormal spindles and an altered chromosomal distribution
when compared to non-frozen oocytes [44,52,63]. Therefore, temporary depolymerization
would be recoverable, but its functionality could be affected, resulting in an abnormal
chromosomal segregation, maturation arrest, and aneuploidy formation [5].

The Configuration rate metaphase plate obtained in this study did not show signifi-
cant differences between none of the groups of study when the chromosomal and spindle
configuration were evaluated together. When we evaluated the spindle configuration,
regardless of the chromosomal distribution, we observed significant differences in favor
of non-vitrified MIIIVM or vitrified at GV stage and then matured, compared to oocytes
that were vitrified after maturation. The time required to recover physiological conditions
after warming in this study was 2 h, which is recommended by different authors [68–70],
although others recommend a slightly higher interval [7,47,52]. Likely, the low spindle
configuration rates in Group MII-Vit were due to an insufficient recovery time after warm-
ing. These results support that, after warming, the spindle could be reassembled, but in
an abnormal way. Moreover, it confirms that GV vitrification does not prevent the correct
formation of the spindle after their vitrification.

In addition to cryopreservation, suboptimal culture conditions during IVM could
increase alterations in the meiotic apparatus [62,71]. However, an exhaustive observation of
this between MII oocytes matured in vivo and in vitro did not show variations in the actin
intensity pattern in the proximal and distal domains of the metaphase spindle, but showed
an increase in the cytoplasmic actin in MIIIVM oocytes [72]. It is possible that this reflects an
adaptative response to IVM conditions to increase the cytoplasmic actin fluxes, previously
described in rodent oocytes [73]. Our study did not include MII oocytes matured in vivo
as a second control group for IVM because human MII oocytes matured in vivo are highly
valuable in the clinic and are used exclusively for the patient. However, there are other
studies that point to a worse spindle configuration and chromosome distribution in oocytes
matured in vitro vs. in vivo [74–76].

Depending on the maturation time, Escrich and colleagues concluded to not exceed
the culture more than 24 h, since oocytes that matured between the first 18.4± 2.7 h showed
better activation and division rates and a lower rate of meiotic errors in comparison with
the ones that did it later [59]. Nevertheless, in this work, regarding the metaphase plate
configuration, we observed significant differences in favor to the oocytes that matured
between 25–48 vs. 0–24 h. Therefore, according to our results, the time of culture of oocytes
up to 48 h did not imply higher meiotic error rates. These would suggest, again, that
extending the time of culture would be beneficial, favoring the synchronization between
nuclear and cytoplasmic maturation, allowing better oocyte meiotic development.

As already mentioned, there are contradictory results in the literature, mainly because
it is a procedure that combines several techniques, each one of them with variable results
depending on the conditions in which they have been performed [7,67,77–80]. In addition,
oocytes generated in vivo may also present low competence due to the characteristics
of the donor or the patient [81,82]. Therefore, at this point it is worthwhile to highlight
that most of the published studies randomly assign the oocytes to the groups of study,
but do not describe the characteristics of the women that participate in the study or the
homogeneity of the groups. In the literature, we found some studies that relate vitrification,
IVM, or the metaphase plate configuration with some of the clinical characteristics of the
patients. For instance, they point that in vitro maturation rate is not affected by the age [83],
except prepubescent or elderly women who show lower maturation rates [84,85]. However,
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survival to vitrification is diminished by age increase [7,81]. The increase of the age also
influences on the correct organization of the metaphase plate in human oocytes. It has been
reported a higher percentage of chromosome misalignment in those cases [86], due to a
lack of adhesion [87] caused by a reduction of the assembly points between kinetochores
and microtubules [88,89]. There is also evidence in the literature regarding the diagnosis
of infertility [32,37]; for example, in women with endometriosis, a lower IVM rate, higher
zona pellucida hardening, premature exocytosis of the GC, and a high disruption of the
chromosomes in the metaphase plate have been described [90]. All these factors should be
taken into account when conducting further studies in humans.

Overall, vitrification and IVM techniques can alter essential structures for the proper
development of the embryo. These alterations could impede meiosis, fertilization, or
early embryonic development, preventing the activation of the embryonic genome and
therefore, avoiding the formation of a blastocyst with implantation capacity [91,92]. Further
studies in humans that allow us to define the moment and the conditions in which to
perform these techniques are required to consolidate their combination and increase their
range of indications. It should not be forgotten that rescue IVM may be the only gestation
opportunity, without resorting to egg donation, for certain types of patients as a oncological
or low response, among others.

4. Materials and Methods

This study was approved by the Institutional Review Board of the Hospital Universitario
y Politécnico La Fe, Valencia, Spain. All 104 patients included in the study were fully informed
and gave their signed consent to donate the 195 GV oocytes collected from their ICSI cycles
carried out in the Human Reproductive Unit of the previously mentioned Hospital.

4.1. Oocyte Collection

The patients were subjected to controlled ovarian stimulation following a short antago-
nist protocol. Pituitary suppression was performed by administration of (150–300 IU/day)
rec-FSH (Gonal F 1050; Merck and Co, Madrid, Spain) and GnRH (Orgalutran®; MSD
and Co., Hoddesdon, UK). When the growth of at least three follicles >16 mm was ob-
served, ovulation was induced by the administration of 250 µg of rec-hCG (Ovitrelle,
Merck, London, UK). Oocyte retrieval was performed 36 h after hCG administration
via ultrasound-guided transvaginal puncture-aspiration. Cumulus-corona-oocyte (CCO)
complexes denudation was carried out using hyaluronidase SynVitro® Hyadase; Origio®

Solution, Màlov, Denmark) for a maximum of 30 sec with a denudation pipette (Denudation
pipette Flexipet®, Cook® Medical, Bloomington, IN, USA). Removal of cumulus-corona
cells is required to evaluate and classify the oocyte nuclear maturation state. Despite com-
ing from stimulated cycles, a total of 199 GV oocytes showed an intracytoplasmic nucleus
called the germinal vesicle, characteristic of the prophase of the first meiotic division. After
the IVM rescue, we included in this study all the oocytes that showed an approximately
circular shape and a variable size between 120–140 µm; homogeneous or slightly heteroge-
neous cytoplasm with no granularity such as inclusions or refractile bodies. Four oocytes
(2%) were excluded from the study for being giant, presenting dimorphisms in their zona
pellucida, or showing large vacuoles or signs of atresia/degeneration in their ooplasm.

4.2. Experimental Design

Prospective, randomized cohort study.
To evaluate the effects of cryopreservation on oocytes in vitro maturation, the study

was divided in different experimental groups depending on their maturation state prior
to vitrification: Group GV-Vit (GV oocytes vitrified and then matured in vitro), Group
MII-Vit (vitrified MII oocytes after being matured in vitro), and Group not-Vit (GV oocytes
matured in vitro and not vitrified) (Figure 1).
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4.3. In Vitro Maturation

GV oocytes were individually cultured in micro-drops of 25 µL of culture medium cov-
ered by mineral oil OVOILTM on 1008 plates at 37 ◦C and 5% CO2. We used SAGE 1-StepTM

(Origio®, Màlov, Denmark) culture medium, supplemented with human menopausal
gonadotropin (hMG, Menopur® 75 UI, Ferring®, Madrid, Spain) and synthetic serum
substitute (SSS IrvineScientific®, Santa Ana, CA, USA). Oocytes were serially observed
under the inverted microscope (Olympus, IX70, Tokio, Japan) 20, 24, 44, and 48 h after the
IVM. Mature oocyte (MII) were considered to be those in which a rupture of the GV was
observed, and the presence of a first polar corpuscle in the perivitelline space during the
first 48 h of culture was observed under inverted optical microscope (Figure 5).
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Figure 5. Sequence at different stages of meiosis of the human oocyte. Oocyte with an intact nucleus (prophase I, GV),
late metaphase of meiosis I, onset of anaphase I, onset of polar body extrusion and meiosis II, total polar body extrusion.
Images were obtained in Primo Vision Time-Lapse System (Vitrolife® Göteborg, Sweden) in the Human Reproduction Unit
of Hospital Universitario y Politécnico, La Fe.

4.4. Oocyte Vitrification and Warming

We used vitrification/warming medium and the Cryotop® open system device com-
mercialized by Kitazato® (BioPharma Co, Shizuoka, Japan). The vitrification/warming
protocol used was the one recommended by the commercial company developed by
Kuwayama [4]. This protocol was used in all the oocytes involved in this study, regard-
less of their maturation stage (GV or MII). Survival rate was evaluated microscopically
with Hoffman contrast 2 h after warming and was based on morphology and integrity
observations of the oocyte membrane.

4.5. Oocyte Fixation

For all groups (Group GV-Vit, Group MII-Vit, and Group not-Vit, see experimental
design in Figure 1), the MII oocytes obtained by in vitro maturation [20–48 h] were fixed
with 2% (w/v) paraformaldehyde solution (Electron Microscopy Sciences, Hatfield, PA USA),
0.5% (w/v) Tritón X-100 (Sigma-Aldrich®, Saint Louis, MO, USA), and 1µmol/L of Taxol®

(Paclitaxel, Sigma-Aldrich) in phoshate-buffered saline without calcium or magnesium,
pH 7.4 (PBS, Biowest, Nuaillé, France) for 30 min at 37 ◦C and 5% (v/v) CO2. Oocytes
where then washed three times for 15 min in PBS and stored in 2% (w/v) bovine serum
albumin (BSA, Sigma-Aldrich), 0.1 mol/L of glycine (Sigma-Aldrich), 0.01% (w/v) Triton
X-100, and PBS until they were immunolabeled (see Figure 1). All reagents were aliquoted
in PBS except of Taxol, that as recommended by the commercial company was aliquoted
in DMSO.
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4.6. Tubulin and Chromatin Staining

In order to observe the spindle conformation we performed the next methodology
based on previous reports (7, 54, 79). All fixed oocytes were incubated with a mixture of
two primary tubulin antibodies produced in mouse, anti-β-tubulin, and anti-α-tubulin
(1:100) (Sigma-Aldrich) for 90 min. After that, the cells were washed three times for 10 min
in PBS and incubated with the secondary antibody anti-mouse conjugated with Alexa Fluor
488 (1:500) (Jackson ImmmunoResearch, Ely, UK) for 1 h in the dark. Then, the oocytes
were washed again three times for 10 min in PBS. For chromatin staining, we added 5µL
of mounting medium with 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI, Vector
Laboratories, Burlingame, CA, USA) and left for incubation for 5 min in the dark. All of the
process was performed at room temperature. This part was performed at the Department
of Biotechnology of the University of Alicante, Alicante, Spain.

4.7. Image Acquisition

A total of 199 oocytes were mounted using cavity slides, and the spindle characteristics
and chromosome arrangement were evaluated by Confocal Laser Scanning Zeiss LSM 800
Microscope (Zeiss, Oberkochen, Germany) and Zeiss Imaging Software at the technical
services of the University of Alicante. Z-stacks sections (1040 × 1040 pixels) of the entire
spindle of each oocyte were obtained using an oil 40x objective and 408 nm and 561 nm
lasers. Then, the sections were reconstructed using ZEN 2.5 lite software (Zeiss).

4.8. Statistical Analysis

The sample size was calculated to detect a minimum of 35% of difference in the
proportion of oocytes with a disrupted plate between the control group (expected rate 15%)
and any of the other experimental groups, with a confidence level of 95 (α = 5%) and a
statistical power of 80% (β = 20%). The homogeneity of the groups was evaluated with
the Kolmogorov–Smirnov test. The differences between the quantitative variables were
verified using T-Test or Mann–Whitney U test. For the qualitative variables, the X2 test or
Fisher’s test was used if both variables to be compared were dichotomous or some cell
contained an expected frequency percentage of less than 5%. Comparison of Maturation
Rates [MR = n◦ MII oocytes (24–48 h)/n◦ GV oocytes × 100], Survival Rate [SR = (n◦ 2 h
viable devitrified oocytes/n◦ vitrified oocytes) × 100], and Normal Conformation Rate
[NCR = n◦ oocytes with normal-partially normal conformation/n◦ oocytes evaluated)
× 100], was performed using contingency tables, X2 test, with a level of α equal to 0.05,
therefore, it was considered that there were significant differences when p-value was < 0.05.
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Abbreviations

A Abnormal
AR Assisted reproduction
cAMP Cyclic adenosine monophosphate
CHR Chromosome
CRP Cryoprotectants
DMSO Dimethylsulfoxide
EG Ethylene Glycol
EV Embryo vitrification
GC Granulosa cells
GV Germinal vesicle (prophase I)
GVBD Germinal vesicle breakdown
h Hours
ICSI Intracytoplasmic sperm microinjection
IVF In vitro fertilization
IVM In vitro maturation
MII Metaphase II
MPF Maturation promoting factor
MR Maturation rate
N Normal
OHSS Ovarian hyperstimulation
OV Oocyte vitrification
PA Partially abnormal
PB Polar body
PCOS Polycystic Ovary Syndrome
SR Survival rate
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