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An organism responds to the invading pathogens such as bacteria, viruses, protozoans,
and fungi by engaging innate and adaptive immune system, which functions by activating
various signal transduction pathways. As invertebrate organisms (such as sponges,
worms, cnidarians, molluscs, crustaceans, insects, and echinoderms) are devoid of an
adaptive immune system, and their defense mechanisms solely rely on innate immune
system components. Investigating the immune response in such organisms helps to
elucidate the immune mechanisms that vertebrates have inherited or evolved from
invertebrates. Planarians are non-parasitic invertebrates from the phylum
Platyhelminthes and are being investigated for several decades for understanding the
whole-body regeneration process. However, recent findings have emerged planarians as
a useful model for studying innate immunity as they are resistant to a broad spectrum of
bacteria. This review intends to highlight the research findings on various antimicrobial
resistance genes, signaling pathways involved in innate immune recognition, immune-
related memory and immune cells in planarian flatworms.
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INTRODUCTION

All animals are exposed tomicrobes present in their immediate environment and thus require protective
mechanisms against infectious agents for their survival. All such fundamental interactions between hosts
and pathogens are of considerable medical interest. The recent exPLoSion of knowledge on the
evolutionary, genetic, and biochemical aspects of the interaction between the innate immune system
and microbes has renewed scientific interest in exploring the invertebrate organisms (Pittenger et al.,
1999; Tomchuck et al., 2008; Allam and Raftos, 2015; Milutinovic and Kurtz, 2016). Invertebrates are
interesting organisms to study because they are relatively simple, lack an adaptive immune system, and
have immune-competent cells, presenting a certain level of similarity with vertebrate phagocytes
(Flannagan et al., 2012; Gold and Bruckner, 2015; Abnave et al., 2017; Hartenstein and Martinez,
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2019). The ease of genetic tractability, an amenity to perform high-
throughput screenings, and the absence of adaptive immunity make
invertebrates a convenient model system for exploring conserved
antimicrobial immune responses (Takeda et al., 2003; Buchmann,
2014; Myllymaki et al., 2014; Hillyer, 2016; Mangoni et al., 2016).

In invertebrates, the cellular immune response against microbes
is associated with the presence of phagocytes or cells having
immune function closely related to macrophages from
vertebrates, so-called macrophage-like cells (e.g., amebocytes,
hemocytes, and coelomocytes) (Ottaviani and Franceschi, 1997;
Gold and Bruckner, 2015; Abnave et al., 2017). Like in the
vertebrates, the recognition of microbes by invertebrates also
involves the expression of pathogen recognition receptors (PRRs)
by host immune cells, that recognizes pathogen-associated
molecular patterns (PAMPs) expressed by microbes (Janeway
and Medzhitov, 2002; Kumar et al., 2011; Gulati et al., 2018).
The most described PRRs expressed on host cells are Toll-like
receptors (TLRs) (Takeda et al., 2003), Nod-like receptors (NLRs)
(Kim et al., 2016; Platnich and Muruve, 2019) and scavenger
receptors (Peiser and Gordon, 2001; Pluddemann et al., 2007). The
engagement of PRR through the binding of PAMP initiates a signal
transduction cascade involving mitogen-activating protein kinases
(MAPKs) and leads to complex cellular reactions. Indeed, the
engagement of PRR activates phagocytosis and production of
innate immune effectors, such as reactive oxygen intermediates,
reactive nitrogen intermediates, antimicrobial peptides, lectins and
cytokines, to eliminate the invader (Kawai and Akira, 2007;
Kawasaki and Kawai, 2014; Satoh and Akira, 2016).

The free-living planarian flatworms are invertebrates from the
large phylum of Platyhelminthes. They live in freshwaters, such as
lakes, ponds, and rivers, and have a worldwide distribution.
Platyhelminthes probably have appeared on earth approximately
540–400 million years ago (Ruiz-Trillo et al., 1999). Planarians are
zoophages (Klionsky et al., 2015) and have attracted considerable
scientific attention (https://pubmed.ncbi.nlm.nih.gov/) (Figure 1A,
black line) because of their extraordinary capacity to regenerate after
amputation. This extraordinary regeneration capacity in planarians
is due to the presence of a large number of adult pluripotent stem
cells distributed throughout their body, except in the pharynx and
the brain region (Ivankovic et al., 2019). These pluripotent stem cells
possess the ability to give rise various types of linage committed stem
cells which ultimately produce all different types of differentiated cell
types in the planarian body (Wagner et al., 2011; Scimone et al.,
2018). Shaw in 1790, Drapernauld in 1800, Dalyell in 1814, Johxson
in 1822 and1825, Van Duyne in 1896, and Randolfh in 1897 showed
that tissue fragments taken from almost any part of the planarian
body could develop into an entire worm (Morgan, 1898). TH
Morgan, in 1898, based on the observations and experiments
made by his colleagues, re-investigated planarian regeneration and
analyzed the different orientation planes of their regeneration. He
concluded that planarians are immortal under the knife as they can
survive after decapitation and are able to regenerate their head or
generate a new body from the remaining piece of head (Morgan,
1898). Planarians had also attracted the attention of E. Metchnikoff.
Indeed, in his work memories published in 1901, he described
planarian use to investigate internalization and digestion of red
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
blood cells by their intestinal cells as some of them are transparent
and have larger size than protozoans (Metchnikoff, 1901). Since
1790, planarians are being used in various investigations, for
example, as toxicology models (Fries, 1928), for locomotion
investigations (Stringer, 1917), as grafting models (Rand and
Browne, 1926), and as regeneration models (Morgan, 1898). These
remained the major topic studied by using planarians, as evidenced
by the scientific literature indexed under PubMed (Figure 1A, blue
line). The scientific interest for the planarians renewed in
A

B

FIGURE 1 | Number of publications related to the scientific field planarians
(PubMed database). (A) number of publications related to planarian using the
keywords planarians (black line); planarians and regeneration (blue line);
planarians and immunity (red line). (B) number of publications related to the
immunity in model organisms using the keywords Drosophila melanogaster
and immunity (black line); Caenorhabditis elegans and immunity (blue line);
planarians and immunity (red line).
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approximately in the year 2002 and 2003, with a total of 64 scientific
papers published because of the availability of new genetic tools (Salo
and Baguna, 2002; Newmark et al., 2003), and the number of papers
reached a maximum of 149 publications in 2018. Interestingly,
planarians also have a remarkable ability to fight against large-
spectrum of microbes (such as bacteria and fungi) that are known
pathogens for humans. However, the immune capacity of planarians
has been poorly investigated (Figure 1A, red line) as compared to
the regeneration studies (Figure 1A, red line and blue line) and also
in comparison with the immunity-related studies in Drosophila
melanogaster (Insecta) and Caenorhabditis elegans (Secernentea)
(Figure 1B). Previous studies have demonstrated that planarians
can efficiently deal with several human pathogenic bacteria that also
cause lethal infections to other invertebrates such asD.melanogaster
and C elegans (Abnave et al., 2014). Hence planarians may provide
us with a unique opportunity to investigate the antibacterial
resistance mechanisms against human pathogens. Their finding
may reveal some unknown molecules or unusual strategies to fight
against human pathogens.
BRIEF HISTORY OF THE ANTIMICROBIAL
RESPONSE IN PLANARIANS

While investigating regeneration in the planarian Dugesia
dorotocephala via electron microscopy, Morita et al. in 1974
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
observed that mesenchymal cells have phagocytosis capacity as
they could internalize the cellular debris (Carpenter et al., 1974;
Morita and Best, 1974). However, the link between this phagocytic
capacity and immune activity against microbes could not been
established. In 1991, Morita attempted to investigate this link by
using Mycobacterium tuberculosis, the causative agent of
tuberculosis. Heat-killed M. tuberculosis (strain H37Ra) was
inserted in an incision made behind the eye of the planarian D.
dorotocephala. The authors reported that reticular cells recognized
the dead bacteria and engulfed them within a vacuole. This result
suggested phagocytic activity is possibly related to the specific
recognition of the microbes and revealed the presence of innate
immune functions in planarians (Morita, 1991). However, no
further studies explored or validated the immune mechanisms in
planarians until very recently. More than 20 years later, the
antimicrobial response of planarians was again investigated
(Abnave et al., 2014) and numerous immunity related genes
and proteins were identified (Table 1).
ANTIMICROBIAL RESISTANCE GENES
IN PLANARIANS

Autophagy Genes
To investigate the innate immunity of planarians, Abnave et al.
in the year 2014 (Abnave et al., 2014) infected Dugesia japonica
March 2021 | Volume 11 | Article 619081
)

TABLE 1 | Immune genes identified in planarians specie S. mediterranea and D. japonica to date.

S. mediterranea D. japonica

Names References Names References

Smed-ARNTL (Tsoumtsa et al., 2017) Dj-TRAF3 (Pang et al., 2016)
Smed-cyld-1 (Arnold et al., 2016) Dj-RIG-I (Pang et al., 2016)
Smed-hep (Arnold et al., 2016) Dj-GRP78 (Ma et al., 2014)
Smed-jnk (Arnold et al., 2016) Dj-C-type lectin-like (Gao et al., 2017)
Smed-jun D (Arnold et al., 2016) Dj-GILT (Gao et al., 2020)
Smed-LTA4H (Hamada et al., 2016) Dj-14-3-3 (Lu et al., 2017)
Smed-mkk4 (Arnold et al., 2016) Dj-Plac8 (Pang et al., 2017)
Smed-mkk6-1 (Arnold et al., 2016) Dj-PLSCRs (Han et al., 2017)
Smed-MyD88 (Tsoumtsa et al., 2018)
Smed-p38 (Arnold et al., 2016; Torre et al., 2017;

Tsoumtsa et al., 2017; Maciel et al., 2019)
Dj-p38 (Pang et al., 2016)

Smed-pgrp-1 (Arnold et al., 2016; Torre et al., 2017)
Smed-pgrp-2 (Arnold et al., 2016; Torre et al., 2017)
Smed-pgrp-3 (Arnold et al., 2016; Torre et al., 2017)
Smed-pp6 (Arnold et al., 2016)
Smed-ppm1a (Arnold et al., 2016)
Smed-ppm1b (Arnold et al., 2016)
Smed-setd8-1 (Torre et al., 2017)
Smed-SRAM (Tsoumtsa et al., 2018)
Smed-tab1-1 (Arnold et al., 2016)
Smed-tak1 (Arnold et al., 2016; Maciel et al., 2019)
Smed-TIM (Tsoumtsa et al., 2017)
Smed-TIR (Tsoumtsa et al., 2018)
Smed-Traf2 (Arnold et al., 2016) Dj-TRAF2 (Hu et al., 2019)
Smed-Traf2-1 (Arnold et al., 2016)
Smed-Traf6 (Arnold et al., 2016; Tsoumtsa et al., 2017) Dj-TRAF6 (Pang et al., 2016)
Smed-xiap (Arnold et al., 2016)
Smed-morn2 (Torre et al., 2017; Tsoumtsa et al., 2017; Maciel et al., 2019) Dj-morn2 (Abnave et al., 2014; Tsoumtsa et al., 2017
Smed-FoxF-1 (Scimone et al., 2018)
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by feeding them with 16 strains of human pathogenic bacteria,
that are also lethal for model organisms, such as Drosophila and
nematodes (Supplementary Table 1). The set of pathogens
tested in this study included pneumophila (Legionella
pneumophila), brucellosis (Brucella melitensis), salmonellosis
(Salmonella typhimurium), listeriosis (Listeria monocytogenes)
and tuberculosis (Mycobacterium tuberculosis). Authors
observed that the 16 strains of bacteria were eliminated from
the planarian body within few days. The researchers found that
bacteria were eliminated by the process phagocytosis within gut
cells. This capacity to cope with bacterial infection is not
restricted to D. japonica, since the planarian species Schmidtea
mediterranea was also able to eliminate the microbes tested in
the study. Interestingly, increasing the temperature of planarian
culture up to 28°C increases the capacity of planarians to cope
with microorganisms (Hammoudi et al., 2018). To decipher the
mechanism involved in this strong resistance against microbes,
the researchers analyzed the D. japonica transcriptomic profile in
response to bacterial infection by RNA sequencing. Among the
1400 genes modulated, 18 genes were identified through RNAi
screening to be required for the robust elimination of the
microbes tested. Further, the findings revealed that 8 genes out
of the 18 genes are required to control the infection against
gram-positive, gram-negative bacteria, and mycobacteria.
Among those, authors focused on the gene MORN2. At the
time of the study, the immunological function of MORN2 was
utterly unknown. Surprisingly, the D. japonica (DJ)-MORN2 has
an orthologue in Humans (with ~48% identity) but is absent in
the invertebrates such as D. melanogaster and C. elegans. While
investigating the immunological function of MORN2, authors
revealed that overexpression of Hs-MORN2 in human
macrophages promotes the elimination of bacteria, such as L.
pneumophila or M. tuberculosis.

Analysis of the mechanism involved in the bacterial killing
driven by Hs-MORN2 indicates that Hs-MORN2 induces the
elimination of the bacteria in a phagolysosome by activation of
LC3-associated phagocytosis (LAP), a type of autophagy (Box 1)
(Klionsky et al., 2015; Heckmann and Green, 2019). While
autophagy and LC3-associated phagocytosis are well studied in
invertebrates, the LAP has not been described to be involved in
microbial clearing (Fazeli et al., 2016; Kuo et al., 2018). Notably,
transfection of Dj-MORN2 into human macrophages had a
4

similar effect to that observed during the overexpression of Hs-
MORN2 in human cells, suggesting a conserved antibacterial
function of MORN2 protein. Mechanistically, it appeared that
MORN2 interacts physically with LC3 and sequestosome-1
(SQSTM1/P62), promoting the conversion of LC3-I to LC3-II
and its association with phagosome-containing microbes. LAP
promoted by MORN2 requires Beclin-1, and Atg5 whereas it’s
independent of components of the autophagy preinitiation
complex (Ulk1, Atg13, and FIP2000) (Huang and Brumell,
2014). This work investigating the genetic and functional
studies of host-bacterial interactions in planarians revealed the
critical and conserved functions of innate immune components.
The extraordinary capacity of planarians to cope with microbes
has also been found during infection with Candida albicans, a
fungal pathogen affecting humans (Maciel et al., 2019). Candida
albicans is an opportunistic pathogen colonizing the
gastrointestinal tract in over 50% of healthy individuals. It can
cause severe and recurrent infections of the mucosa, as well as
life-threatening systemic infections (Coronado-Castellote and
Jimenez-Soriano, 2013; Mayer et al., 2013). Invertebrates, such
as Galleria mellonella, the honeycomb moth, D. melanogaster
and C. elegans, die rapidly after infection with C. albicans
(Chamilos et al., 2006; Pukkila-Worley et al., 2009; Fuchs et al.,
2010; Rossoni et al., 2017). In contrast, the protochordate
amphioxus, can deal with C. albicans via the chitin-binding
domain of the enzyme chitotriosidase (Xu and Zhang, 2012).
Indeed, C. albicans infects and grows within planarians, inducing
tissue damage. However, despite this infection, S. mediterranea
rapidly clears C. albicans, and tissue damage is restored within a
few days. The elimination of C. albicans by planarians is
associated with the induction of Smed-MORN2, Smed-TAK1
and Smed-p38 genes (Maciel et al., 2019), demonstrating the
importance of MORN2 in planarian immunity against fungal
infections as well. A recent study published in the year 2020 by
Morita et al., has validated the conserved function of murine
MORN2 in LAP mediated killing of E. coli in murine
macrophages (Morita et al., 2020).

Glucose-Regulated Protein 78 Gene
Following the work done by Abnave et al. on planarian innate
immunity (Abnave et al., 2014), several studies exploring
planarian immunity have appeared in the literature. Ma et al.
characterized the Dj-GRP78 (78 kDa glucose-regulated protein)
from D. japonica (Ma et al., 2014). Dj-GRP78 shows a 76.4%
similarity with GRP78 from the nematodes C. elegans and Homo
sapiens. In mammals, GRP78 (BiP/HSPA5) functions as a heat
shock protein and is induced during oxidative stress (Nakajima
and Kitamura, 2013). In the vertebrates, it has been suggested
that GRP78 expression protects the host cell against the
accumulation of superoxide (Nakajima and Kitamura, 2013). It
has also been reported that the inhibition of GRP78 induces the
expression of MCP-1 and promotes macrophage infiltration
(Cook et al., 2016). In sea urchins (Falugi et al., 2012) and
shrimps (Fenneropenaeus chinensis, Penaeus monodon) (Luan
et al., 2009; Li et al., 2018), the expression of GRP78 is associated
with a response to stress (i.e., pH, heavy metal). Moreover, in
C. elegans, GRP78 protein expression is related to the expression
BOX 1 | Phagocytosis and Autophagy.

Phagocytosis consists of the uptake and digestion of particles, including
microbes. Microbes are internalized in phagosomes, which then mature and
fuse with lysosomes to form degradative phagolysosomes.
Autophagy is the selective engulfment of the cytoplasm, which can contribute
to antibacterial immunity. Bacteria that escape or damage phagosomal
membranes are recaptured by the autophagic system, which consists of
double-membrane compartments that fuse with lysosomes. Autophagy is
defined by its dependence on components of the autophagy preinitiation
complex formed by Ulk1, Atg13, and FIP2000 and is structurally defined by
the presence of double-membrane compartments.
LC3-Associated phagocytosis LAP: Bacterial recognition links components
of the autophagy pathway to phagocytosis through a mechanism called LC3-
associated phagocytosis (LAP). LAP genetically requires Beclin1, Atg5, and Atg7
and is structurally defined by the presence of single-membrane compartments.
March 2021 | Volume 11 | Article 619081
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of antimicrobial peptides required to control nematode infection
with the fungal pathogen Drechmeria coniospora (Wang et al.,
2015). Similarly, GRP78 is implicated in the immune response of
Apostichopus japonicus against Vibrio splendidus (Lamitina and
Chevet, 2012). Planarians challenged with Escherichia coli (non-
pathogenic laboratory strain DH5a) by co-incubation with an
amputated tissue showed enhanced expression of Dj-GRP78,
suggesting the possible role of Dj-GRP78 in planarian innate
immunity. Further studies are needed to explore the immune
pathways engaging GRP78 in planarians during infections (Ma
et al., 2014).

Leukotriene A4 Hydrolase Gene
LTA4H is a hydrolase that plays a role in the restriction of
bacterial growth in vertebrates. LTA4H catalyses the last step of
the synthesis of leukotriene B4 (LTB4), a potent pro-
inflammatory lipid mediator derived from arachidonic acid
(Snelgrove, 2011). LTA4H is a regulator controlling the
balance of pro-inflammatory and anti-inflammatory
eicosanoids, and the production of pro-inflammatory cytokines
(i.e. , TNFa). The inhibition of LTA4H reduces the
lipopolysaccharide (LPS)-induced production of pro-
inflammatory cytokines and promotes the production of
cytokines, such as interleukin (IL)-10, thereby enhancing
bacterial invasion or bacterial susceptibility (Tobin et al., 2010;
Curtis et al., 2011; Snelgrove, 2011; Tobin et al., 2012; Yang et al.,
2014; Dunstan et al., 2015). The analysis of the publicly available
transcriptome revealed the existence of S. mediterranea (Smed)-
LTA4H, an ortholog to Hs-LTA4H (44% similarity at the protein
level) (Hamada et al., 2016). Planarian S. mediterranea is capable
of clearing the Staphylococcus aureus infection, that can cause
nosocomial disease, pneumonia, abscess, sepsis, and toxic shock
syndrome (Abnave et al., 2014). However, silencing of the Smed-
LTA4H gene by RNA interference promotes the S. aureus
clearance in 4 days. In contrast, in vertebrates, LTA4H
deficiency likely leads to bacterial proliferation and a failure to
resolve the bacterial infection (Tobin et al., 2010; Curtis et al.,
2011; Snelgrove, 2011; Tobin et al., 2012; Yang et al., 2014;
Dunstan et al., 2015). It has been shown that inhibition of
LTA4H expression by maresin-1 induces rapid regeneration
of the planarian system (Serhan et al., 2012). In planarians,
tissue regeneration requires autophagy (Gonzalez-Estevez et al.,
2007), and autophagy is also one of the way for innate immunity
to clear bacterial infection (Abnave et al., 2014; Schille et al.,
2018). Thus, it may be hypothesized that in planarians, the
silencing of the Smed-LTA4H gene could result in an increase
in autophagy and a disruption of the tissue homeostasis
equilibrium (controlled via autophagy), thereby leading to
rapid elimination of the bacteria.

Circadian Clock Genes
Both in the vertebrates and invertebrates, numerous biological
mechanisms, including the immune system, are closely linked to
the circadian rhythm (Tsoumtsa et al., 2016; Scheiermann et al.,
2018). Clock control genes (CCGs) interact by forming
posttranscriptional and posttranslational regulatory loops,
creating a 24-h oscillation. In the main loop, Clock/Bmal-1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
promotes Per and Cry transcription during the daytime. PER
and CRY are synthesized in the cytoplasm, dimerize and
translocate in the nucleus, where they accumulate (Curtis et al.,
2014). Fluctuations in the expression of clock genes lead to
variation in the expression of several immune-related genes
(Stat-3, Stat-5, Erg-1, NF-kB, and Tlr-9) which, in turn, may
impact the capacity of immune system responsiveness towards
aggression (Logan and Sarkar, 2012; Silver et al., 2012). Mice
with aryl hydrocarbon receptor nuclear translocator-like (Arntl)-1
knocked down are more susceptible to Listeria monocytogenes
infection (Nguyen et al., 2013) than a wild-type mice. In
invertebrates, such as D. melanogaster, deletion of the clock
gene Period-2 (Per)-2 increases their susceptibility to
Pseudomonas aeruginosa, Streptococcus pneumoniae, and
L. monocytogenes. The elimination of the clock genes circadian
locomotor output cycles kaput (Clock), Cycle (Cyc, a homologue of
Hs-Arntl-1), and Timeless (Tim) causes an increase in resistance
to Pseudomonas aeruginosa (Shirasu-Hiza et al., 2007; Lee and
Edery, 2008). So far, no clear orthologue for Hs-Clock and Hs-
Per-2 has been discovered in planarian S. mediterranea.
However, orthologues to Hs-Tim and Hs-Arntl-1 have been
identified (Tsoumtsa et al., 2017). In contrast to Smed-Arntl-1,
the silencing of Smed-Tim is required for an efficient antibacterial
immune response against S. aureus in S. mediterranea under
12 h/12 h light/dark cycle conditions. The Smed-Tim silencing
affects the expression of antimicrobial gene responses, such as
p38 MAP-Kinase and Traf6, which transduce signals of pathogen
perception (Arnold et al., 2016; Pang et al., 2016), and morn2,
which controls the LC3-associated phagocytosis of bacteria for
their destruction (Abnave et al., 2014). Thus, Smed-Tim regulates
the capacity of planarians to kill S. aureus by modulating the
expression of antimicrobial genes (Tsoumtsa et al., 2017).

C-Type Lectin
C-type lectins (CTLs) are a large superfamily of over 1000
proteins that contains one or more characteristic C-type lectin-
like domains (CTLDs). CTLs are involved in several
physiological processes such as development, homeostasis and
immunity. In mammals, CTLs can be found as transmembrane
proteins or as soluble secreted molecules. CTLs are well known
pattern recognition receptors that can recognize both
endogenous and exogenous ligands. Various cells from innate
and adaptive immune systems express CTLs. Individual CTLs
are expressed in the cell type specific manner, hence can serve as
a marker for that specific cell type. It can recognize all different
types of pathogens like bacteria, fungi, viruses and parasites. The
pathogen recognition triggers an intracellular signaling cascade
that induce a wide range of cellular and immunological responses
essential for antimicrobial immunity (Brown et al., 2018).
Proteins containing C-type lectin-like domains are also found
in different planarian species. Several CTLs are differentially
expressed in various tissues (such as mucus glands, body edge,
etc.) of planarian Girardia tigrina (Shagin et al., 2002). However,
their involvement in planarian innate immunity is unexplored.
Recently, a novel C-type lectin-like protein is identified and
characterized in planarian D. japonica (Gao et al., 2017). This
Dj-CTL is expressed in the pharyngeal and epidermis and is
March 2021 | Volume 11 | Article 619081
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up-regulated upon the induction of lipopolysaccharide,
peptidoglycan, Gram-positive and Gram-negative bacteria,
indicating that it may be involved in the immune responses. In
regenerating worms, the CTL was found to be mainly expressed
in early blastemas and its knockdown by RNAi slowed down the
wound healing process during regeneration. These observations
suggest that planarian CTL might be involved both in innate
immune response as well as regeneration.

Gamma-Interferon-Inducible Lysosomal
Thiol Reductase
As name suggests, the GILT is a lysosomal enzyme that can
reduce protein disulfide bonds. GILT is constitutively expressed
in antigen-presenting cells in mammals and is involved in
antigen presentation as well as bacteria invasion. The
enzymatic activity of GILT facilitates the complete unfolding of
proteins that are destined for lysosomal degradation. Planarian
GILT also exhibit the thiol reductase activity (Gao et al., 2020).
Dj-GILT is expressed in intestinal phagocytes in planarians and
is overexpressed when worms are infected with LPS, E. coli, and
V. anguillarum, suggesting that it might be involved in the
immune response to bacterial infections . It ’s been
demonstrated that planarian GILT acts as an antioxidant and
thus facilitates the clearance of Gram-negative bacteria by
regulating H2O2 levels (Gao et al., 2020). Moreover, silencing
of GILT results in delayed bacterial elimination by planarians,
suggesting that it may also play a potential role in removing
invasive bacteria.

TNF Receptor-Associated Factors
Tumor necrosis factor receptor-associated factors (TRAFs) are
the signal transducers for the TNF receptor superfamily that
plays an important role in both adaptive and innate immunity.
The major downstream signaling events mediated by TRAFs
include activation of the transcription factor nuclear factor kB
(NF-kB) and the mitogen-activated protein kinases (MAPKs)
(Shi and Sun, 2018). So far seven TRAFs are reported in
mammals of which six are typical members (TRAF1–6) and an
atypical member (TRAF7). TRAFs are involved in the regulation
of innate immunity, inflammation, cell proliferation, apoptosis,
stress and antiviral responses. TRAFs have also been reported in
invertebrates such as D. melanogaster (Liu et al., 1999; Grech
et al., 2000; Zapata et al., 2000), C. elegans (Wajant et al., 1998),
Dictyostelium discoideum (Wajant et al., 1998), and Planarian D.
japonica (Hu et al., 2019). Planarian Dj-TRAF2 is mainly
expressed in the pharynx of an intact animals. Their
expression goes up in in response to pathogen-associated
molecular patterns such as LPS, PGN, b-Glu and Poly(I:C).
Hinting that planarian TRAF2 may have a role in an innate
immune response. TRAF2 is found to be localized in the
cytoplasm, suggesting that it might function as a signal adapter
in the cytoplasm of cells. However, the detailed mechanistic
insights of its immunological function are yet to be explored.

Fox-Family Transcription Factor
Forkhead-box-family transcription factor (foxF-1) is a member
of the Forkhead-box (FOX) gene family. Forkhead gene was first
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
identified in the D. melanogaster. The gene was found to be
essential for normal gut development and its absence leads to
“forked head” appearance. Later, several Forkhead related genes
were discovered in several other invertebrate and vertebrate
animals. So far 44 Fox genes are reported in human and
mouse, 11 in Drosophila, 15 in C. elegans, and 45 in Xenopus
(Golson and Kaestner, 2016). These transcription factors control
wide variety of biological functions in the development and
homeostasis of various cells and tissues, including immune
cells. Planarians possess a foxF-1 gene that encodes a homolog
of Drosophila Biniou and vertebrate FoxF (Scimone et al., 2018).
It acts as a master transcriptional regulator of all non-body wall
muscle cells in planarians. Planarian Smed-foxF-1 drives the
regulatory program for muscle cell subsets as well as intestinal
phagocytic cells that are capable of phagocytosing E. coli.
Mammalian foxF-1 is also known to be involved in the
regulation of pulmonary and gut development (Golson and
Kaestner, 2016). In C. elegans, the FoxF/FoxC transcription
factor LET-381, is shown to be required for the formation of
coelomocytes (Amin et al., 2010), which are scavenger cells in the
animal pseudocoelom cavity. These findings suggest that foxF-1
may very well be involved in innate immune response by
regulating the development of such phagocytic cells.

14-3-3 Proteins Family
14-3-3 proteins are a family of conserved multifunctional
proteins regulating various developmental processes. They act
as regulator molecule and interact with different kinases as well
as phosphatases. 14-3-3 proteins are regarded as a major class of
molecular chaperones and with the potential to interact with
over 200 proteins (including defense related proteins), the 14-3-3
proteins can regulate the signal transduction and impact the cell
fate. 14-3-3 proteins play roles in multiple signaling pathways,
including those controlling metabolism, hormone signaling, cell
division and host defense. In Huh7 cells, a member of the 14-3-3
family, 14-3-3h is shown to interact with MDA5 and promote
the MDA5-dependent IFNb induction pathway by reducing the
immunostimulatory potential of viral dsRNA within MDA5
activation signaling pathway (Lin et al., 2019). 14-3-3 also
functions in regulation of host-pathogen interactions in plants
(Lozano-Duran and Robatzek, 2015). Thus far, two members of
the 14-3-3 family proteins, 14-3-3 a and z are reported in
planarian D. japonica (Lu et al., 2017). Dj-14-3-3 a and z are
predominantly expressed in the pharynx of worms. They are up-
regulated in response to pathogen-associated molecular patterns
like LPS, PGN, b-Glu and Poly (I:C). Their expression goes up
within 1–5 h after exposure. Therefore, it can be speculated that
they may participate in the early immune responses. Further
molecular studies need to performed to validate the role of 14-3-
3 a and z in planarian immunity.

Placenta Specific Protein 8
Placenta specific protein 8 (Plac8) is also known as C15 protein
or Onzin. In normal human T-lymphocytes, overexpression of
Plac8 induces apoptosis (Mourtada-Maarabouni et al., 2013).
Several reports have demonstrated the innate immune properties
of Plac8 and it’s known to be involved in enhancing bactericidal
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activities of phagocytes, macrophages, and neutrophils (Ledford
et al., 2007); in mediating CD4 T cell clones to clear genital tract
infections (Jayarapu et al., 2010); in influencing the production of
proinflammatory cytokines interleukin 6 (IL-6) (Allan, 2012)
etc…. Planarian D. japonica (Dj-)plac8 gene is highly expressed
in the pharynx and its protein can be found in the intestine and
epidermis as well (Pang et al., 2017). As pharynx and epidermis
are most likely to be interacting with the external environments
and pathogens, it can be speculated that Plac8 may be associated
with planarian immune response. Moreover, plac8 expression is
also modulated in response to LPS and is peaked at 5 h post
exposure. The authors have also performed the bacteriostatic
tests of the purified planarian Plac8 at 5 mg and 10 mg
concentrations. Planarian Plac8 clearly inhibited the growth of
E. coli and P. aeruginosa in a dose-dependent manner (Pang
et al., 2017). Moreover, planarian plac8 was also found to be
involved in the process of the pharynx development and
regeneration. Hence, planarian plac8 can be considered as a
multifunctional gene with crucial roles in immune responses and
development in planarians.

Phospholipid Scramblases
Phospholipid scramblases (PLSCRs) constitute a family of five
homologous (PLSCR1–PLSCR5), lipid-raft-associated plasma
membrane proteins, which are involved in the translocation of
phospholipid between membrane leaflets (Han et al., 2017). These
are conserved proteins that are found in all eukaryotic organisms.
In mammals, these proteins play essential roles in various
physiological processes, especially in the immune responses. In
mice, the PLSCR1 expression gets increased in response to the
stimulation with LPS, zymosan and turpentine (Lu et al., 2007).
The overexpression of PLSCR1 was able to protect the lung
epithelial cells from infection of Staphylococcus aureus a-toxin
(Lizak and Yarovinsky, 2012). Moreover, PLSCR1 could suppress
vesicular stomatitis virus proliferation by enhancing the IFN
response and increasing expression of antiviral genes (Dong
et al., 2004). These results indicate that PLSCR plays an essential
role in the immune responses in mammals. However, PLSCRs are
not well studied in the invertebrate organisms. A PLSCR gene is
identified in the planarian D. japonica (Dj-PLSCR) (Han et al.,
2017). It is mainly expressed in the pharynx of the intact and
regenerating animals. Authors have observed increase in the
expression of PLSCR in response to stimuli with the different
pathogen-associated molecular patterns such as poly(I:C), LPS,
PGN and b-Glu. This report suggests that PLSCR could be
possibly involved in planarian immune response but further
investigations are required validate its immunological function
and mode of action.
SIGNALING PATHWAYS

Retinoic Acid Inducible Gene-I
Signaling Pathway
The recognition of microbes involves PRR and their related
receptor signaling pathways. Retinoic acid-inducible gene (RIG)-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
I is a member of PRRs and plays a pivotal role in the immune
response by recognizing and binding nucleic acids from viruses
(Cui et al., 2008; Yoneyama and Fujita, 2009). The RIG-I
signaling pathway involves tumor necrosis factor receptor-
associated factor (TRAF)-6, TRAF3, and MAPK-p38 TRAF
(Bradley and Pober, 2001). The RIG-I pathway is present both
in vertebrates and invertebrates. Indeed, this pathway exists in D.
melanogaster (along with Toll-like, IMD and JAK/STAT
signaling pathways) (Leclerc and Reichhart, 2004; Baeg et al.,
2005; Ferrandon et al., 2007), C. elegans (along with DBL, DAF-
2/DAF-16, MAPK, Toll-like signaling pathways) (Pujol et al.,
2001; Morita et al., 2002; Young and Dillin, 2004; Kwon et al.,
2010), and in crustaceans (along with Toll-like and IMD
signaling pathways) (Lan et al., 2013; Li and Xiang, 2013).
Analysis of transcriptomic data from D. japonica identified
four genes, Dj-RIG-I, Dj-TRAF3, Dj-TRAF6 and Dj-p38, from
the RIG-I-like receptor signaling pathway. The measurement of
the levels of Dj-RIG-I, Dj-TRAF3, Dj-TRAF6, and Dj-p38
expression in response to stimulation with pathogen antigens,
such as LPS and peptidoglycan (PGN), suggest that they are
likely to be involved in the planarian immune response (Pang
et al., 2016). Similar results have also been found using the oyster
Crassostrea gigas. Indeed, the expression of C. gigas (Cg)-RIG-1
increases in response to PAMPs such as poly(I:C), LPS, PGN,
heat-killed L. monocytogenes and Vibrio alginolyticus (Zhang
et al., 2014). Till date, the RIG-I pathway has been reported to be
only associated with the antiviral innate immune response (Mao
et al., 1996; Conesa et al., 2005; Feng et al., 2011; Nie et al., 2015).

While investigating planarian microbiota, While investigating
planarian microbiota, Arnold et al. have reported that planarians
possess a wide variety of bacterial species in their microbiota and
their bacterial composition can severely affect the regeneration in
planarians (Arnold et al., 2016). Authors found high
Bacteroidetes to Proteobacteria ratio in their healthy planarian
culture. The shift in the bacterial composition (such as the
expansion of Proteobacteria) was observed in the poorly
managed static planarian cultures, which led to the
development of dorsal lesions, tissue degeneration, and lysis in
planarians. This suggest that pathogenic shift of microbiota
composition can adversely affect the tissue homeostasis and
regeneration in planarians. By performing RNAseq analyses,
Arnold et al. identified a series of innate immune components
in planarians and noticed that Proteobacteria expansion
coincides with the induction of several innate immunity genes
(Arnold et al., 2016). The researchers performed a candidate
gene RNAi screen to uncover tissue degeneration mediators in
response to infection with the pathogenic bacteria found in
planarian microbiota.

Authors focused on conserved members of the mammalian
inflammatory signaling cascade and the infection-responsive IMD
pathway from D. melanogaster (Myllymaki et al., 2014). The
researchers identified several orthologues of either H. sapiens or
D. melanogaster genes and categorized them in mediating
(activators) or reducing (inhibitors) signal transduction (Kopp
et al., 1999; Ferrandon et al., 2007; Mogensen, 2009; Dai et al.,
2012; Xie, 2013; Herrington andNibbs, 2016).Many of these genes
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showed modulated expression (Supplementary Table 2) in
response to amputation in the presence of infection with
Pseudomonas (Arnold et al., 2016). Besides, the RNAi screen
revealed that TAK1 innate immune signaling module (TAK1/
MKK/MAPK-p38) is responsible for compromised tissue
homeostasis and regeneration during infection. Although the
exact implication of these genes in the innate immunity of
planarians remains to be explored, this study revealed the S.
mediterranea genes from an evolutionarily conserved
inflammatory signaling module and also highlighted their
involvement in a complex tissue regeneration process in the
presence of infection. These findings revalidate that there is a
strong correlation between microbiota, innate immune system
and regeneration.

Toll-Like Receptor Signaling Pathway
TLRs play a vital role in initiating both innate and adaptive
immune responses and are the most famous among all PRR
receptors (Kawai and Akira, 2011; Moresco et al., 2011; Kawasaki
and Kawai, 2014). The structure of TLRs is well characterized.
TLRs are formed by an extracellular region containing leucine-
rich repeats (LRRs) required for the sensing of PAMPs followed
by a transmembrane region and an intracellular region
containing a Toll/IL1R receptor (TIR) domain, responsible for
signal transduction (O’Neill and Bowie, 2007). Five adaptors are
known for Toll/IL-1R, namely, myeloid differentiation primary
response 88 (MyD88), MyD88 adaptor-like (MAL), also known
as toll-interleukin receptor adaptor proteins (TIRAP), TIR
domain-containing adaptor protein inducing interferon b
(TRIF), TRIF-related adaptor molecule (TRAM), sterile alpha
and TIR motif-containing protein (SARM) (O’Neill and Bowie,
2007; Nilsen et al., 2015). Studies suggest that organisms, such as
Rotifera and Platyhelminthes (including planarians), does not
harbor TLR orthologues, whereas TLRs are widely conserved
across several other animal species (Leulier and Lemaitre, 2008;
Coscia and Giacomelli, 2011; Peiris et al., 2014; Gerdol et al.,
2017). Even if functional TLRs are not present, the TIR domain-
containing proteins do exist in these organisms (Peiris et al.,
2014; Gerdol et al., 2017). TLR2 in Nematostella vectensis
(Cnidaria) consists only of TIR domains and a transmembrane
region whereas it does not contain an extracellular portion (Song
et al., 2012). However, N. vectensis TLR is involved in response to
pathogens by its interaction with other LRR-containing proteins.
A similar organization was found in Hydra magnipapillata
(Cnidaria), where PAMP detection and antimicrobial peptide
expression are possible through the communication of HvTRR1
and HvTRR2 with HvLRR1 (Bosch et al., 2009). The
investigations on the antimicrobial response in planarians have
revealed the existence of several genes contributing to their
antimicrobial defense, including Morn-2, Traf3, Traf6, p38-
MAPKinase, Erk, Jnk, Mkk4, Mkk6, Tim, Tak1, Tab1, JunD,
Rig-1, PGRPs, Hep, SetD8, and LTA4H (Abnave et al., 2014;
Arnold et al., 2016; Hamada et al., 2016; Pang et al., 2016; Torre
et al., 2017; Tsoumtsa et al., 2018). Most of them are orthologues
of mammalian Toll-like receptor (TLR) signaling pathway
components, such as Traf3, Traf6, p38-MAPKinase, Erk, Jnk,
Mkk4, Mkk6, Tak1, and Tab1 (Song et al., 2012; De Nardo,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
2015), suggesting at least partial conservation of TLR signaling
pathways in planarians. Previous studies have identified three
TIR domain-containing proteins in planarians (Peiris et al., 2014;
Gerdol et al., 2017). A recent study employing in silico analysis of
32,615 protein sequences from the planarian species S.
mediterranea revealed a total of 20 protein sequences
containing at least one TIR domain (Smed-TIR). A detailed
analysis of the identified Smed-TIR did not allow the detection of
any LRR or any immunoglobulin-like domain linked to a TIR
domain. Besides, these data suggest that there is no IL1R
orthologue in planarians. The study also revealed the presence
of SRAM (Smed-SRAM) domain and a MyD88 (Smed-MyD88)
domain in two separate gene sequences. It is important to note
that SARM is the most ancient TLR adaptor predicted to be
conserved in all living organisms. Interestingly, Smed-MyD88 is
an orthologue to bivalve MyD88, but it does not cluster with the
sequences identified in the phylogenetic analysis. Similarly,
Hydra magnipapillata MyD88 is not phylogenetically
associated with other MyD88, suggesting a different acquisition
and evolution history of MyD88 in the animal kingdom. The
immune function of MyD88 is ancient, and it has been
demonstrated that the innate immune response of sea sponge
Suberites domuncula (Porifera) against bacteria relies on a
MyD88-dependent signaling pathway (Wiens et al., 2005). The
studies have hypothesized that Smed-MyD88 contributed to the
recognition of bacterial PAMPs (Janeway and Medzhitov, 2002;
Kumar et al., 2011). Even though none of the studies on
planarians has identified functional TLR in the form that has
been described to date, the sequences that can substitute for TLR
functions have been suggested. Further investigations are
needed to functionally characterize the identified TIR domain-
containing sequences in the antimicrobial response
of planarians.
IMMUNE RELATED MEMORY
IN PLANARIANS

The existence of innate immune memory in vertebrates and
invertebrates, known as trained immunity, has been reported
and defined as heightened immune responses against previously
encountered pathogens (Milutinovic and Kurtz, 2016; Netea
et al., 2016). The mechanism of trained immunity in
vertebrates involves epigenetic reprogramming through histone
modifications, particularly by histone methyltransferases, that
modulate the expression of antimicrobial genes during re-
infection (Netea et al., 2016; Pereira et al., 2016). Instructed
immunity or trained immunity has been observed in several
invertebrates in response to bacteria but also cestode. Indeed,
immune memory is developed in Periplaneta Americana
(Insecta) in response to Pseudomonas aeruginosa infection
(Faulhaber and Karp, 1992), in D. melanogaster against
Streptococcus pneumoniae infection (Cooper, 1968), and in
Macrocyclops albidus (Crustacean) against the cestode
Schistocephalus solidus infection (Kurtz and Franz, 2003).
However, in contrast to vertebrates, the mechanism of trained
immunity in invertebrates has not been elucidated in detail.
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Planarians have also been explored for the presence of trained
immunity. It’s been demonstrated that planarians can initiate a
genetic program of instructed immunity against S. aureus re-
infection that allows increased expression of specific
antimicrobial genes that aid to clear the pathogen more
rapidly. This immune memory function is independent of
phagocytic cells, unlike in D. melanogaster intestinal immunity,
but it requires neoblasts (stem cells). The trained immunity
mechanism in planarians requires neoblasts as cellular actors
and the expression of the Smed-PGRP-2 peptidoglycan receptor
and the Smed-setd8-1 histone methyltransferase as molecular
effectors. The signaling pathway also involves the genes Smed-
p38 MAPK and Smed-morn2, which display facilitated
expression associated with enhanced bacterial clearance. Smed-
PGRP-2 controls the induction of Smed-setd8-1 and their
downstream histone lysine methylation activity in neoblasts
(Torre et al., 2017). The study has revealed an unusual
mechanism underlying the planarian immune memory, and it
would be interesting to check whether other invertebrates rely on
a similar immune memory mechanism.
IMMUNE CELLS IN PLANARIANS

The immune cells involved in planarian innate immunity
remain poorly investigated. To date, three types of cells have
been suggested that could contribute to planarian immunity:
these are reticular cells, intestinal phagocytes, and neoblasts. It
has been shown that reticular cells are able to internalize dead
microbes, such as dead M. tuberculosis (Morita, 1991), but no
further investigations have been done on reticular cells. The
absorptive phagocytes are one the major cell types in the
intestinal tract of the planarians (Forsthoefel et al., 2012;
Scimone et al., 2018). These cells may possibly express
pathogen recognition receptors like PGRPs and several other
innate immune-related genes that are expressed in the
intestinal tract of planarians (Abnave et al., 2014; Arnold
et al., 2016; Torre et al., 2017; Scimone et al., 2018; Gao et al.,
2020). Several genes expressed by intestinal phagocytes that are
essential for their maintenance have been identified in the S.
mediterranea (Forsthoefel et al., 2012). However, their
implication and contribution in innate immunity remained
unknown, since their genetic invalidation neither affects the
planarian antibacterial response nor the trained immunity
(Torre et al., 2017). Apart from these cells, the presence of
other dedicated immune cells in planarians is still not reported.
In other invertebrates, such as D. melanogaster (Gold and
Bruckner, 2015), Pediculus humanus (Kim et al., 2011;
Coulaud et al., 2014), and crustaceans to marine bivalves, the
implication of phagocytic cells in their defense against microbes
has been established (Abnave et al., 2017). It appears that in S.
mediterranea, neoblasts (stem cells) play a central role in the
innate immune memory (Torre et al., 2017). The role of stem
cells in the invertebrate immunity remains poorly investigated.
There is little evidence of the relationship between Drosophila
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
melanogaster stem cells and microbes. In most cases, stem cells
respond to microbes by producing various factors that initiate
the activation of several types of effector cells (enterocyte
muscle cells, enteroblasts), including hemocytes, which are
required for the elimination of microbes (Bonfini et al.,
2016). In contrast, stem cells play a crucial role in the
immunity of vertebrates. They are equipped with PRRs
(including TLRs), they possess both immunosuppressive and
inflammatory properties, as well as harbor antibacterial
capabilities (Pevsner-Fischer et al., 2007; Liotta et al., 2008;
Krasnodembskaya et al., 2010; Kim et al., 2011; Machado Cde
et al., 2013; Hamada et al., 2018). The planarian epidermis,
pharynx, excretory glands/cells could be other possible tissues/
organs that should be further investigated for their active
participation in the antimicrobial defense.
CONCLUDING REMARKS

Because of their relative simplicity, and availability of the
molecular and genetic tools, invertebrate models, such as
sponges (i.e., bath sponge), worms (i.e., platyhelminthes,
annelids, nematodes), cnidarians (i.e., jelly fish), molluscs
(i.e., bivalves and snail), crustaceans (i.e., crabs, shrimps),
insects (i.e., flies, mites), arachnids (spider), echinoderms (i.e.,
sea stars, urchins), platyhelminthes (i.e., planarians), are being
useful to unravel immune mechanisms that vertebrates have
inherited from invertebrates. Therefore, recently there is a
considerable interest among researchers in developing and
the studying less regarded invertebrate organisms that may
contribute a different perspective to our present understanding
of complex host-pathogen interactions. Planarian is one such
model system that could be used for antimicrobial response
investigations. They are quite affordable and relatively easy to
culture in the lab. We can quickly produce a large number of
clonal populations of these animals by repetitive amputation
and regeneration cycles. We can infect a large number of
animals simply by feeding the bacteria mixed with their food.
Infections can also be performed conveniently by injecting
pathogens directly inside the gut or at any other desired
locations. Planarians possess primitive innate immune system
with relatively less complexity. Moreover, numerous immune-
related genes within planarians have been identified recently
(Table 1). All these features make planarians a convenient and
exciting model to explore innate immune mechanisms.
Planarians need to be future studied to investigate the
signaling pathways engaged during bacterial infection, and
also to identify the different cell types contributing to the
immunity in planarians.
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Supplementary Table 1 | List of the 16 bacterial species used in the Abnave
et al. study (Abnave et al., 2014). The three main classes of pathogens responsible
for human diseases and pathogens of model organisms, such as C. elegans or D.
melanogaster, are represented. ND, not described.

Supplementary Table 2 | Planarian homologs of activator and inhibitor genes
whose expression is modulated in response to amputation associated with infection.
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