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Abstract

Hormonal fluctuations, such as the perinatal period, may increase susceptibility of women to

depression, which in turn exert a negative impact on child’s neurodevelopment, becoming a

risk factor in development of neuropsychiatric disorders. Moreover, the use of antidepres-

sants during this critical period presents a serious health concern for both the mother and

the child, due to the consequences of treatment in terms of the reliability and safety for the

proper neurodevelopment of the organism being not well known. Atypical antidepressants,

such as mirtazapine, that targets both serotonergic and noradrenergic systems in the central

nervous system (CNS), represent a novel focus of research due to its unique pharmacologi-

cal profile. The aim of this work was to study the effects of maternal depression and/or peri-

natal antidepressant mirtazapine treatment on the neurobehavioral development of the

offspring. Pre-gestationally chronically stressed or non-stressed Wistar rat dams were

treated with either mirtazapine (10 mg/kg/day) or vehicle during pregnancy and lactation fol-

lowed by analysis of offspring’s behavior at juvenile and adolescent age. We found mirtaza-

pine induced significant alterations of nursing behavior. In offspring, pregestational stress

(PS) had an anxiogenic effect on adolescent males (p�0.05) and increased their active

behavior in forced swim test (p�0.01). Interaction between pregestational stress and mirta-

zapine treatment variously induced anxiolytic changes of juvenile (p�0.05) and adolescent

(p�0.05) females and impairment of spatial memory (p�0.01) in adolescent females as

well. Hippocampal density of synaptophysin, pre-synaptic protein marker, was decreased

mainly by mirtazapine treatment. In conclusion, our results show mirtazapine induced signif-

icant alterations in maternal behavior and several sex- and age-dependent changes in neu-

robehavioral development of offspring caused by both prenatal mirtazapine treatment and/

or chronic pregestational stress.
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Introduction

An estimation of 17% men and 25% women experience an episode of major depressive disor-

der (MDD) at least once in their life [1]. Higher susceptibility of women to depression may

arise from the increased vulnerability caused by periods of hormonal fluctuation, such as the

perinatal period [2, 3].

The hormonal changes that take place during pregnancy expose the mothers to environ-

mental challenges and have a clear impact on behavior. Steroid hormones play a crucial role in

maternal mood both during and after gestation [4, 5]. However, the influence of specific hor-

mones is different at these two time points. During pregnancy, production of estrogen and

progesterone by placenta increase exponentially after week 6, and immediately after delivery

the levels of these two hormones suddenly drop, until reaching pre-pregnancy levels [6, 7].

Studies in rodents show the importance of estrogen for fetoplacental nutrient transport, as well

as its mood-elevating and antidepressant properties, as estrogens unite with the serotonergic

system by increasing serotonin synthesis and decreasing its degradation [5]. Progesterone

stimulates maternal food intake and is responsible for adequate accommodation of the uterus

to the baby and to prevent pre-term birth. It also inhibits lactation until the baby is born and

avoids fetus rejection caused by maternal cell-mediated immunity [8]. Its effects on mood may

be also related to its binding to neurotransmitter membrane receptors, specifically serotonin.

Keeping the right balance of these two hormones are very important for optimal welfare. Too

low level of progesterone and domination of estrogen can lead to mental instability related to

low mood [7, 8]. The two other important hormones that have been highly correlated with

mood alterations during pregnancy are dehydroepiandrosterone (DHEA) and testosterone.

After delivery, testosterone levels rise and become the most important hormone associated

with negative mood, with a high correlation index, suggesting its severe role in the etiology of

post-partum depression [9], while higher levels of DHEA during pregnancy were associated

with better mood but after delivery its decline was related to mood aggravation. Nevertheless,

it is not the effect of solely one of them but the combined action of different hormones and

neurotransmitters at different time points that induce mood alterations.

Moreover, the rise on progesterone and prolactin and their effect in neuropeptide Y may

explain increased maternal food intake, that accumulates as white fat and is used for both

mother and fetus as energy source. Fetal and neonatal development is sustained by the utero-

placental blood flow and milk production after delivery, but a discoordination of hormonal

production from placenta and pituitary gland, caused by maternal malnutrition, hypertension,

smoking or preeclampsia among others, may alter fetal and neonatal demands [6].

Apart from the vulnerability of pregnant women to physiological alterations due to hor-

monal fluctuations, psychological challenges have been a topic of debate for clinicians and

researchers. Pregnant women that express depressive symptoms are at higher risk of inflam-

matory and stress-related response, which associate with suboptimal features in the newborns.

Treatment of stress-related disorders such depression during gestation rises a number of con-

cerns related to the safety of these drugs for the developing fetus. However, the discontinuation

of treatment may predispose the fetus to developmental complications later in life, making it

difficult to discern the best approach in terms of reduced consequences for both the mother

and the infant. Newborn children from depressed mothers tend to have preterm delivery, low

birth weight and Apgar scores, as well as tendency to present a dysregulated HPA axis, that

later in life manifest as poor social interactions, more negative attitude and altered emotional

circuitry [10].

Second-generation antidepressants (SGA), such as selective-serotonin reuptake inhibitors

(SSRIs) (fluoxetine, sertraline) or serotonin-norepinephrine reuptake inhibitors (SNRIs)
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(venlafaxine) introduced in Europe in the 1980s, are recorded as the first line antidepressant

treatment during pregnancy by most medication guides [11, 12]. The World Health Organiza-

tion (WHO) estimates that depression is a leading cause of disability worldwide [13]. However,

the main concern for specialists is the impact of the treatment on the developing fetus/child,

namely risk of potential congenital malformations, neonatal withdrawal symptoms or poor

neonatal adaptation syndrome as well as long-term neurodevelopmental consequences [14–

17]. In addition, the delay in treatment efficacy and the presence of many side effects led

researchers to investigate alterative antidepressants with better efficacy, faster onset of action

and lesser counterproductive reactions. Tricyclic antidepressants (TCAs), released in 1959,

were commonly prescribed for the treatment of Major Depressive Disorder, but the adverse

effects provoked by their anticholinergic activity such tachycardia, hypertonia and irritability,

promoted its replacement for the treatment of this pathology by SSRIs [18]. Apart from SSRIs

and SNRIs, atypical antidepressants such bupropion and mirtazapine are nowadays considered

as alternative treatments. However, more research is needed to elucidate the mechanisms of

action of these compounds. Bupropion has been linked to cardiac defects and increased risk of

abortion. Mirtazapine, beneficial in terms of absence of cholinergic, adrenergic and serotoner-

gic side effects caused by other antidepressants, as well as good tolerability and faster mitiga-

tion of symptoms, may predispose to gestational diabetes [10, 19].

Mirtazapine (MIR) (Fig 1) has a tetra-cyclic chemical structure with molecular weight of

265.36 and belongs to the piperazino-azepine group of compounds. It is a new generation anti-

depressant that has a different mechanism of action than SGAs, targeting both the serotonergic

and noradrenergic systems in the CNS. It is a noradrenaline (NE) and specific serotonin

(5-HT) antidepressant (NaSSA) that acts as an antagonist at central α2-adrenergic inhibitory

autoreceptors and heteroreceptors, as well as at the 5-HT2 and 5-HT3 receptors. MIR enhances

the release and availability of NE by blocking presynaptic inhibitory α2-autoreceptors and

enhances the 5-HT release by antagonism of the α2-heteroreceptors in the serotonergic nerve

terminals and simultaneously blockade of postsynaptic 5-HT2 and 5-HT3 receptors. Thanks to

this double activity, MIR is suggested to induce earlier onset of antidepressant effects avoiding

the serotonergic related side effects such as high body temperature, agitation, increased

reflexes, tremor, sweating, dilated pupils, and diarrhea [20]. However, it may induce an

enhanced body weight gain and sleepiness [21, 22]. Mirtazapine has low in vitro affinity for

central and peripheral dopaminergic, cholinergic, and muscarinic receptors, but high affinity

for central and peripheral histamine H1 receptors. However, it appears that the antihistami-

nergic effects of the drug are counteracted by noradrenergic transmission when the drug is

commenced at dosages�15 mg/day, i.e. within the recommended dosage range [23]. Initial

dose of MIR is 15 mg/day orally once a day at bedtime and maintenance dose represents 15 to

45 mg orally once a day [24]. Even though MIR seems to represent a plausible alternative of

antidepressant medication during gestation and there is no evidence that use of mirtazapine in

pregnancy causes birth defects, preterm birth, or low infant birth weight. While the evidence

for other pregnancy outcomes is also reassuring, only small numbers of women have been

studied and number of animal studies is not sufficient [25].

To date, few studies have been reported to analyze the excretion of antidepressant mirtaza-

pine (by means of milk/plasma (M/P) ratio) into breast milk. Aichhorn and colleagues

reported that mirtazapine was excreted in breast milk in a nursing mother suffering from post-

partum depression. Mirtazapine concentration in foremilk was similar to maternal plasma,

ranging between 7 and 34 ng/mL, but concentration in hindmilk was higher than in mother’s

plasma. Finally, they postulated that the serum concentration in the infant (0.2 ng/mL) was

below the therapeutic range for adults (30 to 80 ng/mL) [26]. Klier research team studied the

mirtazapine levels in breastmilk at the expected time of peak concentration, assuming that
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breastmilk levels peak at similar timepoints as serum levels. They found that mirtazapine is

excreted into breastmilk, but infant exposure is minimal, between 0.21–1.02% of the weight-

adjusted maternal dose [27]. Kristensen and colleagues studied eight breast-feeding woman

who were being treated with mirtazapine pre- or postnatally. The milk transfer of mirtazapine

was moderate, with a M/P ratio of 1.1, and no drug-related adverse effects were detected. They

concluded that short-term use of mirtazapine during breastfeeding is secure [28]. Finally,

Tonn research team observed a 1.3% child absorption of mother’s daily mirtazapine, with a 3.3

reported serum levels in infant, almost within the adult therapeutic range, that compared to

the 0.12 in mother’s, postulated a less efficient elimination by child metabolism [29]. Quantifi-

cation of antidepressant concentration in different body fluids such as milk may be a useful

indication of fetal exposition to mother treatment and its further implications for the child. In

addition, the transfer amount of each specific compound may vary according to its pharmaco-

logical properties such as protein binding, lipid content of milk and drug concentration on

mother serum [30, 31].

Fig 1. Chemical structure of mirtazapine.

https://doi.org/10.1371/journal.pone.0255546.g001
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Despite lacking efficient translatability, several animal models, including chronic unpre-

dictable stress, have been investigated for decades to evaluate depression-like behavioral

changes and their potential mechanisms of action. Studies in rodents show that chronic pre-

gestational and prenatal maternal stress, which disrupt the maternal endocrine, nervous and

immune systems, can induce long-term alterations in the synaptic structure and so impact the

behavioral outcomes in the offspring [32, 33]. Apart from the regulatory roles of serotonin,

norepinephrine and dopamine neurotransmitters in adult brain, monoamines play an impor-

tant role in the fetal maturation of the brain, such as—during neuronal proliferation, migra-

tion and differentiation, myelinization and synaptogenesis [34]. The exposure to stressful

situations early in life may disable the optimal structural and functional development of hippo-

campus, due to the damaging action of excessive corticosterone concentration and dysregula-

tion of monoamines [15, 35]. Persisting high levels of stress are thought to result in loss of

synapses in circuits underlying affective and cognitive processes. These reductions are pre-

sumed to contribute to the symptoms of depression associated with major depressive disorder

[36]. Synaptophysin is a synaptic vesicle glycoprotein, which immunoreactivity is present in a

punctate pattern in the hippocampus and has been used as a presynaptic marker for quantifi-

cation of synapses [37]. The hippocampal formation consists of several histologically distin-

guishable modules, such as cornu ammonis (CA) regions (CA1, CA2, CA3, CA4), dentate

gyrus (DG), presubiculum, and subiculum. These regions of the hippocampus are associated

with different functions (e.g. memory encoding and retrieval) and may be specifically dis-

rupted in various diseases [38]. Granule cells, the main output cells of the DG, send axons

(mossy fibers) through CA4 to CA3 and innervate a small number of pyramidal cells and a dis-

proportionally large number of interneurons CA3 pyramidal cells then form recurrent excit-

atory network and send axons to CA1. Theoretical work, as well as anatomical, physiological,

and behavioral experiments support the idea that the DG-CA3 system performs the pattern

separation and the pattern completion of the inputs to the hippocampus, operations needed

for memory encoding and retrieval [39]. Purpose of the hippocampus happens to be severely

affected by early life stress, predisposing the individual to an impaired reactivity when exposed

to adverse environmental stimuli [40]. In our previous study, we have shown that pre-gesta-

tional maternal stress may affect hippocampus at the time of birth by increasing the resting

membrane potential, suppressing depolarization-activated action potential firing, and increas-

ing the spontaneous activity of hippocampal cells from newborn rat offspring [41], but pre-

gestational stress induced changes in different subregions of hippocampus are not thoroughly

known. However, antidepressant treatment may facilitate the challenged neurogenesis by,

upregulating the hippocampal concentration of glucocorticoid receptors, which help to attenu-

ate the hyperactivity of the HPA axis and inducing morphological changes in the neuronal net-

work [15, 40, 42]. Some studies suggest that developmental fluoxetine (SSRI) exposure of

prenatally stressed male and female offspring reversed the effect of stress on the number of

immature neurons in the dentate gyrus (DG), with effects being more prevalent in adult male

offspring [43, 44]. However, knowledge of mirtazapine treatment’s impact on pregnancy and

lactation hippocampal neurogenesis of juvenile, adolescent and adult offspring during last

days of pregnancy and for following 2 weeks postpartum (PP), is very limited.

The aim of the present study was to determine the possible implications that pre-gestational

chronic stress and administration of the new generation antidepressant mirtazapine have on

the behavioral and neurodevelopmental outputs in the offspring of both sexes. Aiming our

focus on functional brain developments that starts on day 10 PP and continues through juve-

nile and adolescent age [45–48].
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Materials and methods

Animal breeding

Female nulliparous Wistar rats (initial weight 200–220 g, age 2–3 months, n = 44) used in this

study were obtained from the Department of Toxicology and Laboratory Animal Breeding Sta-

tion of the Institute of Experimental Pharmacology and Toxicology, Centre of Experimental

Medicine of the Slovak Academy of Sciences, Dobra Voda, Slovak Republic. After 7 days of

acclimatization, females were randomly assigned to stress or non-stress groups. Animals in the

stress group were exposed to unpredictable stressors of mild intensity for a total of 3 weeks.

One week after the end of the stress procedure, females were mated with males in the ratio 3:1.

The presence of spermatozoa in vaginal smears was considered day 0 of gestation. On day 15

of gestation, the females were separated and housed individually. This may cause some level of

stress; however, it is necessary due to ongoing pregnancy and all animals underwent the same

process. The animals had ad libitum access to food pellets and water and were kept in a tem-

perature and humidity-controlled room (20–24˚C and relative humidity 50–60%) with 12/12

hours of light/dark cycle. The experiments were conducted in compliance with the Principles

of Laboratory Animal Care issued by the Ethical Committee of the Institute of Experimental

Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, and the experimental

design was approved by the State Veterinary and Food Administration of the Slovak Republic.

One day after birth, litters were culled to four males and four females (with eight offspring

per cage). Reproductive variables were recorded right after the birth. The offspring were

weaned on post-partum day 21 and housed in litter groups of same-sex four animals per cage.

No more than two pups from the same mother per group (n = 6–8 animals/group) were used

for behavioral testing.

Chronic unpredictable stress schedule

In order to not expose females to stressors during pregnancy but rather study ongoing effects

of chronic stress, females were assigned to stress or non-stress groups prior to breeding

(Fig 2). Animals from non-stress group were left in their cages in separate room with standard

room conditions mentioned above. The animals were exposed to 1–2 stressors per day. The

list of stressors included: 1) Overcrowding—6 rats housed together (24h); 2) Exposure to

damp bedding (12h); 3) Food deprivation (24h); 4) Predator stress–cloth with cat odor (10h);

5) Water deprivation (12h); 6) Cage decline at 45-degree angle (6h); 7) Strobe light- flicker

lights (12h).

Fig 2. Schedule of the experiment. G- gestation day; PP-post-partum day; EPM- elevated plus maze; FST- forced swim test.

https://doi.org/10.1371/journal.pone.0255546.g002
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Mirtazapine treatment

Mirtazapine (Mikrochem Trade spol. s r.o.) with a molecular weight of 265.36 was diluted in

citric acid and administered orally via the wafer biscuit (size of 1 cm3) to pregnant rats from

day 10 of gestation until sacrifice at the clinically relevant dose of 10 mg/kg once per day. Pups

were receiving mirtazapine via mother until weaning on day 21 post-partum (PP). This dose

was chosen based on a body surface area normalization (BSA) conversion used to determine

the starting human dose extrapolated from animal studies. The Km factor, which is the ratio of

body weight (kg) to body surface area (m2), is used to convert doses expressed in mg/kg to

units of mg/m2 [49]. Dose 10 mg/kg a day was used to simulate low dose end in humans. The

dams from control groups received 1 cm3 of wafer biscuit once a day filled with vehicle

(water). Feeding was completed under investigator’s supervision to ensure the dam consumed

the entire biscuit. Pregnant dams were randomly divided into 4 groups: non-stress + VEHIC

(vehicle), non-stress + MIR, stress + VEHIC, stress + MIR.

Rat Grimace Scale

Mothers (n = 6–7 animals/group) were placed in individual cages for 10 min and each minute

4 pictures were taken from each rat from front with a Nikon professional camera. Animals

were tested 5 weeks after CUS. Each picture was evaluated by a score from 0 to 2 according to

the following four action units [50]:

1. Orbital tightening: rats in pain display narrowing of the orbital area which manifests as par-

tial or complete eye closure or squeezing.

2. Nose/cheek flattening: less bulging of nose and cheek and absence of crease between cheek

and whisker pads.

3. Ear changes: ears in pain tend to fold, curl and angle forwards or outwards, and the space

between ears is wider.

4. Whisker change: whiskers move forward (away from face) and tend to bunch.

Behavioral tests

All tests, except maternal behavior, were carried out between 8:00 a.m. and 12:00 p.m.

Maternal behavior

Mothers (n = 6–10 animals/group) were observed for 5 consecutive days from PD2 until PD6

two times per day for 5 min based on previous literature [32]. Observations took place in the

morning (between 8:30 a.m. and 10.00 a.m.) and the afternoon (between 2:30 p.m. and 3:30 p.

m.). Time and number of bouts in the following maternal behaviors were recorded: licking;

licking/nursing; nursing (arched-back nursing, blanket nursing, and/or passive nursing); nest

building and time off the pups. Differences between groups in maternal behaviors were

assessed using total time spent in these maternal behaviors.

Forced swim test (FST)

The FST consists of a container filled with water where the animal is placed and cannot escape.

The apparatus consists of a vertical cylindrical glass container (height 45 cm, diameter 25cm)

filled with tap water at 23±1˚C. The water volume is enough to ensure that the animals can not

touch the bottom of the container with their hind paws. The forced swim test was conducted

over two days. On the first day, rats were introduced to the cylindrical glass tank filled with
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water for 15 min (not videotaped), towel-dried and returned to their home cage. Twenty-four

hours later, the animals (n = 7–11 animals/group/sex) were exposed to the same experimental

conditions for 5 min, dried and returned to their home cage. Sessions were videotaped and

scored using the software ANYMAZE™ (Stoelting Europa, Co., Ireland). The behavior scored

in the forced swim test concerns: (1) immobility- floating with the absence of any movement,

(2) latency to be immobile- time duration, (3) swimming, (4) climbing. Offspring was tested at

the age of 48 days.

Elevated plus maze (EPM)

All parts of the apparatus are made of dark polyvinyl plastic. The open and the closed arms of

the maze are 50cm above the floor, 50cm long and 10cm wide. Two tests were running simul-

taneously. The movements of the rats were tracked with digital camera and the individual ses-

sions were analyzed by computer software ANYMAZETM (Stoelting Europe, Ireland). Mild

light was provided by a lamp attached above the open arms of the maze. Each session lasted 5

minutes and was started by placement of the rat in the central area facing the open arms of the

maze. After each individual trial, the maze was wiped with a mild detergent. The behaviors

scored were: (1) distance traveled in the open arms of the elevated plus maze, and (2) time

spent in the open arms of the elevated plus maze. The animals were tested at the age of 27

(n = 7–8 animals/group/sex) and 47 days (n = 7–10 animals/group/sex).

Y-Maze

The Y-Maze Test is widely used to assess exploratory behaviors, learning, and memory func-

tion in rodents and short-term memory [51]. The apparatus was made from black Plexiglas

(50x16x32 cm) in which the arms were symmetrically separated at 120˚. No visual cues were

placed inside the maze, but different extra-maze cues were visible from all three arms to enable

spatial orientation. During the first trial, each animal could freely explore two arms of the

maze for 15 min and its behavior was recorded with a camera. Subsequently, animals were

returned to the home cage for one minute and the maze was cleaned with 70% ethanol. The

second trial lasted 5 minutes with animal having the access to all three arms. Sessions were vid-

eotaped and scored using the software ANYMAZE™ (Stoelting Europa, Co., Ireland). The ani-

mals were tested at the age of 43 days (n = 5–8 animals/group/sex). Spontaneous alternation

behavior (the alternation percentage is calculated by dividing the number of alternations by

number of possible triads x 100) is considered to reflect spatial working memory, while the

total number of arm entries was considered to reflect spontaneous locomotor activity [52, 53].

Immunohistochemistry assay

Collection of tissue from offspring were done at different ages of the animals: in juvenile age

(PP31) (n = 5–8 animals/group/sex) and in adolescent age (PP50) (n = 5–8 animals/group/

sex). The animals were killed by cervical dislocation according to European commission

guidelines [54]. Brains were extracted (not perfused) and post-fixed with 4% paraformalde-

hyde for 24 h, cryoprotected in 30% sucrose/phosphate-buffered saline solution for up to 1

week, rapid frozen with liquid nitrogen and kept at −80˚C. Before immunohistochemistry

assay, brain tissue was sliced in 40 μm sections on a cryostat (Leica). Tissue sections were

stored in antifreeze solution at −15˚C. The Ca3, Ca4 and DG of the dorsal hippocampus were

assessed for the presynaptic marker synaptophysin (Monoclonal Anti-Synaptophysin, Sigma)

as described before [32]. Tissue was first treated with 0.6% H2O2 for 30 minutes at room tem-

perature and then incubated with 5% Normal Goat Serum (NGS) (Lampire Biological Labora-

tories) in Tris-Buffered Saline Tween at room temperature for 30 min to decrease probability
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of non-specific antibody binding, followed by overnight incubation at 4˚C in mouse anti-

synaptophysin (1:200, Sigma Aldrich). Sections were then incubated at room temperature for

2 h in biotinylated goat anti-mouse (1:200, Vector Laboratories). Brain sections were further

processed using the Avidin-Biotin Complex (ABC Elite kit; 1:1000; Vector laboratories) and

DAB kit (Vector laboratories). Sections were mounted on Starfrost Advanced Adhesive for

IHC (Bamed) dried, dehydrated and coverslipped with Permount (Fisher Scientific).

Quantification

Sections of the dorsal hippocampus were analyzed for optical densities of synaptophysin

(Fig 3). Immunoreactivity for all sections was examined under 40x objective using Leica

DM4000M. Photomicrographs were taken for three areas within each analyzed hippocampal

region, i.e., CA3, CA4 and DG. The software ImageJ64 (Wayne Rasband, NIH, Bethesda MD,

USA) was used for assessment of optical densities for all immunoreactive cells. The relative

optical density was defined as the difference in optical density (grey level) after calibration

between the area of interest and the background, which was an equivalent area adjacent to the

area of interest with minimal staining.

Data analysis

Normality of data was analyzed by Shapiro-Wilks test, whereas data with p�0.05 were consid-

ered not normally distributed. Data without normal distribution were analyzed using Kruskal-

Wallis test (STATISTICA 10). Analysis of variance (factorial ANOVA) was used to evaluate

differences in the individual variables of tests with normally distributed data (STATISTICA

10). Post-hoc comparisons utilized the Tukey HSD test. The data with normal distribution

were expressed as mean ± standard error mean (S.E.M), data without normal distribution

were expressed as box-and-whisker plot. The changes with values of p�0.05 were considered

statistically significant. All analysis was done in a blind manner.

Fig 3. Immunohistochemical photograph. Representative picture of the synaptophysin stained dorsal hippocampus

at 10 × magnification.

https://doi.org/10.1371/journal.pone.0255546.g003
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Results

Mothers

Grimace test. Rat grimace test scores has been used to evaluate spontaneous pain [55].

We observed significant main effect of stress on grimace test scores (F (1, 22) = 5.00; p�0.05).

Post-hoc analysis did not reveal any significant differences (Fig 4).

Maternal behavior. There was no significant main effect of stress or mirtazapine on total

time dams spent nursing (Fig 5A), however, we observed significant main effect of mirtazapine

on the percentage of passive nursing and blanket nursing (F (1, 30) = 10.74; p�0.01). Subse-

quent post-hoc analysis showed decrease of passive nursing (p�0.05) and increase of blanket

nursing (p�0.05) in stress × vehicle group as compared to both mirtazapine groups (Fig 5B).

Offspring

Elevated plus maze- juvenile offspring. We did not observe an effect of sex but there was

a stress × mirtazapine interaction in females on percentage of distance travelled in the open (F

(1, 24) = 4.89; p�0.05) (Fig 6A) and closed arms (F (1, 24) = 7.82; p�0.01) (Fig 6B) of EPM, an

effect was not present in male offspring. Further analysis showed a decrease in total distance

travelled in stress × vehicle females compared to control group.

Elevated plus maze- adolescent. Main effect of sex was present in all parameters of ele-

vated plus maze with females being more active (higher total distance travelled) than males (F

(1, 62) = 9.04; p�0.01).

In males, we observed significant main effect of stress (F (1, 30) = 3.93; p = 0.05) in total dis-

tance travelled. Further post hoc analysis showed significantly decreased activity in

stress × vehicle group compared to non-stress × vehicle group (Fig 7A).

Fig 4. Grimace scale test. Data represent mean ± SEM. n = 6–7 animals/group.

https://doi.org/10.1371/journal.pone.0255546.g004
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In males, there were no changes in the percentage of time spent in the open arm (Fig 7B)

but we observed a main effect of stress (F (1, 30) = 4.53; p�0.05) in the percentage of time

spent in the closed arm. Post-hoc analysis revealed that animals from stress × vehicle group

had significantly increased percentage of time spent in the closed arm compared to non-

stress × vehicle group (p�0.05) (Fig 7C).

In females, we did not observed changes in the percentage of time spent in the open arm

(Fig 7B). however, there was significant main effect of stress (F (1, 32) = 4.08; p = 0.05) in the

percentage of time spent in the closed arm. Post-hoc analysis showed decrease in

stress × mirtazapine group significant compared to non-stress × vehicle (p�0.05) and non-

stress × mirtazapine group (p�0.05) (Fig 7C).

Fig 5. Maternal behavior. (A) total time spent nursing, (B) percentage of passive nursing and blanket nursing out of

total time spent nursing. Data represent mean ± SEM. n = 6–10 animals/group. �p�0.05; m-compared to both

mirtazapine groups.

https://doi.org/10.1371/journal.pone.0255546.g005
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Forced swim test. There were no sex differences in either of the selected forced swim test

parameters.

Kruskal-Wallis test showed significant main effect of stress in time spent floating (males:

H = 7.41; p�0.01; females: H = 6.90; p�0.01), time spent climbing (males: H = 4.47; p�0.05;

females: not significant) and time spent swimming (males: H = 6.49; p�0.01; females:

H = 10.24; p�0.001). Further analysis revealed that floating time of stress × mirtazapine males

was significantly decreased compared to non-stress × vehicle males (p�0.01), however floating

time of females was not significantly changed between individual groups (Fig 8A). Total swim-

ming time of stress × mirtazapine males was significantly decreased compared to non-

stress × vehicle males (p�0.01) and floating time of stress × mirtazapine females was signifi-

cantly decreased compared to non-stress × mirtazapine females (p�0.01) (Fig 8B). Climbing

time was not significantly changed between individual groups in either sex (Fig 8C).

Y-maze- adolescent. We observed main effect of sex in both motor activity (F (1, 45) =

11.53; p�0.01) as well as in percentage of spontaneous alterations (F (1, 45) = 4.27; p�0.05)

with females being more active but having decreased percentage of spontaneous alterations

compared to males.

Fig 6. Percentage of distance travelled in individual arms of elevated plus maze by juvenile animals. (A) open arm

distance, (B) closed arm distance. Data represent mean ± SEM. n = 7–8 animals/group/sex. MIR- mirtazapine;
�p�0.05.

https://doi.org/10.1371/journal.pone.0255546.g006
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In males, a significant main effect of treatment (F (1, 20) = 9.79; p�0.01) was observed in in

total distance travelled. Post-hoc analysis revealed significant decrease in non-

stress × mirtazapine group compared to stress × vehicle group (p�0.05) (Fig 9A). We did not

observe any significant changes in percentage of spontaneous alterations (Fig 9B).

In females, a significant main effect of stress was in total distance travelled (F (1, 25) = 4.95;

p�0.05), however post hoc analysis did not revealed individual changes between groups (Fig

9A). Further, we observed significant main effect of mirtazapine (F (1, 25) = 11.25; p�0.01)

and mirtazapine × stress interaction (F (1, 25) = 7.81; p�0.01) in percentage of spontaneous

alterations. Post-hoc analysis revealed significant decrease in both mirtazapine groups (non-

stress × mirtazapine p�0.01; stress × mirtazapine p�0.05) compared to non-stress x vehicle

group (Fig 9B).

Synaptophysin-juvenile. We did not observe any statistically significant changes in the

synaptophysin optical density in the hippocampal areas Ca3, Ca4 and dentate gyrus.

Synaptophysin-adolescent. We found significant main effect of sex present only in area

Ca4 of hippocampus (F (1, 47) = 7.23; p�0.01) (Fig 10A). Further, we observed significant

main effect of mirtazapine in hippocampal areas Ca3 (F (1, 19) = 9.01; p�0.01) (Fig 10B) and

Fig 7. Elevated plus maze of adolescent offspring. (A) total distance travelled, (B) open arm time percentage, (C)

closed arm percentage. Data represent mean ± SEM. n = 7–10 animals/group/sex. ns- compared to both non-stress

groups; �p�0.05.

https://doi.org/10.1371/journal.pone.0255546.g007
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Ca4 (F (1, 23) = 5.87; p�0.05) (Fig 10A) of females. Post-hoc analysis did not reveal significant

differences between groups. We did not find any changes in dentate gyrus (Fig 10C).

Discussion

In the present study, focused on possible implications of pre-gestational chronic stress on the

neurodevelopmental and behavioral outputs in the offspring of both sexes during juvenile age

and adolescence, we investigated the consequences of administration of the atypical antide-

pressant mirtazapine. The results of our study showed that pre-gestational CUS and mirtaza-

pine treatment can affect the behavior of the mothers. In adolescent offspring, CUS induced

an increased active behavior, reflected in a more active swimming. In males, MIR treatment

resulted in an increased anxiety-like behavior and a decrease in general motor activity. On the

Fig 8. Forced swim test of adolescent offspring. (A) time spent floating, (B) time spent swimming, (C) time spent

climbing. n = 7–11 animals/group/sex. ��p�0.01.

https://doi.org/10.1371/journal.pone.0255546.g008
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contrary, in females, CUS resulted in an increase in motor activity that MIR treatment also

enhanced in the non-stressed group. In addition, in females, mirtazapine treatment during

gestation and lactation had a long-term impact on the structural morphology of hippocampus

synaptic markers, which may contribute to an impaired cognitive function in these animals.

We evaluated the spontaneous pain of the mothers by the Rat Grimace Scale (RGS) and we

found increased facial expression indicating pain in those mothers, which were exposed to

stress schedule. RGS was developed to identify acute and inflammatory pain but it can be

applied to a wider range of pain types and chronicity [56, 57] and this is supported by our data

that suggest ongoing influence of CUS even 5 weeks after the CUS procedure.

Maternal behavior usually emerges close to parturition and after birth, with the female

showing a very rapid interest in the new-born [58]. Detrimental changes in maternal behavior

can generate permanent neurological and social inclusion disturbances in offspring [59]. We

observed an effect of mirtazapine treatment on the proportion of passive to blanket nursing

favoring the latter one, indicating a slight influence of mirtazapine on some aspects of maternal

behavior. Mirtazapine acts by antagonizing the adrenergic alpha2-autoreceptors and alpha2-

heteroreceptors as well as by blocking 5-HT2 and 5-HT3 receptors. It enhances, therefore, the

Fig 9. Y-maze of adolescent offspring. (A) total distance travelled, (B) percentage of spontaneous alterations. Data

represent mean ± SEM. n = 5–8 animals/group/sex. a- compared to non-stress × mirtazapine, b- compared to

stress × vehicle, �p�0.05, ��p�0.01.

https://doi.org/10.1371/journal.pone.0255546.g009
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release of norepinephrine and 5-HT1A-mediated serotonergic transmission [21]. Since mater-

nal behavior is strongly regulated by serotonin [60–62], we thus suppose that serotonin activity

of MIR can underlie these changes. Shift in maternal behavior in favor of more active blanket

nursing caused by antidepressant treatment is in line with our previous results from venlafax-

ine (serotonin-norepinephrine reuptake inhibitor) [63] as well as results from fluoxetine

(selective serotonin reuptake inhibitor) [64].

Anxiety-like behavior

Offspring of mothers that have experienced stress during gestation may have impaired emo-

tional development due to a dysregulation of the HPA axis, leading to a higher risk of develop-

ing a cognitive and/or mood disorders in adulthood [41, 65–67]. We evaluated the effect of

Fig 10. Optical density of synaptophysin in hippocampus. (A) Ca3 area, (B) Ca4 area, (C) dentate gyrus area. Data

represent mean ± SEM. n = 5–8.

https://doi.org/10.1371/journal.pone.0255546.g010
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pregestational stress (PS) exposure on intensity of anxiety-like behavior by the elevated plus-

maze test, a validated behavioral paradigm based on rodent’s preference of closed to open

spaces, with latter presenting a significant anxiety-like behavior inducing condition [68]. In

this study, we didn’t find significant sex-dependent differences in anxiety-like behavior of

juvenile rats, what was expected due to unmature reproductive system [69]. However, female

offspring of stressed untreated mothers exhibited decreased anxiety-like behavior that was not

present if mothers were treated with MIR. This was changed in adolescence, when females

showed decreased anxiety-like behavior if mothers were stressed and treated with MIR. Differ-

ent results were observed in adolescent male rats, who displayed increased anxiety-like behav-

ior due to pregestational stress without any significant effect of MIR treatment. Changes in

anxiety-like behavior, due to maternal stress, were previously described by several research

groups [41, 70]. Although there are controversial results regarding effect of chronic pregesta-

tional stress on anxiety-like behavior of offspring, possibly due to the different stress paradigm

strategies, a great proportion of studies postulate that male offspring whose mothers were sub-

mitted to stress before or during pregnancy are more reluctant to enter and spent time in the

open arm of the elevated plus maze [71–73]. Effect of perinatal mirtazapine treatment on anxi-

ety-like behavior of offspring, in our study present only in females, may be due to the antago-

nism that mirtazapine exerts on noradrenergic autoreceptors that in turn enhances the

noradrenergic transmission opposing the stress-related response [74]. However, the research

group of Sahoo et al. studied the effects of prenatal exposure to mirtazapine on the postnatal

development of rats, with animals spent less time in the open arm, albeit sex was not distin-

guished [75]. Nevertheless, the sex-dependent differences in adaptive behavioral performance

to a challenge due to maternal stress may be explained by the influence of individual fetal

brain programming, differentially modulating e.g. the responsiveness to a new stimuli, or a

hormone arousal during adolescence [76]. Recent studies postulate that the sexual hormones,

testosterone and estradiol, have a neuroprotective and anti-inflammatory role on cognitive

functions [1, 77], which is a possible ground for further investigation.

Depressive-like behavior

Modified forced swim test, based on the protocol established by Porsolt [78], has been used as

a tool to determine the learned helplessness (rodent despair) and therapeutic efficacy of mirta-

zapine. However, several recent studies postulate that the immobility in this test may not be a

sign of a depressive-like state but rather reflection of the individual ability to cope with an

acute stressor, explaining the passive phenotype as a result of animal’s difficulties to adapt to

external stimuli [79, 80]. Our results show an increased active behavior of animals from

stressed mothers of both sexes regardless of mirtazapine treatment manifested as less time

floating and more time trying to actively escape. Even though several studies declared

increased immobility time in animals that have experienced stress during their lives, particu-

larly prenatally, [66, 81, 82] there are studies showing possibility of prenatal stress inducing

adaptive changes contributing to stress resilience later in life [83–85]. Active behaviors, such as

swimming and climbing, in the rat forced swimming test are differentially regulated by seroto-

nergic and noradrenergic systems [86]. Swimming behavior, in this test, is modulated by sero-

tonergic neurotransmission, as Brummelte and colleagues demonstrated a decreased

swimming of offspring whose mothers were exposed to high levels of corticosterone while

pregnant [87]. Also, Vázquez et al. suggested that increased levels of serotonin in control ani-

mals after FST may be responsible for shorter time spent immobile and increased time spent

swimming, corroborating an effect of the serotonergic system, which in turn modulates dopa-

minergic projections associated with the reward system and the coping with stress. In this
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terms, lower levels of serotonin were linked to a stress-induced anhedonic state, while higher

levels promote a non-anhedonic state [66]. Accordingly, higher levels of serotonin may be a

plausible explanation to our results.

Spatial memory

We encountered sex-dependent differences in the Y-maze, a behavioral paradigm set to assess

the spatial memory performance building on the natural inclination of rodents to explore new

environments. Male offspring from mirtazapine treated mothers showed reduced locomotive

activity, indicating an influence of treatment on executive capacity. On the other hand, females

seemed to be rather affected by the pregestational stress experience of the mothers, which

induced a hyperactivity-like response. Such a result may be reflective of hyperactivity or even

ADHD described in children of stressed mothers while pregnant [88, 89]. However, sex differ-

ences in reactivity to either pre-gestational stress or perinatal mirtazapine treatment related to

potentially hyperactive behavior require further investigation. In children, PS is connected to

cognitive, behavioral, and emotional problems such autism and ADHD [90, 91]. The maternal

stress, manifesting as increased cortisol and corticotropin-releasing factor (CRF) levels, affects

the fetal development by reprogramming the HPA axis, leading to impaired memory and

learning due to the long-lasting effects in the hippocampus [92]. Moreover, Deminière et al.

had previously described an increased locomotor reactivity to novelty in litters of pre-gesta-

tionally stressed mothers, which authors associated with a modified dopaminergic activity in

the prefrontal cortex and nucleus accumbens [93]. Experience-dependent plasticity of hippo-

campal neurons and adult neurogenesis, processes of importance for optimal learning or

memory formation and processing, are modulated through epigenetic mechanisms, which

induce long-lasting changes determining the ability of individuals to cope with adverse situa-

tions [94, 95]. In our study, adolescent females had impaired spatial memory, represented by

decreased percentage of spontaneous alternations, as a result of maternal stress as well as mir-

tazapine treatment. However, this effect was not present in males. Conrad et al. studied the

effects of chronic stress on spatial memory performance of adult rats concluding that stress

impaired the spatial learning and memory, hippocampi-dependent spatial tasks. Authors also

resolved that females seem to be less vulnerable to these hippocampi-dependent memory defi-

cits [51, 96]. Nevertheless, they didn’t study the effects in the offspring. Otherwise, female rats

have been linked to more active response in novel environments [43, 97, 98] and, in line with

our results, pregestational stress as well antidepressant treatment highlighted this response

with effect of mirtazapine being highly visible in animals without pregestational stress expo-

sure. Similar results have been postulated in association with other antidepressant such as flu-

oxetine, bupropion or citalopram [88, 99]. Nevertheless, our results show a clear influence of

pre-gestational stress and antidepressant treatment in the onset of behavioral tasks, which may

be driven by the differential strategies used by each sex to cope with adversity. Moreover, we

could take into account that we evaluated animals during adolescence, which is known as a

time of increased physiological and psychological changes, which make them more vulnerable

and unpredictable to external influences [100–102].

Synaptophysin analysis

Synaptophysin is used as a marker of synaptic plasticity and synaptic nerve terminal density

[103]. We analyzed optical density (OD) of synaptophysin, a calcium-binding glycoprotein

widely distributed in the presynaptic vesicle membrane, that is required for vesicle fusion and

neurotransmitter release, in the CA3, CA4 and DG areas of the hippocampus. Results of

synaptophysin density in our study were age-dependent with no changes in juvenile offspring.
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However, with onset of adolescence we observed prominent effect of sex with synaptophysin

OD males remaining intact under all conditions while females being influenced by maternal

mirtazapine treatment. This effect was regionally specific as changes were observed only in

CA3 and CA4 areas but not in DG. Sex differences can be seen in the neural plasticity at

DG-CA3 synapses. In short, mossy fibers evoke larger population spikes in CA3 pyramidal

neurons in females during proestrus and estrus relative to males, while mossy fibers in males

have stronger synaptic connections to CA3 neurons than females [104]. Limitation of our

study is that we didn’t evaluate estrus cycle phase before extraction of the brains. There is very

limited research available on maternal antidepressant treatment in association with synapto-

physin OD. Fluoxetine, a SSRI, has been proven to impact synaptophysin OD of CA3 in the

same sex- and age-dependent manner as seen in our study [44]. Previous studies have encoun-

tered a reduced expression of synaptophysin in the hippocampus as whole or in DG, no

research is done on other specific regions, at different ages (PP7, PP14, adult) of pre-gestation-

ally stressed pups [105–107], suggesting the involvement of early-life stress in modulation of

synaptic plasticity, which could lead to development of neuronal deficits during adulthood

[108, 109]. Previous studies suggested a regulatory role of ovarian hormones in the developing

brain [108] explaining the differential effect of stress on limbic synaptic plasticity in female

rats. However, there are differences between our study compared to studies previously men-

tioned. Our model comprises of CUS prior to gestation, and we tested the offspring in adoles-

cent age, when the reproductive system of the offspring is not fully developed, so we can’t rule

out other stress related changes in later life that were not seen in this study.

Conclusions

Neurobiology of depression remains mostly unexplained with several theories trying to iden-

tify its etiology including the impairment of monoaminergic systems coupled with an altered

neural plasticity, dysregulation of the HPA axis or the immunological response. Maternal

depression as well as antidepressant treatment thus may lead to a broad spectrum of neurode-

velopmental changes in the offspring. Our results suggest mirtazapine induced alterations in

maternal behavior and several sex- and age-dependent changes in neurobehavioral develop-

ment of offspring caused by either or combination of prenatal mirtazapine treatment and

chronic pre-gestational stress such as decreased anxiety-like behavior in females, increased

anxiety-like behavior in males and impaired spatial memory in females.
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Formal analysis: Kristı́na Belovičová.
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