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Abstract

Developing mathematical models to accurately predict microbial growth dynamics remains

a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and

grow, microbes need to take up essential nutrients from the environment, and mathematical

models classically assume that the nutrient uptake rate is a saturating function of the nutri-

ent concentration. In nature, microbes experience different levels of nutrient availability at all

environmental scales, yet parameters shaping the nutrient uptake function are commonly

estimated for a single initial nutrient concentration. This hampers the models from accu-

rately capturing microbial dynamics when the environmental conditions change. To address

this problem, we conduct growth experiments for a range of micro-organisms, including

human fungal pathogens, baker’s yeast, and common coliform bacteria, and uncover the fol-

lowing patterns. We observed that the maximal nutrient uptake rate and biomass yield were

both decreasing functions of initial nutrient concentration. While a functional form for the

relationship between biomass yield and initial nutrient concentration has been previously

derived from first metabolic principles, here we also derive the form of the relationship

between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these

two functions into a model of microbial growth allows for variable growth parameters and

enables us to substantially improve predictions for microbial dynamics in a range of initial

nutrient concentrations, compared to keeping growth parameters fixed.

Author summary

Our ability to predict microbial population dynamics is of key importance for the fields of

ecology, evolution, biotechnology, and public health. Yet, current mathematical models

used to predict microbial growth have an inherent limitation. They are parameterised

using empirical measurements of microbial growth performed at a single initial nutrient

concentration. This overlooks the fact that in nature microbes face different levels of

nutrient availability at all environmental scales: from glucose fluctuations in the blood of

critically ill patients to dissolved organic carbon fluctuations in marine environments.

Current literature overwhelmingly suggests that estimating growth parameters at a single
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initial nutrient concentration hampers the models from accurately capturing microbial

dynamics when the environmental conditions change. Here we tackle this problem using

an interplay between mathematical modelling and laboratory experiments spanning

human fungal pathogens, common coliform bacteria, and baker’s yeast. We propose a

modelling approach that incorporates growth parameters as a function of initial nutrient

concentration. Importantly, we demonstrate that our approach performs significantly bet-

ter at predicting microbial growth and the outcomes of between-species competition

across different initial nutrient concentrations, compared to the classical models which

assume fixed growth parameters.

Introduction

Microbial communities shape the biogeochemistry of the planet [1, 2], the functioning of the

ecosystem [3, 4], and the health of macro-organisms [5, 6]. Therefore, understanding and pre-

dicting microbial population dynamics is a key challenge for the fields of ecology, evolution,

public health, and biotechnology. Mathematical models of microbial growth and metabolism

form the foundation of many predictions regarding competition [7–9], metabolic interactions

[10], cooperation [11–15], and diversification [16, 17] within microbial communities, as well

as product formation and its optimisation for use in biotechnology [18, 19].

To grow and reproduce, microbes take up essential nutrients from the environment and

this process can be represented mathematically in a number of ways involving different orga-

nisational scales. For example, genome-scale metabolic models use flux balance analysis [10,

12, 19–21] to provide testable predictions of metabolic activity at the whole genome scale. In

contrast, ecological models aimed at predicting microbial population densities and frequencies

within a community, often treat metabolism as a black box [8, 22, 23], while others incorporate

an intermediate level of metabolic detail [13, 24, 25]. Regardless of their metabolic complexity,

mathematical models generally assume that nutrient uptake is a saturating function of nutrient

concentration. The parameters shaping such a function can subsequently be estimated by fit-

ting a numerical solution of the mathematical model describing microbial population growth

and/or nutrient uptake over time to empirically obtained data, typically for a selected initial

nutrient concentration. However, this does not accurately reflect reality as in nature microbes

regularly face changes in nutrient availability at all environmental scales [26]. For example,

glucose concentrations in the blood of critically ill patients undergo substantial daily variations

[27, 28], while rapid fluctuations in dissolved organic carbon are observed in marine environ-

ments [29]. Moreover, bacteria are known to experience changes in the ambient nutrient

abundance, where periods of nutrient excess are followed by periods of its scarcity [30], or

changes in the nutrient type [31].

Should we use fixed nutrient uptake parameters, estimated for a single specific initial nutri-

ent concentration, to predict microbial dynamics in environments with different initial nutri-

ent concentrations? Existing literature suggests not [32, 33]. In particular, a dynamic model

whereby the maximal nutrient uptake rate increases monotonically as the external nutrient

concentration decreases was successfully used to describe phytoplankton nutrient uptake [32].

In other studies, fitted values of the parameters associated with the nutrient uptake rate for

both ecological [33] and genome-scale [12] models were found to be sensitive to the initial

nutrient concentrations in the environment. Indeed, empirical studies conducted for a wide

range of microbes growing on different nutrients demonstrate that nutrient uptake kinetics

differ between the environments with high and low nutrient availability. Examples include
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nitrate, ammonia, and phosphorus uptake by various phytoplankton groups [34, 35], galactose

accumulation by bacteria [36], and glucose uptake by yeast [37].

In general, changes in nutrient uptake kinetics can result from dynamic physiological

responses to nutrient levels, detected by both extracellular membrane-localized receptors [38]

and by intracellular sensing mechanisms [39]. Differing nutrient levels can trigger diverse

physiological responses that alter uptake kinetics and growth. It can induce transcriptional

responses that alter the types, quantities and activity of nutrient transporter proteins, such as

the regulation of hexose transporters with different uptake kinetics in response to glucose con-

centration [40, 41]. It can also cause the removal and inactivation of transporters, modulate

the affinity of specific transporters [42], or alter the expression of key metabolic genes, includ-

ing those involved in glycolysis and gluconeogenesis [39]. Changes in nutrient uptake rates

can even shift the metabolic pathways used by microbes, such as a shift from the more rapid

and low ATP-yielding respiro-fermentation at high hexose uptake, to slower and higher ATP-

yielding respiration at low hexose uptake [41, 43, 44]. Metabolic shifts, such as this, are one

example of an underlying mechanism behind the widespread trade-off between growth rate

(biomass per unit of time) and yield (biomass per unit of resource) that occurs throughout

diverse microbial species [17, 22].

To examine the relationship between nutrient uptake parameters deployed in mathematical

models and the initial nutrient concentration in the environment, we conduct comprehensive

growth experiments for a range of micro-organisms including human fungal pathogens (Can-
dida albicans and Candida glabrata), common coliform bacteria (Escherichia coli), and baker’s

yeast (Saccharomyces cerevisiae) over a range of initial nutrient concentrations. Strikingly, for

all organisms considered, we uncover a pattern whereby the value of the fitted parameter

denoting the maximal nutrient uptake rate is a decreasing function of the initial nutrient con-

centration. Subsequently we derive the explicit form of this function from first metabolic prin-

ciples. Although previous studies have suggested that the maximal nutrient uptake rate should

not be considered constant under different environmental conditions [32, 35, 45, 46], to our

knowledge an explicit mathematical form of such a function has not been previously derived.

Our study highlights the need for an alternative approach to modelling microbial growth.

We propose that any new approach should take into account that the parameters describing

nutrient uptake and growth kinetics vary along different environmental conditions. In particu-

lar, microbial biomass yield is a decreasing function of the initial nutrient concentrations

according to the functional form derived previously [33], while the maximal nutrient uptake

rate varies according to the functional form we propose here. Finally, we implement this pro-

posal for a simple ecological model to show it can predict microbial growth and outcomes of

competition between different species growing in a range of initial nutrient concentrations.

Materials and methods

A simple mathematical model of microbial growth

Motivated by well-established simple ecological models of microbial growth [8, 22, 23], we

consider a microbe growing on a limiting nutrient N and assume that it takes up the nutrient

and converts it into biomass B using a simple unbranched metabolic pathway [22, 23]. The

rate of biomass production equals Y × q, where q denotes the rate of the pathway, while Y is

the number of biomass units produced per unit of nutrient in the pathway. As in [22, 23], we

make a simplifying assumption that the behaviour of the entire pathway can be modelled with

Michaelis-Menten kinetics of a single reaction [47]. Therefore, q is the following function of

PLOS COMPUTATIONAL BIOLOGY Predicting microbial growth in response to nutrient availability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008817 March 18, 2021 3 / 20

https://doi.org/10.1371/journal.pcbi.1008817


the concentration of the limiting nutrient N:

qðNÞ ¼
V � N
K þ N

; ð1Þ

with V denoting the maximal rate of the pathway and K representing a half-saturation constant

corresponding to the microbe. The pathway rate q(N) shows the rate at which product is

formed which in this case is the same as the rate at which nutrient is consumed. Therefore,

throughout this study we refer to V as the maximal rate of nutrient uptake and K as a half-satu-

ration constant. The dynamics of growth begins with the introduction of the limiting nutrient

(N) while observing the density of the microbe (B) in the environment. Subsequently, one sea-

son of growth of a length T is described by the following differential equation:

(
_NðtÞ ¼ � qðNðtÞÞ � BðtÞ

_BðtÞ ¼ Y � qðNðtÞÞ � BðtÞ
t 2 ½0;T� : ð2Þ

Note that the growth rate equals Y × q, where q(N(t)) is as in Eq (1), and thus the microbial

growth depends not only on the parameters Y, V, and K, but also on the temporal dynamics of

the nutrient concentration N(t).
The simple model (2) can easily be extended to incorporate a lag-phase growth term (see S1

Text, Appendix D for details).

Growth experiments

Growth experiments of all species were performed in either duplicate (Candida species) or

triplicate (S. cerevisiae and E. coli species) for each resource concentration, with each well in a

microplate considered a replicate. Frozen stock cultures were revived on agar plates and starter

cultures were grown overnight in appropriate liquid cultures. Growth measurements were

conducted in liquid media in microplates that were sealed with a 50 μm thick polyester film

(VWR, UK) with holes pierced above each well with a sterile needle for gas exchange. All

microplates were shaken during the growth period to enhance diffusive gas exchange and

ensure even distribution of well contents. For the yeast species, 48-well plates were used to

enhance the mixing, since 96-well plates can be problematic for achieving sufficient oxygen

supply [48] and sustained exponential growth of microbes [49]. Wells with uninoculated

media were included as blank measurements and contamination checks. For all species,

growth was measured as optical density in a microplate reader, which was converted to cell

density using calibrations of known densities from plating. Species-specific protocols are

detailed in the following sections. The raw data for all experiments from this study is available

at DOI: https://doi.org/.6084/9.figshare.13193600.v3.

Growth experiments with Candida species. The strain of C. albicans ACT1-GFP was

used, which is the SBC153 strain tagged with GFP at the ACT1 locus using a nourseothricin

resistance cassette. The wild-type reference strain of C. glabrata ATCC2001 was used. Over-

night cultures of either C. albicans or C. glabrata were prepared by inoculating a single colony

into 5 ml of YPD medium (except for one C. glabrata experiment where the overnight was per-

formed in SC 2%) and incubating at 30˚C and 350 rpm for 16–18 hours. The cells were washed

in water, counted in a haemocytometer and resuspended in SC (6.9 g/l Yeast Nitrogen Base

w/o amino acids, 790 mg/l complete supplement mixture (Formedium, UK)) containing glu-

cose to the desired concentration. For the growth experiments in S1 Text, Appendix C, C1 Fig,

nutrient enriched media at 1.8 × the concentration of the control medium was prepared with a

final concentration of 12.4 g/l Yeast Nitrogen Base and 1422 mg/l complete supplement
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mixture and glucose to the desired concentration. pH buffered medium contained the addition

of 0.1M potassium phosphate (pH 6). The suspension of cells was added to media in the wells

of a 48-well suspension culture plates (640 μl per well (Greiner Bio-One)) in order to achieve

640 μl of 1 × 107 cell/ml in glucose concentrations in the range (0.025–4% (w/v)). Plates were

incubated at 30˚C with 510 rpm orbital shaking and growth monitored by measuring optical

density (OD) at 620 nm in a Spark 10 M (Tecan) microplate reader. OD was converted into

cell density (CFU) based on the calibrations in S1 Text, Appendix B, B8 Fig (a) and (b).

Growth experiments with S. cerevisiae. Growth assays of S. cerevisiae were conducted

with strain CEN.PK2-1C grown on SC media with sucrose at different concentrations (4%,

1%, 0.25%, 0.0625% (w/v)). The verifications of metabolic inefficiencies in S1 Text, Appendix

C, C1 Fig were conducted with an engineered strain of S. cerevisiae (TM6�). This strain has

reduced hexose transport capabilities that causes it to have fully respiratory metabolism, which

has higher efficiency in terms of ATP yield than the wild-type that has respiro-fermentative

metabolism [43]. Overnight cultures were established in 5 ml SC with 1% (w/v) glucose and

grown overnight at 30˚C with 180 rpm shaking. Cells were washed and inoculated into fresh

SC media containing sucrose at the specified concentrations at an initial density of 500 CFU/μl

which was determined based on spectrophotometer measurements calibrated to known densi-

ties. Cultures were inoculated into 48-well suspension culture plates (640 μl per well (Greiner

Bio-One)) and incubated in a FLUOstar Omega microplate reader (BMG) at 30˚C with 700

rpm orbital shaking. Population density was measured by OD 620 nm approximately every 15

minutes and converted to cell density (CFU) based on previously used calibrations [14].

Growth experiments with E. coli. E. coli MG1655 was grown in DM media (potassium

phosphate dibasic 7 g/l, potassium phosphate monobasic 2 g/l, ammonium sulfate 1 g/l,

sodium citrate 0.5 g/l, 1M magnesium sulfate 1 ml/l, 0.02% thiamine 1 ml/l, 1.5 mM calcium

chloride (Sigma-Aldrich UK)) supplemented with 0.1% casamino acids and a range of glucose

concentrations (0.05%, 0.1%, 0.2%, 0.4% (w/v)). Overnight cultures were established in 10 ml

0.1% glucose DM media and incubated for 20–24 hours at 30˚C with 160 rpm shaking. pH

was recorded at the start of the overnight culture (0 hours) and at the end (24 hours) to observe

any changes due to metabolic products of E. coli growth. pH of growth culture was observed as

7.0 at 0 hours and 6.9 at 24 hours, indicating no substantial acidification of growth media. The

concentrations of phosphorus and nitrogen used in the experiments are similar to those previ-

ously described as abundant [50], indicating that they are not limiting substrates in our experi-

ment. Cells were inoculated into fresh media supplemented with the specified concentration

of glucose at 106 CFU/ml, determined by spectrophotometer measurements calibrated to

known densities. Cultures were transferred into clear, flat bottomed 96-well plates (Griener

Bio-One, UK) and incubated in a Biotek ELx808 microplate reader (Agilent, USA) at 30˚C for

24 hours with 5 minutes of linear shaking at medium intensity prior to each read. Density was

measured by 600 nm every 20 minutes and converted into cell density (CFU) based on the cali-

brations in S1 Text, Appendix B, B8 Fig (c).

Results

Dependence of growth model parameters on the initial nutrient

concentration

Our simple ecological model of microbial growth (2) contains three free parameters (V, K, Y)

that we estimate for each microbial species by fitting numerical solutions of the model (2) to

the experimentally obtained data using four microbial species and a range of initial nutrient

concentrations. In particular, we consider: C. albicans growing on glucose (see S1 Text,

Appendix B, B1 Fig and S1 Text, Appendix A, A1 Table), C. glabrata growing on glucose
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(see S1 Text, Appendix B, B2 Fig and S1 Text, Appendix A, A2 Table), S. cerevisiae growing on

sucrose (see S1 Text, Appendix B, B3 Fig and S1 Text, Appendix A, A3 Table), and E. coli
growing on glucose (see S1 Text, Appendix B, B4 Fig and S1 Text, Appendix A, A4 Table).

While for all species tested, the estimated value of K did not depend on the initial nutrient

concentration in the environment (see S1 Text, Appendix A, A1 Table—A4 Table), we observe

that the estimated values of V and Y decrease as the initial nutrient concentration increases

(see Fig 1).

It has been shown in [33] that the relationship between the biomass yield and the extracellu-

lar nutrient concentration takes on the following mathematical form:

YðN0Þ ¼ Yhi
1

1þ pN0

þ Ylo
pN0

1þ pN0

; ð3Þ

where Yhi is the highest possible yield that can be achieved at low initial nutrient concentra-

tions, while Ylo represents the biomass yield when there is an extracellular nutrient excess, and

p indicates a phenotype that controls the rate of change in the biomass yield due to the changes

in ambient conditions. We observe that the functional form (3) fits the data for all four micro-

bial species we consider, shown in Fig 1 (bottom row).

Functional forms for V and K. In order to derive functional forms for V and K to be used

in our ecological model Eq (2), we develop an enzyme-kinetic model based on the following

assumptions. Nutrient uptake and its conversion into biomass is modelled as a simple

unbranched metabolic pathway represented by a single reaction. Moreover, we consider a

Fig 1. Relationships ‘maximal uptake rate vs initial nutrient concentration’ and ‘biomass yield vs initial nutrient

concentration’. Relationships between the maximal uptake rate V and the initial nutrient concentration N0 (top panels) and between

the yield Y and the initial nutrient concentration N0 (bottom panels) observed for (a) C. albicans growing on glucose; (b) C. glabrata
growing on glucose; (c) S. cerevisiae growing on sucrose; (d) E. coli growing on glucose. Dots with error bars (estimated values ± SE,

where SE might be obscured by values) represent optimal estimates for parameters V (top panels) and Y (bottom panels) obtained by

fitting the model (2) to the experimental data on growth (see S1 Text, Appendix B, B1 Fig—B4 Fig and S1 Text, Appendix A, A1

Table—A4 Table for growth data corresponding to (a)—(d), respectively). Solid lines are the optimal non-linear least-squares fits of

the function (8) (top panels) and of the function (3) (bottom panels) to the plotted data. The functional forms of Y(N0) and V(N0) are

not sensitive to media enrichment or acidification (see S1 Text, Appendix C for details) nor to the addition of the lag-phase growth

term into the model (2) (as described in S1 Text, Appendix D).

https://doi.org/10.1371/journal.pcbi.1008817.g001
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medium with a bulk nutrient N0, and a cell in this medium which can capture the nutrient

from the environment and transfer it further into the cytoplasm by means of its uptake sites,

or transporters, E. We also assume that the uptake sites are immobilized (attached to the cell’s

membrane). It is possible, therefore, that a boundary layer surrounds the cell with a local nutri-

ent concentration [Nloc] that is smaller than [N0] due to the differences between the diffusive

flux of nutrient from the bulk to the cell and the cell nutrient consumption flux. For the sake

of simplicity and to align with the experimental conditions used, we hereafter assume the case

of fast diffusion, which means that [Nloc]� [N0].

The nutrient uptake process in such a system can then be described as the following open

enzymatic reaction scheme, which is motivated by the one proposed by Bonachela et al. (Fig 1

in the main text in [32]):

Ef þ Nloc� !
k1 ENloc� !

k2 Ni þ Ef ;

"

FE

where a local nutrient molecule Nloc encounters and binds an unoccupied enzyme Ef to form

an enzyme-nutrient complex ENloc, and is subsequently incorporated as an internal nutrient

Ni into the cell’s cytoplasm. Here, FE denotes the flow of new uptake sites synthesized by the

cell, which essentially represents the ability of the cell to regulate the number of uptake sites

depending on the external conditions.

The following mathematical model describes the reactions in this pathway:

d½Ef �=dt ¼ � k1½Ef �½Nloc� þ k2½ENloc� þ FE ð4aÞ

d½Nloc�=dt ¼ � k1½Ef �½Nloc� ð4bÞ

d½ENloc�=dt ¼ k1½Ef �½Nloc� � k2½ENloc� ð4cÞ

d½Ni�=dt ¼ k2½ENloc�: ð4dÞ

8
>>>><

>>>>:

If we assume that the time the cell needs to capture the first nutrient molecule at the begin-

ning of the uptake process is small, then the number of occupied uptake sites [ENloc] can be

considered approximately constant [32, 51], so that d[ENloc]/dt� 0, whence from Eq (4c) we

have:

½ENloc� ¼
k1½E�½Nloc�

k2 þ k1½Nloc�
; ð5Þ

where [E] = [Ef] + [ENloc] is the total number of uptake sites. Combining this equation with

the definitions U = k2[ENloc], Vmax = k2[E], Km = k2/k1, we derive the Michaelis-Menten equa-

tion as follows:

U ¼
Vmax½Nloc�

Km þ ½Nloc�
: ð6Þ

The total number of uptake sites [E] is not constant as it was in a classical form of the

Michaelis-Menten equation [47], since from Eq (4c) and (4a) we can see that d[E]/dt = d[Ef]/

dt + d[ENloc]/dt = FE, which means that the cell can regulate the number of its uptake sites

depending on the external (and/or internal) conditions. This transforms the static parameter

Vmax from the Michaelis-Menten equation into the dynamic kinetic parameter Vmax from Eq

(6), and here we aim to derive its dependence on the bulk nutrient concentration [N0]

explicitly.
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From Eq (5) we have:

½E� ¼ ½ENloc�
k2=k1

½Nloc�
þ 1

� �

: ð7Þ

By combining this with the definition Vmax = k2[E], we arrive at the following relationships

between the maximal uptake rate Vmax and the local nutrient concentration [Nloc]:

Vmax ¼ pv þ
qv

½Nloc�
;

with parameters pv = k2[ENloc] and qv ¼
ðk2Þ

2

k1
½ENloc�.

By assuming the case of fast diffusion, so that [Nloc]� [N0], and using our previous nota-

tion N0 instead of [N0] for the bulk nutrient concentration, we can rewrite the obtained equa-

tion as follows:

VmaxðN0Þ ¼ pv þ
qv

N0

: ð8Þ

Thus we can conclude that Eq (6) takes on a classical form of the Michaelis-Menten equa-

tion with the dynamic parameter Vmax defined by Eq (8) and the constant parameter

KmðN0Þ ¼ c ; ð9Þ

where c denotes a constant.

Motivated by the above enzyme-kinetic derivations, we will hereafter use the functions (8)

and (3) in our model (2) as analytical representations of the relationship ‘maximal nutrient

uptake rate (V) vs initial nutrient concentration (N0)’ and ‘biomass yield (Y) vs initial nutrient

concentration (N0)’, respectively, and assume that the half-saturation constant (K) does not

depend on the initial nutrient concentration.

Predicting microbial growth and competition outcomes across a range of

initial nutrient concentrations

We propose the following approach to predict microbial growth across a specific range of ini-

tial nutrient concentrations [a, b].

Step 1: Collect experimental growth data for at least three initial nutrient concentrations

N0,i 2 [a, b](i = 1..3). Note, three observations {N0,i, Yi}(i = 1..3) are the minimum

required to fit Eq (3) which contains three free parameters.

Step 2: For each of these initial nutrient concentrations N0,i, estimate Vi, Ki, and Yi by fitting

numerical solutions of the model (2) to the experimentally obtained data in Step 1.

Step 3: Derive the forms for Y(N0), V(N0), and K(N0) by fitting Eqs (3), (8), and (9) to the

data {N0,i, Yi}, {N0,i, Vi}, and {N0,i, Ki}, respectively, obtained in Step 2.

Step 4: Predict microbial growth at a given initial nutrient concentration N�
0
2 ½a; b� by car-

rying out a numerical simulation of the model (2) with the parameters YðN�
0
Þ, VðN�

0
Þ,

and KðN�
0
Þ derived in Step 3.

We illustrate the proposed approach with the two following examples. First, we predict

growth dynamics of a microbe (i.e. C. glabrata species growing on glucose), and second, out-

comes of competition between two micro-organisms (i.e. C. albicans and C. glabrata species

competing for glucose).
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Example 1: Predicting microbial growth. We seek to predict the growth of a human fun-

gal pathogen C. glabrata across the following range of glucose concentration [a, b] = [0.025%,

2%].

Step 1: Obtain experimental growth data for the following chosen initial glucose concentra-

tions {N0,i |i=1..3} = {0.025%, 1%, 2%} (shown in S1 Text, Appendix B, B5 Fig).

Step 2: Estimate Vi, Ki, and Yi for each initial glucose concentration N0,i (i = 1..3) by fitting

numerical solutions of the model (2) to the experimental growth data. The parameter

estimates are shown in S1 Text, Appendix A, A5 Table.

Step 3: Derive the forms for Y(N0), V(N0), and K(N0) by fitting Eqs (3), (8) and (9) to the

data {Yi, i = 1..3}, {Vi, i = 1..3}, and {Ki, i = 1..3}, respectively, obtained in Step 2 (see

Fig 2, top panels).

Step 4: To predict microbial growth at an initial glucose concentration N�
0
2 ½0:025%; 2%�

different from the initial concentrations chosen in Step 1, say N�
0
¼ 0:1%, carry out a

numerical simulation of the model (2) for parameters YðN�
0
Þ; VðN�

0
Þ, and KðN�

0
Þ

derived in Step 3 (Fig 3, top left panel). Repeat the same procedure for a variety of dif-

ferent initial nutrient concentrations fN�
0;i ji¼1::3g ¼ f0:4%; 1:2%; 1:8%g. Results are

shown in Fig 3.

The resulting growth predictions perform better for a range of initial glucose concentra-

tions than the predictions generated by a commonly used modelling approach where fixed

growth kinetics parameters are estimated from a single resource concentration (Fig 3). The lat-

ter fits growth parameters to an arbitrarily chosen initial glucose concentration and uses those

parameters to numerically simulate microbial growth at different glucose concentrations [19].

The statistical comparisons of the two approaches are summarised in S1 Text, Appendix A, A8

Table.

The choice of initial nutrient concentrations. Next we ask, how well does our approach

predict microbial growth at concentrations outside the [a, b] interval? To this end, we choose

[a, b] = [0.2%, 1.6%] (see Fig 2, bottom panels) and seek to predict microbial growth at 0.1%

and 1.8% initial glucose concentrations—the values lying outside of the chosen interval. Fol-

lowing the Steps 1–4, as above, we show that our method can again outperform the fixed

growth parameters approach (see Fig 4 together with S1 Text, Appendix A, A9 Table).

Example 2: Predicting the outcomes of microbial competition. Next, we seek to predict

the outcome of competition between two microbial species using the new approach proposed

here and compare it to the predictions generated by a common approach that uses growth

parameters estimated from a single initial nutrient concentration [7, 9]. To this end, we con-

sider a microbial community consisting of C. albicans and C. glabrata competing for limiting

glucose in the environment. The competition dynamics during a single growing season of

length T can be described by extending the model (2) as follows:

_NðtÞ ¼ �
X

k2fA;Gg

qkðNðtÞÞ � BkðtÞ

_BkðtÞ ¼ Yk � qkðNðtÞÞ � BkðtÞ

8
><

>:
t 2 ½0;T� ; ð10Þ

with qk(N) = Vk × N/(Kk + N), k 2 {A, G}, and indices A and G corresponding to the species C.
albicans and C. glabrata, respectively. To explore competition dynamics over multiple seasons,

at the end of each season, a fixed number of cells is transferred to a new environment
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containing replenished growth medium with the limiting glucose at the same concentration at

the start of each season. This setup mimics the experimental batch culture conditions where

there is no constant inflow of nutrients.

To predict the competition outcomes over multiple seasons, we carry out Steps 1–4 as

follows:

Fig 2. Relationships ‘maximal uptake rate vs initial nutrient concentration’ and ‘biomass yield vs initial nutrient concentration’

observed for C. glabrata growing on glucose. Relationships between the maximal uptake rate V and the initial nutrient

concentration N0 (left panels) and between the yield Y and the initial nutrient concentration N0 (right panels) observed for C.
glabrata growing on glucose. Dots with error bars (estimated values ± SE, where SE might be obscured by values) represent optimal

estimates for parameters Vi with i = 1..3 (left panels) and Yi with i = 1..3 (right panels). These were obtained by fitting the model (2)

to the experimental data on growth at the following initial glucose concentrations N0,i (i = 1..3): 0.025%, 1%, 2% (top panels,

correspond to growth data shown in S1 Text, Appendix B, B5 Fig and S1 Text, Appendix A, A5 Table) and at the following initial

glucose concentrations N0,i (i = 1..3): 0.2%, 1%, 1.6% (bottom panels, correspond to growth data shown in S1 Text, Appendix B, B6

Fig and S1 Text, Appendix A, A6 Table). Solid lines are the optimal non-linear least-squares fit of the function (8) (left panels) and of

the function (3) (right panels) to the plotted data. Note that we refer to Vi and Yi in the context of Example 1, while the same

parameters were labelled Vi
G and Yi

G in Example 2, with the subscript G distinguishing C. glabrata data used to parameterise the

model of competition with C. albicans.

https://doi.org/10.1371/journal.pcbi.1008817.g002
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Step 1: We choose the following initial glucose concentrations fNA
0;i ji¼1::3

g ¼

f0:025%; 0:5%; 1%g for C. albicans, with experimental growth data shown in S1

Text, Appendix B, B7 Fig; and fNG
0;i ji¼1::3g ¼ f0:025%; 1%; 2%g for C. glabrata, with

experimental growth data shown in S1 Text, Appendix B, B5 Fig.

Step 2: For each species k 2 {A, G}, at each of the initial glucose concentrations Nk
0;i ði ¼

1::3Þ we estimate Vi
k; K

i
k, and Yi

k by fitting numerical solutions of the model (2) to the

experimentally obtained data shown in S1 Text, Appendix B, B7 Fig and B5 Fig for

Fig 3. Comparison of growth predictions made by two modelling approaches, one using fixed and the other variable growth

kinetic parameters. Experimentally obtained growth data for C. glabrata at different glucose concentrations (0.1%; 0.4%; 1.2%;

1.8%) are denoted by dots. Gray curves represent predictions of a model with fixed growth parameters estimated at the 1% initial

glucose concentration (see S1 Text, Appendix B, B5 Fig (b) for growth data at 1% glucose). Brown curves represent predictions of a

model with variable growth parameters as proposed in this study with [a, b] = [0.025%, 2%] in Step 1. To quantify the accuracy of the

predictions made by the two approaches the Root Mean Square Error (RMSE) was calculated (see S1 Text, Appendix A, A8 Table for

more details). Note, y-axis scale changes between panels.

https://doi.org/10.1371/journal.pcbi.1008817.g003
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C. albicans and C. glabrata, respectively. The parameter estimates are shown in S1

Text, Appendix A, A7 Table for C. albicans and in S1 Text, Appendix A, A5 Table for

C. glabrata.

Step 3: For each species k 2 {A, G}, we derive the forms for Yk(N0), Vk(N0), and Kk(N0) by

fitting Eqs (3), (8) and (9) to the data fYi
k ; i ¼ 1::3g, fVi

k ; i ¼ 1::3g and

fKi
k ; i ¼ 1::3g, respectively, obtained in Step 2 (see Fig 2, top panels, for C. glabrata

and Fig 5 for C. albicans).

Step 4: To predict multi-season competition outcomes where each season begins with glu-

cose concentration N�
0
¼ 0:1%, we carry out multi-season numerical simulation of

the competition model (10) for parameters YkðN�0Þ; VkðN�0Þ, and KkðN�0Þ derived in

Step 3 (Fig 6(a), brown markers).

The competition outcome between two species predicted by our approach (Fig 6(a), brown

markers) differs critically from the outcome predicted by a competition model which uses

fixed kinetic parameters (Fig 6(a), gray markers). The latter fits growth parameters to an arbi-

trarily chosen initial nutrient concentration (here taken as 1%). Subsequently, those parame-

ters are used to numerically simulate the competition model (10) over multiple seasons, where

each season is initiated at 0.1% glucose, predicting that C. albicans loses the competition (Fig

6(a), gray markers). In contrast, our approach is consistent with previous empirical studies

(see Fig 1 (b) in [7]) predicting that C. albicans wins at 0.1% glucose concentration (Fig 6(a),

brown markers).

Fig 4. Comparison of growth predictions made by two modelling approaches, one using fixed and the other variable growth

kinetic parameters. Experimentally obtained growth data for C. glabrata at different glucose concentrations (0.1%; 1.8%) are

denoted by dots. Gray curves represent predictions of a model with fixed growth parameters estimated at the 1% initial glucose

concentration (see S1 Text, Appendix B, B5 Fig (b) for growth data at 1% glucose). Brown curves represent predictions of a model

with variable growth parameters as proposed in this study with [a, b] = [0.2%, 1.6%] in Step 1. To quantify the accuracy of the

predictions made by the two approaches the Root Mean Square Error (RMSE) was calculated (see S1 Text, Appendix A, A9 Table for

more details). Note, y-axis scale changes between panels.

https://doi.org/10.1371/journal.pcbi.1008817.g004
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Previous empirical studies observed that C. glabrata outcompetes C. albicans at high glu-

cose concentrations [7]. Here we illustrate that estimating kinetic parameters at a high glucose

concentration cannot accurately predict competition outcomes at low glucose concentrations

as it gives an unfair growth advantage to C. glabrata over C. albicans (Fig 6(b)). In contrast,

our approach incorporates the empirically observed variability in growth kinetics parameters,

which gives C. albicans an initial growth advantage over C. glabrata (see Fig 6(b) for an illus-

tration) enabling its competitive dominance in low glucose environments. The difference in

competition outcomes between environments with different initial nutrient conditions is

indicative of the metabolic differences between Candida species, which are thought to have

diverged about 300 million years ago [52]. For instance, C. albicans and C. glabrata possess dif-

ferent repertoires of identified hexose transporters and have different glucose sensors that

respond differently to low glucose environments. In particular, C. albicans lacks a low-affinity

glucose sensor that C. glabrata possesses. This adaptation is thought to be the result of their

different lifestyles because C. albicans has predominantly co-evolved with a human host,

where high levels of glucose are generally rarer, whereas C. glabrata is more closely related to

S. cerevisiae and so is thought to have experienced high and low glucose levels in nature [53,

54]. Moreover, Crabtree-positive yeasts, such as C. glabrata and S. cerevisiae, use fermentation

even in the presence of oxygen, a strategy thought to have evolved in high sugar environments

around the time that fruiting plants emerged [55, 56]. This is also consistent with recent obser-

vations that C. glabrata is more frequently isolated from infections of diabetic patients with

Fig 5. Relationships ‘maximal uptake rate vs initial nutrient concentration’ and ‘biomass yield vs initial nutrient concentration’

observed for C. albicans growing on glucose. Left: relationships between the maximal uptake rate parameter V and the initial

nutrient concentration N0 observed for C. albicans growing on glucose. Dots with error bars (estimated values ± SE, where SE might

be obscured by values) represent optimal estimates for maximal uptake rate parameters Vi
A ði ¼ 1::3Þ obtained by fitting the model

(2) to the experimental data on growth at the following initial glucose concentrations N0,i (i = 1..3): 0.025%, 0.5%, 1% (see S1 Text,

Appendix B, B7 Fig and S1 Text, Appendix A, A7 Table), and a solid line is the optimal non-linear least-squares fit of the function (8)

to the plotted data. Right: relationships between the yield parameter Y and the initial nutrient concentration N0 observed for C.
albicans growing on glucose. Dots with error bars (estimated values ± SE, where SE might be obscured by values) represent optimal

estimates for yield parameters Yi
A ði ¼ 1::3Þ obtained by fitting the model (2) to the experimental data on growth at the following

initial glucose concentrations N0,i (i = 1..3): 0.025%, 0.5%, 1% (see S1 Text, Appendix B, B7 Fig and S1 Text, Appendix A, A7 Table),

and a solid line is the optimal non-linear least-squares fit of the function (3) to the plotted data.

https://doi.org/10.1371/journal.pcbi.1008817.g005
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high blood sugar levels [57, 58]. The above arguments could explain why C. albicans might be

better adapted to low glucose environments and why C. glabrata has elevated growth rates in

high glucose environments, as we observed for our predicted competition outcomes (Fig 6).

Discussion

Here we provide a simple approach for predicting microbial growth dynamics in environ-

ments with different nutrient concentrations. This is important as current mathematical mod-

els estimate key microbial growth parameters in a single fixed initial nutrient condition [7, 8,

10, 12, 19] which can prevent them from accurately capturing growth dynamics when the ini-

tial nutrient conditions change.

In particular, the process of nutrient uptake required for microbial growth is classically rep-

resented in mathematical models as a saturating function of the nutrient concentration [22,

32]. The parameters shaping such a saturating function are fitted to empirically obtained data,

typically for a single initial nutrient concentration and are subsequently used to predict growth

and interaction dynamics under different initial nutrient concentrations [7, 19]. Although

some models were capable of predicting microbial growth under a limited range of initial

nutrient concentrations [10], they also showed that the kinetics parameters estimated under

various other ambient conditions had to be adjusted to provide an optimal fit under all consid-

ered conditions [10]. Unsurprisingly, studies have reported sensitivity of the model outcomes

to small changes in the parameters associated with the nutrient uptake rate [12].

Our approach differs from previous ones as it considers nutrient uptake and growth param-

eters as a function of the initial nutrient concentration in the environment. In particular, the

maximal nutrient uptake rate and biomass yield per unit of nutrient are both decreasing func-

tions of initial nutrient concentration. While both empirical [34–37] and theoretical [10, 12,

Fig 6. (a) Predicted multi-season competition outcomes. Modelled dynamics of the final C. albicans fraction in the microbial

community consisting of C. albicans and C. glabrata in competition for a glucose at 0.1% glucose over 20 seasons of competition, as

predicted by model (10). Each season’s length is 24 hours, the initial population density is 106 cells/ml, and the initial fraction of C.
albicans in the community is 0.5. Brown markers show predictions based on the approach proposed in this study. Gray markers are

predictions obtained by using growth parameters estimated at 1% of glucose for each species (see S1 Text, Appendix B, B7 Fig (c) for

C. albicans and S1 Text, Appendix B, B5 Fig (b) for C. glabrata). (b) Theoretical growth of C. albicans and C. glabrata on glucose.

Theoretical growth dynamics for C. albicans (solid curves) and C. glabrata (dashed curves) in isolation, in 0.1% glucose over 24

hours. The simulation of the model (2) from the main text was carried out with variable growth parameters (brown curves) and

growth parameters fixed at 1% glucose (gray curves).

https://doi.org/10.1371/journal.pcbi.1008817.g006
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32, 35, 45, 46] studies previously highlighted that the maximal nutrient uptake rate should not

be considered independent of nutrient conditions, to our knowledge we are the first to put for-

ward a functional form of this relationship as described in (8). We observe this relationship for

a range of different microbial species including human fungal pathogens C. albicans (Fig 1(a),

top panel), C. glabrata (Fig 1(b), top panel), baker’s yeast S. cerevisiae (Fig 1(c), top panel), and

common coliform bacteria E. coli (Fig 1(d), top panel). This relationship was not sensitive to

media enrichment or acidification (see S1 Text, Appendix C for details) nor to the addition of

the lag-phase growth term into the model (2) (as described in S1 Text, Appendix D). More-

over, it was also evident on resources that are metabolised differently, both glucose that is

directly imported into cells (Fig 1(a), 1(b) and 1(d)) and sucrose that is extracellularly hydro-

lysed before the uptake of its products [59] (Fig 1(c)).

Past studies proposed a qualitatively similar relationship between the maximal uptake rate

and the initial nutrient concentration to the one we derive in Eq (8) [32, 35, 45, 46]. While

some of these studies [32, 35] predicted a similar magnitude of the maximal uptake rate change

across two orders of magnitude of nutrient concentrations as we see here, none have specified

a functional form.

But what is the mechanistic basis behind this seemingly widely observed negative relation-

ship between the maximal uptake rate and the initial nutrient concentration? In [32] the

authors reasoned that the maximal uptake rate is proportional to the number of uptake sites

expressed by the cell. They argued that, at low initial nutrient concentrations the cell is starved

of nutrients and therefore it upregulates the expression of uptake sites, which is, however, lim-

ited by the cell’s size. In contrast, when the ambient nutrient is in excess the cell downregulates

the expression of uptake sites while maintaining sufficient nutrient uptake.

Another explanation could be that nutrient uptake kinetics can change in response to nutri-

ent conditions through various additional mechanisms. Microbes express a variety of trans-

porter proteins that have differing nutrient uptake kinetics, and individual transporters can be

removed, inactivated or have their affinities modified [42]. Such changes have been experi-

mentally shown to result in an increase in the maximal rate of uptake at low resources [60], as

is captured by the model proposed here. Both of these accounts could explain why micro-

organisms might follow a different short-term steady-state uptake strategy at each initial nutri-

ent concentration.

Finally, it has been shown in [32] that with decreasing concentration of ambient nutrient

the difference in predicted growth between a constant maximal uptake rate and a non-con-

stant maximal uptake rate becomes more apparent. Our results are consistent with this asser-

tion indicating a significant difference between growth predictions based on our approach

(taking into account that the maximal uptake rate is not constant) and predictions using fixed

growth parameters (assuming that the maximal uptake rate is constant) at low initial nutrient

concentrations (see Figs 3, 4 and 6(a)).

Our model also takes into account a decreasing relationship between initial nutrient con-

centration and cell yield. A functional form of this relationship has recently been derived in

[33] from the first principles of nutrient uptake and metabolic processes in a cell. Such a rela-

tionship can be seen in our data for C. albicans (Fig 1(a), bottom panel), C. glabrata (Fig 1(b),

bottom panel), S. cerevisiae (Fig 1(c), bottom panel), and E. coli (Fig 1(d), bottom panel) and

was not found to be sensitive to media enrichment or acidification (see S1 Text, Appendix C

for details) nor to the addition of the lag-phase growth term into the model (2) (as described in

S1 Text, Appendix D).

We show that our approach performs significantly better at predicting microbial growth

and the outcomes of between-species competition across different initial nutrient concentra-

tions (Figs 3, 4 and 6(a)), compared to assuming fixed growth and uptake kinetic parameters.
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We utilise the two relationships: R1) between the maximal nutrient uptake rate and the initial

nutrient concentration; and R2) between biomass yield and the initial nutrient concentration

derived from empirical data on microbial growth on three nutrient concentrations within an

interval of interest (Step 1 in Examples 1 and 2). Although having a larger amount of empirical

data to describe the functional form of these two relationships would clearly contribute to

understanding and characterising a given microbe’s growth, we demonstrate that the minimal

requirement of three initial nutrient concentrations, chosen reasonably across the nutrient

range of interest, is sufficient to significantly improve predictions compared to the fixed

parameter approach.

Considering the maximal nutrient uptake rate and the biomass yield as functions of the ini-

tial nutrient concentrations, as we did here, is one of the improvements that can be made to

the classical models of microbial growth dynamics. However, other factors shaping nutrient

uptake kinetics missing from the classical ecological models including ours can also play an

important role in predicting microbial growth. For example, the uptake kinetics parameters

could vary during batch culture growth, with higher parameter values during exponential

growth than during stationary phase, as demonstrated by an example of C. albicans growing

on glucose [61]. Furthermore, the same study shows that even during stationary phase C. albi-
cans can use two distinct uptake systems for glucose assimilation from the environment, each

of which is characterised by different uptake kinetics parameters. Similar conclusions have

been made for E. coli and S. cerevisiae, where different glucose uptake systems with dissimilar

kinetics properties were found [40, 62]. Finally, a positive correlation between the nutrient

uptake kinetics parameters and the cell size has been observed experimentally in different phy-

toplankton groups growing on phosphorus [35].

In general, a theoretical approach that allows the parameters describing nutrient uptake

and growth kinetics to vary along different environmental conditions, can be deployed to pre-

dict microbial growth at different scales of organisation. In particular, the dynamic kinetic

growth parameters described in our paper can readily be incorporated into ecological, popula-

tion level models [7, 8], as well as metabolic genome-scale models that contain a Michaelis-

Menten growth-modelling step [10, 12, 19]. However, due to its simplicity our ecological

model has a certain advantage over genome-scale metabolic models; namely, we treat the

enzyme kinetics as a black box and thus we do not require knowledge of detailed metabolic

properties of a particular micro-organism to successfully predict its growth. In contrast,

genome-scale models have complex parameterisation needs and require detailed metabolic

reconstructions which are either challenging or not currently available for many non-labora-

tory cultured micro-organisms such as phytoplankton [63], deadly human pathogens [64] and

plant pathogens [65].

However, our model has certain limitations, for example, it cannot accurately capture the

lag phase (e.g. S1 Text, Appendix B, B4 Fig (a)) or features of the diauxic (biphasic) growth

(e.g. S1 Text, Appendix B, B2 Fig (b)). But importantly, this can easily be rectified by building

complexity into the model (2) as illustrated in S1 Text, Appendix D where we observed no

departure from our key conclusions. Although our growth experiments were conducted in

batch cultures, where waste products may accumulate and oxygen or nutrients other than the

carbon source may become limiting, multiple factors demonstrate that our results are not

exclusive to these conditions. Firstly, the trends we uncovered (Fig 1) are robust against media

acidification and other nutrient enrichment (see S1 Text, Appendix C, C1 Fig). Secondly, we

used protocols to enhance media shaking and gas exchange, while using organisms that can

grow anaerobically (see section Growth experiments). Thirdly, previous studies have shown

that the growth features which we find are not exclusive to microplate batch cultures. For

instance, declining growth yields in increasing resource concentrations has been demonstrated
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in aerobic chemostat cultures [44], so are not the result of increasing oxygen deprivation.

Moreover, such yield declines can arise by shifts in metabolic pathways, for example from fer-

mentation to respiration, which can be triggered when sugar flux into the cell decreases [43,

44]. This switch in metabolism is irrespective of oxygen supply, which further suggests that

when diauxic growth is observed in our study, it is a result of the rate of sugar uptake declining

rather than oxygen deprivation. When additional intra-community interactions other than

competition for the uptake of nutrients occur, such as e.g. by the production of public goods

[59] or anti-competitor toxins [66], our model can easily be adapted and extended to consider

more complex interactions among species in competition in order to predict community out-

comes. Our approach which uses variable growth kinetic parameters can thus be considered as

a foundation for various model scenarios, providing a common ground for the reliable estima-

tion of microbial growth parameters.

Supporting information

S1 Text. Appendix A—Supplementary tables; Appendix B—Supplementary figures;

Appendix C—Media acidification and alternative limiting nutrients; Appendix D—An

extended mathematical model with a lag term.
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