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Abstract

Advances in our ability to systematically introduce and track controlled genetic variance in 

microbes have fueled high-throughput reverse genetics approaches in the past decade. When 

coupled to quantitative readouts, such approaches are extremely powerful at elucidating gene 

function and providing insights into the underlying pathways and the overall cellular network 

organization. Yet, until now all efforts for quantifying microbial macroscopic phenotypes have 

been restricted to monitoring growth in a small number of model microbes. We developed an 

image analysis software named Iris, which allows for systematic exploration of a number of 

orthogonal-to-growth processes, including biofilm formation, colony morphogenesis, envelope 

biogenesis, sporulation and reporter activity. In addition, Iris provides more sensitive growth 

measurements than current available software, and is compatible with a variety of different 

microbes, as well as with endpoint or kinetic data. We used Iris to reanalyze existing chemical 

genomics data in Escherichia coli and to perform proof-of-principle screens on colony biofilm 

formation and morphogenesis of different bacterial species and the pathogenic fungus, Candida 
albicans. Thereby we recapitulated existing knowledge but also identified a plethora of additional 

genes and pathways involved in both processes.

Introduction

High-throughput reverse genetics can provide unprecedentedly rich information on gene 

function and cellular network organization 1. Both gene-gene and gene-drug interactions 

rely on accurately measuring the phenotypic change between perturbed and unperturbed 
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states. Up until now, fitness-related measures have been exclusively used for quantifying 

such changes. For pooled barcoded libraries, this is a necessity, as sequencing reports on the 

relative abundance of each mutant in the experiment 2. While options increase when using 

ordered libraries 1, growth has dominated as the simplest phenotypic readout, reporting on 

effects at multiple levels and scales 3. Concordantly, currently available software tools 4–9 

are tailored to measure colony size in high-density arrayed plates as a proxy of growth. Yet 

many bacterial core programs, such as biofilm, motility, competence and sporulation occur 

at stages when cells slow down or stop growing completely. Other processes impact cellular 

physiology but do not have a measureable effect on growth. Unfortunately, current tools 

cannot quantify such orthogonal-to-growth readouts, and even large-scale efforts to map 

their underlying genetic determinants have relied on qualitative or semi-quantitative metrics 

10–12.

We developed the versatile and extensible image-analysis platform Iris, which can quantify 

multiple features of high-density arrayed microbial colonies. Iris is open-source, works with 

a variety of different microbes, and has add-on features that make it compatible with low-

throughput or kinetic data. Iris has been successfully used by a number of labs 13–16. Here 

we illustrate its ability to report both on a series of colorimetric and colony-morphology 

based assays. By significantly expanding the palette of macroscopic features quantified, Iris 

sets the foundation for a new era of high-throughput phenotyping in microbes.

Results

Iris: an image analysis platform for microbial colonies

In the last decade, colony growth has dominated microbial high-throughput reverse genetics, 

serving as the sole quantitative readout of thousands of mutants arrayed on agar surfaces 17–

21. To increase the quantitative information extracted from such screens, and to target the 

unresponsive-to-growth part of the genome, we developed the image analysis software Iris. 

Iris captures the multitude of phenotypes exhibited by microbial colonies, quantifying 

features related to colony growth (area, circularity, integral opacity), color and morphology 

(Fig. 1). The specifics on how each readout works are described in Methods, and the utility 

of each of the readouts is illustrated in subsequent sections and previous publications 13, 16. 

Iris binary distribution and source code can be downloaded at: http://critichu.github.io/Iris

Since macroscopic phenotypes heavily depend on the microbe and assay, we reasoned that 

no matter how inclusive we tried to be, there would always be assays that our current 

pipeline would be unsuitable for. Therefore, we designed Iris in a modular fashion, enabling 

future users to add modules. Currently, the first two modules crop and segment the image 

into single-colony images, which are then fed to the corresponding readout modules, each 

quantifying a different phenotype (Fig. 1). All modules can be adjusted by the user to fit the 

assay demands (Methods). Although the software was designed for processing high-density 

arrayed colonies (from 96- to 6144- colonies per plate), we have also adapted it to targeted 

approaches, where small sets of colonies are quantified (ColonyPicker; Methods). This 

meets a long-standing demand for a quantitative tool for microbial macroscopic phenotypes 

11, 12, 22–24.
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Colony integral opacity recapitulates growth more accurately than colony size

In all published genetic interaction or chemical genomics screens, colony size is calculated 

as the colony area in pixels. However microbial colonies grow not only in area, but also in 

height. In addition to colony area, Iris calculates the colony integral opacity, which is the 

sum of the brightness values for all the pixels within the colony bounds. Thus, colony 

integral opacity depicts better the 3-dimensional colony growth (Fig. 2a -inset).

To assess how colony integral opacity performed, we re-evaluated the Nichols et al. data, 

where ~4,000 E. coli single-gene deletions were screened in >300 conditions 19. As 

expected, colony size data from previous software and Iris matched nearly perfectly 

(Supplementary Fig. 1a). On the contrary, colony integral opacity exhibited a better dynamic 

range, especially for small colonies (Supplementary Fig. 1b). This confirmed previous 

observations that a few mutants had more translucent or denser colonies. To address this 

further, we calculated the density of each mutant (colony integral opacity/colony size), and 

plotted the normalized density for all the data as a function of size (Fig. 2a). Denser colonies 

could be spotted independent of size, whereas smaller colonies were in general less dense, 

suggesting that growth defects manifest not only on colony area but also on colony density. 

Thus integral opacity captures 3-dimensional colony growth better.

We first investigated conditions that changed the overall colony density (Supplementary 

Table 1). Chemicals targeting the cellular membranes, such as SDS, EDTA, Thiolactomycin, 

Verapamil and Procaine all resulted in more translucent colonies (Fig. 2B). Although SDS 

lowers the plate surface tension, resulting into flatter and more spread colonies, none of the 

other chemicals has surfactant activity, implying a more general role of membrane 

homeostasis on colony growth (see Supplementary Discussion). In contrast, 

aminoglycosides (Tobramycin, Streptomycin, Amikacin) and A22 were among the 

conditions with denser colonies (Fig. 2B). Sub-inhibitory concentrations of aminoglycosides 

induce biofilm formation in E. coli 25. A22 activates the Rcs system 26, inducing colanic 

acid secretion and making colonies mucoid. In accordance with colanic acid controlling 

colony density, mutants that consistently produced denser colonies across all conditions, lon, 

lpcA and rfaF, have been previously associated with mucoid phenotypes due to Rcs 

activation 27 (Fig. 2c; Supplementary Table 2). As a matter of fact, the Rcs system was 

differentially activated by distinct LPS core truncations, which was also captured well by 

colony density (Supplementary Fig. 1c). At the opposite end, mutants with consistently 

translucent phenotypes across conditions were enriched in genes that are part of core cellular 

processes (Fig. 2c; Supplementary Table 2).

We also looked for novel conditional phenotypes, as these are what our scoring system 

captures as gene-condition interactions 4. For example, a knockout of yciB, encoding a 

poorly characterized protein with putative role in cellular morphogenesis, exhibited high salt 

sensitivity (Fig. 2c), which was previously undetected by the colony size readout. yciB cells 

were aberrantly shaped and often lysed when growing in high salt (Supplementary Fig. 1d). 

To identify such conditional phenotypes more globally, we calculated integral opacity-based 

fitness scores (S-scores) for every mutant across each condition as previously described 19 

(Supplementary Table 3). By correlating the vector of S-scores for each mutant across 

conditions, we acquired a gene association network (Supplementary Table 4). Comparing 
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this with the published network that used colony size S-scores 19 revealed a number of 

mutants for which we gained association power to other mutants and pathways (Fig. 2d). As 

an example, the molybdopterin synthesis pathway genes feature higher correlations to genes 

within the pathway, as well as with genes in related processes (Fig. 2e).

Since colony integral opacity has better dynamic range for measuring cellular fitness, we 

and others have started using it as the preferred growth readout in chemical genomics 

screens 14–16.

Quantifiable colorimetric assays- biofilm formation in gram-negative bacteria

Colorimetric assays typically measure the emergence or disappearance of color in or next to 

a microbial colony as a result of a phenotypic trait. Despite their quantitative potential (good 

sensitivity and dynamic range), such assays have mainly been used in a qualitative manner in 

diagnostics and screening. Using Iris, we and others have adapted a number of these assays 

to high-throughput reverse genetics screens, including membrane permeability/elevated lysis 

13, sporulation 16, reporter activity (β-galactosidase) and biofilm formation assays.

Biofilm formation is a key lifestyle decision for microbes, triggered by environmental or 

nutritional cues, as well as intercellular signaling. Congo Red (CR) binds non-specifically to 

extracellular matrix components and has been traditionally used to stain macrocolony 
biofilm formation 28. We slightly adapted the CR assay and used it to profile the E. coli 19, 

29 and Pseudomonas aeruginosa PA14 30 deletion libraries. The readout was reproducible 

within organism (Fig. 3a), orthogonal to growth (Supplementary Fig. 2a) and recapitulated 

existing knowledge in biofilm formation of the two organisms (Supplementary Table 5). For 

example, central players in E. coli biofilms, such as lipopolysaccharide (LPS), curli fimbriae 

and flagella were all hits in our screen (Fig. 3b). Curli are extracellular amyloid fibers that 

constitute the main structural component of E. coli K12 lab strain biofilms 22, 31. As 

expected, mutants in all genes contributing to their synthesis, transport or secretion to the 

surface abolished CR staining. The notable exception was csgC, encoding for a periplasmic 

protein that inhibits accumulation of intracellular amyloid fiber 32. A number of processes, 

previously unlinked to biofilm, were also identified in our screen (Fig. 3b, Supplementary 

Table 5). For example, E. coli mutants of the molybdopterin (MPT) biosynthesis pathway 

were stained more red, with the exception of moaA and moaB, which have less and no 

pronounced role in MPT biosynthesis, respectively 33, 34. Both MPT and cyclic-di-GMP (c-

di-GMP) biosynthesis draw from the same pool of GTP (Fig. 3b). Failure to synthesize MPT 

could lead to elevated levels of the ubiquitous second messenger, c-di-GMP, and thus more 

biofilm 35. Similarly we could recapitulate all known c-di-GMP synthases in both organisms 

and identified 3 new ones for P. aeruginosa PA14 (Supplementary Fig. 2b).

Secondary metabolites, including quorum-sensing molecules, are key for P. aeruginosa 
biofilms. Consistent with literature, blocking quinolone (PQS: Pseudomonas Quinolone 

Signaling) production inhibited macrocolony biofilm formation 36. In contrast, pqsL 
mutants lead to PQS overproduction 37, and thus to more biofilm (Fig. 3c). A second class 

of secreted secondary metabolites, the redox-active phenazines, are also known to influence 

P. aeruginosa biofilm morphogenesis 38. Although P. aeruginosa PA14 encodes two nearly 

identical phz operons, phz2 is the only one active in colonies 39. Consistently our 
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phenotypes stemmed only from mutants in phz2 (Fig. 3c). However, phz2 mutants exhibited 

less CR staining in our assay, in contrast to previous assays where phz2 mutants were more 

wrinkled when probed at later stages of macrocolony biofilm development 39, 40. This 

implies that phenazines have a non-monotonic relationship with biofilm formation: their 

absence slows down matrix secretion at early stages, but increases it later (due to redox 

imbalance) leading to wrinkled colony formation 40.

P. aeruginosa biofilms are structurally diverse, containing exopolysacchharides, flagella, pili 

but also extracellular DNA and metabolites 41. In our assay the most contributing factor was 

type IV pili 42. Type IV pili are used for surface sensing and attachment 43, enabling 

chemotactic movement on surfaces during early biofilm formation 44. Mutations in nearly 

all of the subunits of the type IV pili machinery 42, the c-di-GMP effector FimX 45, and the 

chemotaxis system activating type IV pili extension/retraction 46 resulted in significantly 

decreased CR staining (Fig 3c, Supplementary Fig. 2b and Supplementary Table 6). Notable 

exceptions were: chpB, encoding for the receptor-specific CheB-like methylesterase which 

adapts the chemotactic response by deactivating the receptor 46, 47 - thus phenotype is 

justified; pilC encoding for the motor protein of the type IV pilus; and 2/4 minor pilin 

mutants present in the library, pilW and fimU (Fig 3C). The pilC mutant exhibited elevated 

CR staining because the isolated transposon insertion mutant 30 leads to overexpression of a 

minimally truncated functional protein, instead of knocking out the gene (Supplementary 

Fig. 2c). It is unclear if something similar happens with the minor pilin mutants, but minor 

pilins were suggested to control c-di-GMP levels, in addition to their structural role in type 

IV pilus 48. Consistent with a more complex role, a different set of minor pilin mutants 

exhibited colony structures at later time points of biofilm formation (Supplementary Fig. 

2d).

A new algorithm for capturing microbial colony morphology

Colony structure formation, a hallmark of a sedimentary biofilm lifestyle, has been linked to 

the underlying mechanical forces of colony growth 49, to properties of the produced 

extracellular material 22, and to responses to oxygen, nutrient or metabolite gradients within 

the colony 24, 28. Although the wrinkles, valleys, concentric rings, and halos that microbial 

colonies form have fascinated researchers for decades, we currently lack tools for 

quantifying them. This is not a trivial undertaking, as texture-detection methods often fail 

due to technical biases, such as lighting inconsistencies between pictures or organisms. As 

part of Iris, we devised a new colony structure detection and quantification algorithm. In 

brief, this algorithm reports both on the “wrinkleness” of the colony, based on the wrinkle 

frequency and height, and on the size of the surrounding halo (Fig. 4a; Methods).

We benchmarked our new readout by measuring the structure complexity (wrinkleness) and 

agar invasion (halo size) of two homozygous single-gene deletion Candida albicans 
collections 10, 50. The human opportunistic pathogen C. albicans grows in vivo as yeast, 

hypha or pseudohypha. Colony structure on solid media reflects all three single-cell types. 

Smooth colonies are mostly comprised of yeast cells, while wrinkled ones are mostly 

comprised of hyphae and pseudohyphae. Invasive filamentation occurs around the colony as 

hyphae and pseudohyphae penetrate the agar (Fig. 4a). When measuring colony wrinkleness, 
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Iris successfully identified the main known regulatory network behind biofilm formation 51, 

52, but also additional transcriptional regulators (Fig 4b). Processes enriched for low and 

high morphology scores matched expectations (Fig. 4b & Supplementary Table 7), and data 

correlated well with previously manually curated morphology scores 10 - automated 

quantification by Iris exhibited higher dynamic range and accuracy (Supplementary Fig. 3). 

We also used Iris to measure invasive filamentation, identifying a distinct set of genetic 

determinants and related processes (Fig. 4c & Supplementary Table 7).

We further profiled colony morphology and CR staining for mutants in the main pathways 

for biofilm formation in Salmonella enterica serovar Typhimurium. S. Typhimurium 

develops red dry and rough (rdar) colonies on CR plates with cellulose and curli fimbriae 

being the main contributors of these structures 31. Measuring both readouts allowed us to 

dissect the two pathways, with cellulose contributing mostly to structure formation and curli 

contributing more to color development (Supplementary Fig. 4).

Overall, our new algorithm captured well colony morphology characteristics in any 

organism tested. We envision it facilitating future larger-scale endeavors, which until 

recently were only qualitatively evaluated 10–12.

Kinetics option for Iris readouts

Kinetic data can be more informative than endpoint measurements because: a) they are more 

robust to sample noise, inoculation variance or asynchronous growth of arrayed colonies; b) 

can reveal non-monotonic behaviors across time; and c) they are more sensitive for detecting 

smaller effects. Therefore, we decided to build an add-on R-based software to accompany 

Iris, which uses the kinetic data to calculate and plot curves for the different readouts across 

time.

To illustrate its utility, we tracked 3 fitness-related colony features over time for all mutants 

in an extended version of the E. coli single-gene deletion library 19, 29. We asked which 

readout captures growth better, and how do different media and lighting conditions impact 

the measurements. We found that adding a dye in the media improved early colony detection 

(Supplementary Fig. 5a). We used the Gompertz model to fit the time series of all 3 fitness 

measures and calculate lag phase, slopes, and estimated maximum growth values for all the 

mutants. As noted before 9, colony growth is linear and not logarithmic. Center integral 

opacity was the most robust readout when comparing either the Gompertz slope or expected 

endpoint values for all described measures of mutant fitness (Supplementary Fig. 5b). We 

then asked whether the endpoint read we use in our screens recapitulates well such kinetic 

data. Indeed, a well-selected endpoint measurement was a good proxy of growth curve 

slopes (Supplementary Fig. 5c), thus simplifying data collection and analysis with little 

compromise in the end result. Nevertheless, correlation dropped when comparing slopes to 

endpoints of different readouts (Supplementary Fig. 5d).

In conclusion, Iris together with the provided Kinetic Data Companion tool simplify the 

processing of kinetic data analysis and visualization for colony measurements. This pipeline 

can be used with any of the other readouts Iris reports on.
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Discussion

We have developed Iris, a freely available software for quantifying macroscopic colony 

phenotypes. In addition to more sensitive measures of microbial growth on plates, Iris 

features quantification modules tailored for colorimetric and colony-morphology-based 

assays, reporting on biofilm formation, sporulation, envelope integrity and reporter activity. 

These new features, which include an algorithm for quantifying colony structure, as well as 

the modularity and open-source nature of the software, make Iris unique in the field. Our 

effort concurs well with the advance of high-throughput reverse genetics approaches in 

microbiology, with currently >20 microbes having arrayed deletion libraries. Iris is also 

compatible with low-throughput measurements and kinetic data, offering a solution to labs 

that want to quantify such phenotypes for their targeted studies. Similarly, Iris can deal with 

diverse microbes, enabling studies of natural isolate collections or interspecies interactions.

We benchmarked Iris by quantifying the different phenotypes our assays captured. In this 

process, we revealed phenotypes for many genes that remained previously unresponsive, 

even when probing >300 conditions with growth as a readout 19. These tens of examples of 

new gene-condition associations can serve as the stepping stone for targeted mechanistic 

dissection of gene function. In addition to gaining insights into previously uncharacterized 

genes, our screens revealed previously unappreciated connections of known pathways, such 

as the potential role of the overall GTP pool in biofilm formation, a different role of 

phenazines in P. aeruginosa early biofilm development, new c-di-GMP synthases involved in 

P. aeruginosa biofilm formation, and transcriptional regulators involved in C. albicans 
filamentation.

In addition to the growth-unrelated readouts, we explored how colony growth is captured 

more accurately, and its relations with time. Our new readout, colony integral opacity is 

more sensitive than size for quantifying growth defects. Therefore, we used it to reanalyze 

the existing E. coli chemical genomics data 19, providing novel insights into the functions 

and associations of many genes. Combining the info from colony size and integral opacity, 

we measured density-related characteristics of colonies, which linked to the inability to form 

proper colony structures or to extracellular material secretion (Supplementary Discussion).

In summary, we created a long awaited tool for the microbiology community, which will 

facilitate quantitative reverse genetics approaches – both at a targeted and a large-scale level. 

We will maintain and update the software to meet future needs of users. As colony detection 

and quantification is microbe- and media- dependent, slight deviations of the current 

available modules can be developed when necessary.

Methods

Software design and implementation

Iris is implemented in Java and uses the image analysis routines of ImageJ 53. This is done 

via calls to the ImageJ API (Application Programming Interface), or direct calls to the 

routines of specialized ImageJ plugins. A distribution of the ImageJ code is bundled in the 

Iris distribution, so the user does not have to install ImageJ separately.
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All image analysis steps (see below) are implemented by separate modules. While often 

specialized for a specific assay, modules are interchangeable and the same module (e.g. 

implementing plate rotation) can be used by several assays. The collection of modules that 

were tested to work best for a particular assay is called an assay profile. The user has to 

choose the assay profile, and select a folder containing the images to be quantified.

The set of algorithms used for each profile is documented online on the Iris webpage: http://

critichu.github.io/Iris. By modifying a supplied settings file, users can adapt several 

parameters for every step of the image analysis pipeline. Image rotation, cropping, 

segmentation (grid format), and detection parameters can be adjusted either in a per-profile 

fashion or globally.

Colony array image analysis pipeline

The following steps take place at the whole image level to process high-resolution images of 

colony arrays on agar plates.

Rotation—The first processing step for the software is to automatically rotate the image so 

that the colony array is perfectly horizontal. This step is crucial in high-density applications 

using 1536 or 6144-colony plates. Iris performs accurate image rotation by rotating a 

grayscale version of the image in 0.5° increments, and calculating the per-row sum of pixel 

brightness. Colony rows are perfectly horizontal in the rotation that maximizes the variance 

of brightness sums. To accelerate processing and avoid confounders from the plate borders, 

only the center part of the image is used to calculate rotation.

Plate border cropping—In the next step Iris detects and crops the plate boundaries. 

Plastic plate boundaries diffract light towards the camera upon side lighting. Iris detects the 

elevated brightness level of the plastic plate borders by means of maxima of brightness on 

the per-row and per-column sums of brightness after grayscale image rotation. For 

applications where backlight was used the plate borders create a shadow. After inverting the 

image, the plate borders are detected in a similar fashion as above. Manually cropped plates 

can be used in the rare cases where automated plate boarder detection fails (see Quality 

control section).

Image segmentation—A cropped image containing only the colony array is then 

segmented into image tiles, each holding only one colony. Since colonies are usually 

brighter than the background, summing brightness per-row and per-column gives brightness 

sum valleys and peaks. Peaks correspond to the centers of colonies per row or column, while 

local brightness sum minima correspond to inter-colony space (Fig. 1). Iris uses the minima 

corresponding to inter-colony space to segment the image into many images containing 

single-colonies, called tiles. As some colonies can grow larger than their holding tile, Iris 

then examines each tile and adjusts its borders to accommodate the entire colony. While tile 

image boundaries are calculated on the grayscale version of the image, these tile image 

boundaries are applied to the original color image, giving full-color image tiles to be further 

processed.
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Tile processing—Each tile is separately processed by one or several tile processor 

modules, specialized in quantifying a specific phenotype. This design allows for independent 

colony phenotypic quantification, but also for easy incorporation of new readouts. To 

expedite processing in the case of multiple phenotype quantification, colony bound detection 

occurs at the first tile processor (defined by the selected profile) and is provided as input to 

the rest tile readers.

Colony phenotype quantification

The following steps take place at a tile (colony) level:

Colony boundary detection—The first step of colony phenotype quantification is to 

accurately detect the colony boundaries. Colony shapes, sizes, colors, as well as background 

vary substantially across diverse applications (different microbes, media, dyes or camera 

settings). Iris uses multiple thresholding algorithms to detect colonies, which differ 

according to the application (see table at http://critichu.github.io/Iris).

For most applications colonies are brighter than plate background; for those Iris applies 

grayscale image thresholding algorithms such as the Otsu algorithm. Typically such 

thresholding algorithms operate on the histogram of image brightness, and attempt to select 

a threshold best separating the foreground (bright) from background pixels.

For applications such as the biofilm & morphology readouts (CR plates), where the 

brightness of a colony relative to its background is uncertain (can be brighter or darker than 

background), or may vary within the assay, Iris employs the Marr-Hildreth algorithm, also 

known as Laplacian of Gaussian algorithm. This algorithm first applies a smoothing 

Gaussian filter to the grayscale image. Subsequently a second order derivative of the 

Gaussian is calculated, whereby zero values denote sharp changes in brightness. These pixel 

locations are then used as colony boundaries.

Colony circularity can be used to filter abnormal colonies or very rare events in which Iris 

mistakes agar/lighting abnormalities for colonies (see also Quality Control section). In our 

experience, colonies detected with circularity under 0.4 should be either discarded or 

considered for manual inspection. To further increase colony detection robustness, several 

Iris profiles use multiple thresholding algorithms for each colony and a hierarchical decision 

process to select the best detection result (after applying internal size and circularity 

criteria).

In some applications of the CR assay for monitoring of biofilm, parts of colonies (rather than 

the entire colony) can become darker than the plate background as they absorb the CR dye. 

Accurate colony detection is very difficult in such cases. To circumvent this Iris can 

calculate the average background color by sampling pixels in the 4 corners of the tile. 

Subsequently, pixels featuring similar color to the background average are replaced by 

black. Color similarity is calculated based on their distance in the RGB space. After 

background color removal, the colony boundaries are detected using the Otsu thresholding 

algorithm. Since this functionality is only needed rarely for current applications, it is not part 

of the default profiles, but can be employed for new readouts.
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Finally, Iris takes into account only the main colony on the tile, ignoring any other smaller 

colonies, which could arise from minor contamination. Subsequently, only the colony with 

the biggest area is kept for downstream analysis

Colony center detection—Applications such as detection of sporulation require the 

detection of pigmentation in the center of the colony. To robustly detect the colony center, 

Iris takes advantage of the fact that in high-throughput assays colonies are pinned in 

rectangular arrays. In this way, the X-axis displacement of colony centers will be equal for 

all colonies in the same column. The same is valid for the Y-axis displacement of all 

colonies in the same row. The X-axis displacement for colony centers in each column is then 

calculated as the median of all colony center X-axis displacements in this column. Colony 

center Y-axis displacements are calculated in a similar fashion for each row, resulting in 

robust coordinate calculation for all colony centers.

To initially estimate colony centers per colony Iris calculates the ultimate erosion point of 

the grayscale colony after applying an image thresholding algorithm (Otsu). This approach 

is also used in the case of manually cropped single-colony images.

Colony-growth related readouts—Colony size is typically measured by all available 

software 4–9 as a proxy of growth fitness. Colony size corresponds to the colony area in 

pixels and is calculated by counting the number of pixels within the colony bounds.

To calculate colony integral opacity, Iris first calculates the average brightness of 

background pixels in the tile. Background brightness calculation per tile is advantageous in 

applications where lighting is not uniform across the entire plate. Subsequently, the over-

background brightness of every pixel within the colony bounds is calculated as the pixel 

brightness minus the background average brightness. This is then summed for all within-

colony pixels to provide the colony integral opacity. Colony density is calculated as the 

average integral opacity in the colony, i.e. by dividing the colony integral opacity by the 

number of pixels in the colony.

A third growth-related readout, center integral opacity, restricts the measurement of colony 

integral opacity to pixels within a defined area around the colony center. Center area size 

corresponds to the area size used by a previous study 9, taking into account differences in 

setup (e.g. image resolution, average number of pixels in colony).

Sporulation—B. subtilis sporulating cells turn dark brown in minimal media. To quantify 

this pigmentation change, Iris assesses the three primary color channels in the cubic RGB 

representation per pixel. To do so, green and blue channel intensities are added together, and 

multiplied by a gain factor; the same process is done to the red channel. Subsequently the 

difference of the red channel product is subtracted from that of the green and blue channels. 

Since cells turn dark brown, detecting the pigmentation change is aided by detecting changes 

in pixel brightness, which is also incorporated in the sporulation score formula:
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R, G, B, and S denote red, green, blue, and saturation values respectively for each pixel, g 
indicates a gain factor. Pigmentation change during sporulation takes place in the colony 

center. Iris reports the average value of the color score across pixels in a defined circular area 

centered at the colony center and a diameter of 24 pixels.

Biofilm formation—In our colony biofilm assay, colonies that form biofilm bind more the 

CR dye and thus turn dark red. Iris detects this color change similarly as described above for 

sporulating cells in B. subtilis, and uses the same formula as above for each pixel in the total 

area of the colony.

Chromophore detection—An example of a chromophore assay is the CPRG assay, 

which can be used to detect mutant cells with higher permeability or elevated lysis 

frequency by detecting a chromophore reaction on agar plates 13. Chromophore-based 

assays on solid plates are limited by chromophore diffusion to neighboring colonies. In order 

to robustly detect low chromophore concentrations, Iris converts the tile image to the 

cylindrical HSV color space. Subsequently chromophore concentration is quantified as the 

radial distance between the hue of every pixel and the hue of the chromophore color (e.g. 0° 

for red color), and summed across colony pixels.

Colony morphology—Microbial colonies are often structured, with ridges extending 

from the colony center, and valleys separating the ridges. Iris detects colony structure 

complexity by traversing colony pixels in circles concentric with the colony center. 

Brightness levels of pixels within such a circle feature valleys and peaks, which coincide 

with colony structures (Fig. 4a). Since lighting differences can account for brightness peak 

height, Iris counts the number of peaks in a binary way if they are above a certain brightness 

threshold.

Invasive filamentation—Colonies of some microbial species, such as C. albicans, also 

extend into the agar, which is readily observable at the image of a colony array. By 

sequentially applying two image thresholding algorithms of different sensitivity, Iris 

captures both the extent of the filamentous agar invasion, as well as the over-agar colony 

size. The Percentile algorithm is first used to detect the extent of the entire colony. 

Subsequently, the Minimum thresholding algorithm is used to acquire over-agar colony 

growth. The Minimum algorithm is applied only to the region previously determined by the 

Percentile algorithm. Subsequently Iris calculates the extent of in-agar growth by subtracting 

the areas of these two regions.

Quality control

To assess the robustness of the cropping and segmentation algorithms, we used Iris to 

process > 8,000 high-density array pictures (1536 mutants/plate) with different sources of 

variability (orientation, lighting, media etc). Failure rate was < 2%, and in all cases the issue 

was on plate boarder identification. This problem can be easily solved by feeding manually 

plate cropped plates to Iris.

Detection rates differ per profile and assay. In most non-colorimetric assays misidentified or 

missed colonies are negligible (<0.01%). In colorimetric assays, color of background and 
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colony can become sometimes difficult to distinguish. Nevertheless, detection rates of our 

current biofilm readout module are > 99.7% when looking in tens of millions of E. coli and 

P. aeruginosa colonies. Almost all come from false positives (FPs) – i.e. Iris misdetecting an 

existing colony or mistaking agar abnormalities for colonies. FPs can be detected in batch by 

using circularity thresholds (misdetected colonies are less circular). False negatives (FNs), 

i.e. colonies that Iris completely missed, are <0.05%. FNs can be identified by spotting 

replicate outliers (mutants where only in one replicate experiment have size = 0).

Iris also allows users to control the quality of their results. First, for every input image Iris 

produces an image file (termed a grid file) that can be used to quickly inspect the 

segmentation and colony detection results. Users can also visualize each measured 

phenotype of the Iris output by using a script available on the Iris website (see Visualizing 
Iris output at http://critichu.github.io/Iris). To address such cases, users can rerun Iris with 

adjusted detection parameters (e.g. increasing minimum circularity), or manually define the 

misdetected colonies and reprocess them with the Iris ColonyPicker (see below).

Analyzing single colonies using Iris ColonyPicker

Iris is distributed alongside Iris ColonyPicker, which provides a user-friendly way to profile 

single colonies. After choosing a profile, the user selects an image containing colonies to be 

analyzed. Defining a rectangular area surrounding a colony will lead to automatic detection 

of colony boundaries, whereas round selection forces Iris to use this selection as colony 

boundaries. In both cases, user-selected colonies are analyzed in the background using the 

tile reader modules of the selected Iris profile.

Kinetic Data Companion tool

Iris is accompanied by a tool to generate growth curves from time series data on any of the 

phenotypes mentioned. To automatically load all iris files annotated with their post-

inoculation timepoint, image file names need to be in the following format: 

prefix_plateNumber-Hour-Minute.JPG. Prefix can be freely chosen, as long as it does not 

contain the underscore or dash characters. Detailed instructions on individual functions of 

the companion tool can be downloaded on the same webpage as the Iris distribution.

Experimental Procedures

Microscopy images—Wildtype and ΔyciB cells were grown in LB containing low salt 

(75mM NaCl) before being transferred to LB with high salt (600mM NaCl) and grown for 

6-7 generations before being fixed as described before 54. Fixed cells were imaged on a 

Nikon Eclipse TE inverted fluorescence microscope with a 60X (NA 1.40) oil-immersion 

objective. Images were collected using the DS-Qi2 Mono Digital Microscope Camera and 

the NIS-Elements AR (Advanced Research) software (Nikon).

Rcs –dependent activity—The rprA promoter was amplified and inserted into a 

luxCDABE plasmid backbone without promoter to give p-rprA-lux. The plasmid has a 

pSC101 origin of replication and confers spectinomycin resistance. Selected Keio collection 

mutants were transformed with the p-rprA-lux plasmid and were grown into 50 µL of LB 

medium containing kanamycin and spectinomycin in 384-well plates. Successive dilutions 
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were used to make sure inoculum was low and we could monitor cells for several 

generations in exponential phase. OD600 and luminescence were monitored every hour for 

14 hours using a filter max F5 (Molecular devices). Here we plot the maximal luciferase 

activity for each background.

Biofilm formation assay—The E. coli KEIO collection 29 was arrayed on solid agar 

plates in 1536 format, and plates were incubated at room temperature for 30 hours. Medium 

used was LB 0% NaCl supplemented with 40 µg/ml Congo red (CR) and 20 µg/ml 

Coomassie blue.

The S. Typhimurium single gene deletion library 55 was arrayed on solid agar plates in 384 

format, and plates were incubated at room temperature for 48 hours. Medium composition 

was the same as for E. coli.

The P. aeruginosa PA14 single deletion transposon library 30 was arrayed on solid agar 

plates in 384 format, and plates were incubated at room temperature. Medium used was TB 

(Tryptone Broth) supplemented with 20 µg/ml CR and 10 µg/ml Coomassie blue.

All plates were imaged under controlled lighting conditions (spImager S&P Robotics Inc.) 

using a 18 megapixel Canon Rebel T3i (Canon Inc. USA).

Colony morphology assay—Two homozygous deletion collections of C. albicans -one 

containing deletions in 674 genes 10 and a second targeting 143 transcriptional factors 50 

were arrayed on Spider medium agar plates (a standard hyphal inducing medium) in 96 

format. Plates were incubated at 30°C and were imaged after 7 days as described above.

Kinetic assay—The E. coli KEIO collection 29 was arrayed on solid agar plates in 384 

format, and grown on LB 0% salt medium containing LB with or without Congo Red and 

Coomassie blue (40 µg/ml and 20 µg/ml respectively) at 37 °C. Plates were imaged hourly 

after pinning for 14 hours under controlled lighting conditions (spImager S&P Robotics 

Inc.) using either a translucent background and backlight, or black background and uniform 

side lighting (front light).

Assessing PilC levels in pilC mutant from PA14 mutant library—P. aeruginosa 
PA14 wildtype and pilC transposon mutant were grown for 48 hours at room temperature on 

LB Miller agar plates. Cells were taken at different timepoints, diluted in PBS, washed and 

adjusted to an OD of 3. A Western Blot using anit-PilC was performed with 20 μl sample as 

previously described 56.

Data handling

By design, Iris serves as a tool to extract colony features. Further processing of the results, 

including detection and removal of potential spatial biases, as well as statistical analysis can 

be addressed by ad-hoc analysis or dedicated tools (e.g. EMAP 4 and SGAtools 57, 58). 

Below we describe the data handling approach used for the data presented in this paper.
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Reanalysis of existing chemical genomics images—Images from the large scale E. 
coli chemical genomics screen 19 were analyzed with Iris to acquire colony size and colony 

integral opacity values. Unfortunately ~20% of original the images could not be retrieved. 

Colony density was calculated as the ratio between colony integral opacity and colony size. 

Per-condition density median and standard deviation was calculated using all colonies of 

conditions where at least 8 images could be retrieved.

To compare across mutants, we report normalized density values, whereby differences in the 

median and standard deviation among conditions were removed by calculating a colony 

density z-score per image. Normalized density values were then calculated by correcting the 

density z-scores for spatial biases due to lighting effects. Density z-score values for each of 

two outer columns in every 1536-array plate were used to fit a linear model, against which 

they were corrected. The remaining part of the plate was corrected against a second order 

polynomial surface fitted on the density z-score values. Per-mutant normalized density 

median and standard deviation were calculated on conditions with at least 2 replicate plates 

per library plate.

Colony integral opacity was also used as a fitness measure and processed with the EMAP 

toolbox 4 as previously described 19 to produce mutant-condition phenotypic scores. These 

scores were then used to calculate gene-gene phenotypic signature correlations (Pearson). 

These correlations were compared to the equivalent reported correlations calculated using 

colony size data 19. Gene pair correlation thresholds corresponding to 3 standard deviations 

were set for both the reported, and the integral opacity-derived correlations. Subsequently, 

gene pair correlations that differ by more than 1.5 standard deviations between the two 

datasets were separated in two sets: gene pairs that either gained or lost correlation in the 

new dataset (Fig. 2d).

A subset of the conditions was not included in the integral opacity-based chemical genomics 

dataset as not enough replicate images could be retrieved for these conditions. These are 67 

conditions of the original 324 conditions (20.6%). We then verified that removal of these 

conditions from the published size-derived dataset does not lead to increased gene-gene 

correlations such as those reported among genes of the molybdopterin pathway for the 

integral opacity data.

Biofilm formation—Biofilm formation per mutant colony was quantified in Iris using the 

“Biofilm formation” profile. Spatial biases in the E. coli 1536 plate format biofilm data were 

removed by fitting a second order polynomial surface and multiplicatively correcting for the 

expected values. The polynomial surface correction omitted the outmost 4 rows and 

columns, whereby each row and column was separately multiplicatively corrected so that 

their corrected median corresponds to the median of the remaining inner part of the plate. 

Plate-to-plate biases were then multiplicatively corrected so that the corrected plate medians 

match.

To remove spatial biases on the P. aeruginosa 384 plate format data, an expected ratio per 

plate position was calculated as the median of ratios of colony biofilm scores to their 

corresponding plate median. To avoid expected ratios being driven by outliers, these were 
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further smoothened using a 3x3 sliding window approach. Subsequently, the ratio of each 

colony was corrected for the expected ratio and multiplied by a plate average calculated as 

the median value of all observations, thus multiplicatively correcting for spatial and plate-to-

plate biases in one step.

For the E. coli screen mean and standard deviation values were calculated using 4 technical 

replicate measurements of two biological replicates per mutant. For the P. aeruginosa screen, 

mean and standard deviation values were calculated using 4 technical replicate 

measurements per mutant.

For both screens, top and bottom 2.5% of the mutants ranked by their average biofilm score 

were termed positive and negative outliers. GO enrichments were calculated using an in-

house developed software and GO annotations retrieved from the EcoCyc and BioCyc 

websites 19 for E. coli and P. aeruginosa respectively. In the case of P. aeruginosa 
enrichments were also done on pathways 59, operon membership 60, and domain content 

61.

C. albicans colony morphology—Clones (biological replicates) with discordant growth 

or morphology phenotypes were flagged and removed from further analysis when manual 

inspection and literature survey were not enough for deciding which is the right one. The 

average of acquired morphology values of two technical replicates per clone (2 clones per 

mutant) were compared to previously reported manual phenotypic scores 10. Outlier GO 

enrichment analysis was performed with an in-house developed software and annotations 

downloaded from the Candida genome database 62.

Kinetic data—Images were analyzed by Iris to acquire colony size, colony integral 

opacity, and center integral opacity. Iris profiles used were “Colony opacity”, and “Colony 

opacity inverted” respectively for images using front light and backlight. Growth curve 

calculation was performed using the grofit R package. Dataset comparisons, and plotting 

were done using the statistical computing language R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Software design schematic overview.
The colony array is rotated, cropped and segmented to tiles. Tiles are then processed 

individually for colony identification and are fed to the different phenotype quantification 

modules: a. Colony integral opacity. b. Colony biofilm formation. c. Colony morphology. d. 
Sporulation. e. Envelope integrity. f. β-galactosidase activity. Top row: part of quantified 

colony array (representative images). Bottom row: disk area represents quantified colony 

area, disc color represents quantified phenotype intensity (in arbitrary units).
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Figure 2. Colony integral opacity is a sensitive metric of growth fitness
a. Colony integral opacity has better resolution for small-sized colonies. Normalized colony 

density (density=integral opacity/size) versus colony size for all E. coli chemical genomics 

data 19. Inset shows 3D reconstructions of a representative high- and low-density colony. b. 
Examples of chemical conditions with overall higher or lower colony density in Nichols et 
al. 19; a small part of a representative 1536-colony array is shown (n>15) c. Density 

phenotypes hold information not available by size alone. Normalized colony density for all 

E. coli mutants profiled in >250 conditions 19 (shown in gray). Mutants of the ATP synthase 

complex exhibit severe growth defects and an overall decreased colony density, while the 

Rcs-inducing Δlon strain is mucoid and features overall higher density colonies (n denotes 

number of mutants in ATP synthase complex present in our screen). A conditional density 

phenotype example illustrates the defect of ΔyciB strain in high NaCl concentration 

(representative image of n=6). D. Re-analysis of fitness data 19 using colony integral opacity 

as a fitness metric (S-scores are calculated for each mutant-condition interaction and reflect 

the fitness difference between perturbed and unperturbed state, corrected for data 

reproducibility) yields more significant correlations among phenotypic signatures of related 

genes. Red data points indicate mutant pairs for which we gained association power when 

calculating fitness scores using colony integral opacity instead of colony size (original 

dataset); green data points indicate opposite situation, e. Integral opacity-derived phenotypic 

signature correlations capture additional interactions (shown in red) among genes coding for 

molybdenum cofactor biosynthesis and related processes.
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Figure 3. High throughput quantification of macrocolony biofilm formation
a. Colony size and biofilm formation are automatically quantified using Iris. Zoom in a 

representative E. coli 1536-format mutant array plate and quantification of both colony size 

and biofilm (CR staining). Right: E. coli biofilm formation technical replicate 

reproducibility. b. Distribution of colony biofilm formation phenotype in E. coli KEIO 

collection 29 with outlier thresholds colored differently (2.5% each side). Values represent 

the average biofilm score of technical and biological replicates (n=8; see Methods) in 

arbitrary units (a.u.). Left, right: outlier GO enrichments (Benjamini-Hochberg-corrected p-
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values 63), dotted line is p-value 0.05. Representative images (n=6) demonstrate the 

deficiency of the curli biosynthesis mutants in biofilm formation, and mutants of the 

molybdopterin biosynthetic process with increased biofilm formation. c. Distribution of 

colony biofilm formation phenotype in P. aeruginosa PA14 transposon mutant library 30. 

Values represent the average of 4 replicates (Methods). Density plots demonstrate the 

phenotype of selected mutant groups, and n denotes number of mutants in group. Bottom 

left: twitching motility mutants (purple in density plot), including mutants of type IV pili 

machinery and interlinked chemotaxis system, are impaired in biofilm formation (exceptions 

are pilC, 2 of the minor pilins: fimU and pilW, and chpB; see main text). Right: mutant 

groups in the phenazine (red in density plot) and PQS (green in density plot) biosynthesis 

pathways also show decreased biofilm formation. The pqsL mutant that overproduces PQS 

shows increased CR staining. Only phz2 operon mutants exhibit defects in colony biofim 

formation. Mutants in gray are not part of the transposon mutant library.
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Figure 4. Quantification of colony morphology and invasive filamentation
a. Colony morphology and in-agar growth quantification in C. albicans arrayed colonies. 

Left: colony morphology (structure complexity – wrinkleness) is quantified in Iris by means 

of an algorithm that measures brightness peaks (over threshold illustrated in red dotted line) 

by traversing the colony in concentric circles (illustrated by blue circles over a 3D 

representation of a colony where brightness was used as the z-axis). Right: in-agar growth is 

quantified by sequentially applying 2 thresholding algorithms of different sensitivities to 

identify inner colony and halo. Scatter plots illustrate the technical replicate reproducibility 
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of both readouts. b. Distribution of colony morphology in C. albicans mutant collections 10, 

50 and outlier GO enrichments (BH-corrected p-values 63); dotted line is p-value 0.05. 

Examples of morphology-impaired outliers include a network of transcription regulators 

involved in biofilm and colony structure formation, while examples of mutants showing 

increased colony structure complexity include repressors of filamentous growth Nrg1 and 

Rfg1. Representative colony pictures of mutants (n=4) from the 96-format colony arrays are 

shown to illustrate that morphology outliers (Iris-reported value over colony picture) do not 

necessarily show increased in-agar growth (Iris-reported value under colony picture) and 

vice-versa. Bottom right: a network with those key activators and repressors involved in C. 
albicans filamentation. Bottom left: Our screen recapitulates all genes annotated as biofilm 

regulators. Mutants in light gray were not in mutant collection, mutants in blue were not part 

of the network adapted from 51, 52. c. Distribution of in-agar growth in C. albicans mutant 

collections and GO enrichments of outlier mutants (BH-corrected p-values 63); dotted line is 

p-value 0.05. Values in b. and c. represent the average of technical and biological replicates 

(n=4; see Methods).
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