
http://www.aimspress.com/

AIMS Public Health, 2(4): 667–680.

DOI: 10.3934/publichealth.2015.4.667

Received date 30 July, 2015,

Accepted date 23 September, 2015,

Published date 10 October, 2015

Research article

Impact of Income on Small Area Low Birth Weight Incidence Using

Multiscale Models

Mehreteab Aregay1,∗Andrew B. Lawson1 Christel Faes2 Russell S. Kirby3 Rachel
Carroll1 and Kevin Watjou 2

1 Department of Public Heath Sciences, Division of Biostatistics and Bioinformatics, MUSC,
Charleston, USA

2 Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University,
Hasselt, Belgium

3 Department of Community and Family Health, University of South Florida, Tampa, FL, USA

∗ Correspondence: aregay@musc.edu; Tel: +1-843-876-1100

Abstract: Low birth weight (LBW) is an important public health issue in the US as well
as worldwide. The two main causes of LBW are premature birth and fetal growth restriction.
Socio-economic status, as measured by family income has been correlated with LBW incidence at
both the individual and population levels. In this paper, we investigate the impact of household
income on LBW incidence at different geographical levels. To show this, we choose to examine
LBW incidences collected from the state of Georgia, in the US, at both the county and public
health (PH) district. The data at the PH district are an aggregation of the data at the county
level nested within the PH district. A spatial scaling effect is induced during data aggregation
from the county to the PH level. To address the scaling effect issue, we applied a shared multiscale
model that jointly models the data at two levels via a shared correlated random effect. To assess
the benefit of using the shared multiscale model, we compare it with an independent multiscale
model which ignores the scale effect. Applying the shared multiscale model for the Georgia LBW
incidence, we have found that income has a negative impact at both the county and PH levels.
On the other hand, the independent multiscale model shows that income has a negative impact
only at the county level. Hence, if the scale effect is not properly accommodated in the model,
a different interpretation of the findings could result.

Keywords: Low birth weight (LBW); predictive accuracy; shared multiscale model;
independent multiscale model; scaling effect; Bayesian multiscale model.
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1. Introduction

Low birth weight (LBW) is an important public health issue around the globe. The term low
birth weight is used to describe babies who are born weighing less than 2500 g [1]. These are
further subdivided into very low birth weight (VLBW), which is less than 1500 g and extremely
low birth weight (ELBW), which is less than 1000 g [2]. In 2011, a study in the US found that of
the 3.8 million births observed, 6.1% were diagnosed with LBW, whereas 1.3% were diagnosed
with VLBW [3]. While the majority of low birth weight infants have normal outcomes, as a
group they generally have higher rates of subnormal growth, illness, and neurodevelopmental
problems which increases as the newborn’s birth weight decreases [4]. At the individual level,
LBW is an important factor associated with higher risks of infant and childhood mortality [5]. In
addition, at the population level, the proportion of LBW births is an indicator of public-health
problems.

The primary causes of low birth weight are premature birth and fetal growth restriction,
usually due to infection and birth defects. In general, the risk factors associated with low and
very low birth weight are maternal smoking, multiple births, maternal or fetal stress, prenatal
alcohol and drug use, poor prenatal nutrition, and violence toward the pregnant woman [6].
There are some studies which show that LBW declines as the socioeconomic status increases [7].
While many studies suggest that individual-level risk factors play a significant role in explaining
LBW outcome, little research exists examining the geography of important explanatory factors
related to the incidence of LBW. For county-level counts of LBW in Georgia and South Carolina,
Kirby et al [8] found that income is a negative risk factor while the proportion of black population
is a positive risk factor for the number of LBW. In this paper, we aim to investigate whether
or not income is negatively associated with LBW at different scale levels simultaneously. To
achieve this goal, we apply the methods proposed by Aregay et al [9].

Recently, Aregay et al [9] have proposed statistical methods termed as multiscale models
that are useful to address the scaling effect which exists in aggregated geographical data. A
spatial scaling effect occurs when data are aggregated from a finer (smaller) to a coarser (larger)
geographical level. This process results in smoothing out the variation at the finer scale level and
hence, information will be lost during data aggregation. If the scaling effect is not accommodated,
an erroneous conclusion may be drawn. For example, a risk factor which predicts the burden of
LBW at the finer level may not provide a consistent result at the coarser level. We demonstrate
this on the LBW outcome obtained from the Georgia state with 159 counties that are nested
within 18 public health (PH) districts.

The paper is organized as follows. In Section 2, we present the data structure and the
exploratory data analysis for the predictor and the outcome of interest. In Section 3, we describe
the statistical methods which we apply to the data set. In Section 4, we provide the results
obtained from the models fitted to the data. Finally, in Section 5, we discuss the results and
draw conclusions.
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2. Low Birth Weight in Georgia

To apply the methods which will be described in Section 3, we choose to examine low birth
weight incidence in the counties of Georgia (GA). The Georgia state map was selected as it
provides a reasonably large set of spatial units at each scale level and therefore a degree of
spatial variation in disease risk could be found within the study area. The data are available at
both counties and PH levels from the state of Georgia via the Georgia Division of Public Health
OASIS system (http://oasis.state.da.us). In Georgia, there are 159 counties nested within 18 PH
districts as shown in Figure 1. On average nine counties are nested within each public health
district. The outcome of interest is the number of low birth weight (LBW) births while the
predictor is median household income of the residents of a given county. The LBW count at the
PH district level is obtained by summing up the LBW for the counties that are nested within the
PH district, whereas the income predictor at the PH level is obtained by averaging the income
of the counties within the PH district. The aim is to investigate the relationship between the
predictor income and LBW at both the county and PH levels simultaneously. The predictor
median household income is available through the Area Health Resources Files (AHRF) dataset.
We have selected the recent data (both income and LBW incidence) in 2007.

The exploratory data analysis for the LBW incidence and median household income at both
the county and PH district is shown in Figure 2. As can be seen from the figure, there is an
increased risk of having a LBW baby in southwest of Georgia at the county level, while the
median income in those areas is relatively low. Similarly, there is a high incidence of LBW at
the PH level in the southwest region of the map, and a relatively small LBW incident is present
in the northern GA. On the other hand, a relatively high income is observed in the northern
GA. This shows that income may have a negative impact on LBW incidence. From the figure,
we can also clearly see that scaling up smooths out the variation for both LBW and income.
Our analysis of these data with and without the scale effect is deferred to Section 4.

Figure 1. State of Georgia, USA: County and PH district boundary map.
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Figure 2. LBW at the county and PH levels (top figure) and median house-
hold income at the county and PH levels (bottom figure).

3. Multiscale Models

Multiscale models are used to describe data at different geographical levels. These methods
allow us to study the relationship between predictors and outcome at multiple scales simulta-
neously. The methods can help us to investigate whether or not the relationship at the finer
level will hold true at the coarser level. In this paper, it is of interest to apply multiscale mod-
els to model the relationship between spatially referenced outcomes and predictors by taking
into account the spatial scaling effect. Suppose Yik is the outcome random variable for region
i; i = 1, . . . , Nk, at scale level k. Here we focus on two level geographical data and hence k = 1, 2,
Nk is the number of regions at the scale level k with k = 1 denoting the finest (county) level,
k = 2 the coarsest (PH) level. Further, assume that Xik is the observed covariate for geo-
graphical area i at the kth scale level. For spatial health data, it has been recognized that a
geographical correlation will exist between spatial units. This is due to the fact that spatial
units close together in space often have similar disease risk, whereas regions far apart are often
different. Hence, a spatially structured random effect is used to handle the association between
neighbors.

Conditioning on the spatially structured random effect vik , we assume that the outcomes Yik
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are independent with densities f(yik |vik , βk;µik) with h(µik) = β0k +βkXik +vik +εik for a known
link function h, such as, identity, logit, and log link for continuous, binomial, and count data,
respectively. The unstructured random effects εik are N(0, σ2

εk
) and vik is assumed to have an

intrinsic conditional auto-regressive (ICAR) structure [10]. In this paper, we focus on modeling
binomial data at different scales. For the purpose of comparison, we applied two models: the first
model does not take into account the scaling effect, whereas the second model does so. For both
models, we use a Bayesian approach that combines the current and previous information. The
advantage of using the Bayesian paradigm is that it includes the uncertainty of the parameters
via the prior distribution. Next, we describe the application of the models to investigate the
impact of income on Georgia LBW incidence at both the county and PH levels simultaneously.
To our knowledge, the application of the methods for such purpose is a novel work and have
never been explored before.

3.1. Model 1

In this naive approach, we consider an independent multiscale convolution model which does
not introduce linkage between the different scale levels. We have two scale levels in the state of
Georgia: the county and PH levels. Thus, the independent multiscale model can be expressed
as:

yi1 ∼ binomial(ni1 , pi1); logit(pi1) = β01 + β11 × inci1 + vi1 + εi1 ,
yi2 ∼ binomial(ni2 , pi2); logit(pi2) = β02 + β12 × inci2 + vi2 + εi2 ,

(1)

where yi1 , inci1 , and ni1 are the number of LBW births, the median household income, the
number of births at the county level and yi2 , inci2 , and ni2 are the total number of LBW,
average of the median household income, and the total births of the counties nested within the
PH level, respectively. Further, vi1 and vi2 are the correlated heterogeneity (CH) at the county
and PH levels, whereas εi1 and εi2 are the uncorrelated heterogeneity (UH) at the county and
PH levels. We assumed the following ICAR structure for the correlated random effects:

vik | v−ik ∼ N

(
v̄δik ,

σ2
vk

nδik

)
, (2)

where v̄δik = 1
nδik

∑
i′εδik

vi′k , nδik is the set of labels of the neighbors of unit i at scale level k = 1, 2

and v−ik is the set of all random effects not including the ith. For the uncorrelated random effect,
we assumed εik ∼ N(0, σ2

εk
), where k = 1, 2. A uniform prior distribution was assumed for the

standard deviation of the correlated and uncorrelated random effects, i.e., σvk ∼ U(0, 100) and
σεk ∼ U(0, 100) [11]. Further, we considered a flat prior for the intercepts β01 and β02, and a
non-informative normal distribution for the slope parameters β11 and β12. Note that there is no
linkage between the convolution models at the county and PH levels. Hence, this model does
not address the scaling effect.

3.2. Model 2

In this section, we applied the shared multiscale model proposed by Aregay et al [9]. Their
work involves the use of joint convolution models to link the different scale levels via a shared
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spatially structured random effect vi2 . The shared random effect was used to recover the lost
information during data aggregation. Their model can be easily applied in standard software
such as WinBUGS because it is based on convolution models that are widely used in spatial
epidemiology. For the state of Georgia with two levels, the multiscale convolution model can be
given as:

yi1 ∼ binomial(ni1 , pi1); logit(pi1) = β01 + β11 × inci1 + vi1 + εi1 + vi2 , for i1 ∈ Si2
yi2 ∼ binomial(ni2 , pi2); logit(pi2) = β02 + β12 × inci2 + vi2 + εi2 ,

(3)

where Si2 is the set of subregions at the county level within the PH district. The shared random
effect vi2 is common for all the counties nested within the PH district. For example, if a given
PH district has five counties, vi2 will be the same for all the five counties. In other words,
the counties share the characteristics that they inherit from their parent which is here the PH
district. Note that we assumed the same prior distribution for all the model parameters as in
Model 1.

3.3. Model assessment and goodness of fit

In the previous sections, we have described two models: while the first model ignores the
scale effect, the second model includes a parameter that takes care of the effect. To asses the
benefit of the second model, we need techniques which compare the models in terms of model fit
as well as prediction accuracy. In this paper, we considered the deviance information criterion
(DIC [12-13]) for model selection and the mean square prediction error (MSPE [14]) to assess
the predictive ability of the models. DIC is composed of the deviance that explains the model
fit and the number of effective parameters (PD) which penalizes for model complexity. The
MSPE compares the predicted values with the observed values of the outcome and helps us
to investigate the prediction accuracy of the model. In general, a model with smaller values
of deviance, PD, DIC and MSPE is selected to be the better model as compared to the other
model. A DIC difference between 3 and 7 is considered to be an improvement in the model
performance [12].

4. Results

We fitted the models using Monte Carlo Markov Chain (MCMC) via the R2WinBUGS pack-
age. To improve convergence, the covariate income was standardized. We generated three chains
of 30,000 Monte Carlo samples after discarding the first 15,000 start up samples. Hence, the
posterior estimates are based on 45,000 Monte Carlo samples. The scale reduction factor (R̂
was equal to one for all the parameters), BGR and trace plots [15] suggest that a reasonable
convergence has been achieved for all the model parameters. The DIC and MSPE results using
Models 1-2 are shown in Table 1. We can see that Model 2 improves the model fit at both the
county and PH levels. At the same time, the number of effective parameters (PD) obtained from
Model 2 is lower than those of Model 1. Moreover, the predictive ability of Model 2 is better
than Model 1. Hence, overall, using the shared correlated random effect for scaling effect has a
benefit as compared to the naive approach.
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In contrast, applying the naive independent multiscale model may lead to wrong conclusions
as can be seen in Table 2. Using Model 2, income has a negative impact on the incidence of LBW
at both the county (β11) and PH (β12) levels. On the other hand, Model 1 provides inconsistent
results between the county and PH levels; income has a negative impact at the county level but
not at the PH level. This could be due to the lost information which is not recovered in Model
1. The probability of the risk of having a LBW baby at the different counties and PH districts
are shown in Figure 3. The results are consistent with the results obtained from the exploratory
data analysis in the top panel of Figure 2 seen in Section 2. As can be seen from the figure,
there is high risk of increased incidence of LBW in the southwestern region of GA, which has a
relatively lower median household income as compared to the other regions (see bottom panel
of Figure 2). The difference between Figure 2 and Figure 3 is that the latter results in smoother
risk estimates at the county level. This is due to the correlated component (vi1) that smooths
out the spatial variation between the counties.

The interpretation of the odds ratio, which measures the amount of relationship between
income and LBW incidence, is as follows. Since income covariate in the model has been stan-
dardized, we have to transform back the parameter estimates to explicitly interpret in the original
scale of the predictor income. To do this, we divide the slope parameter estimate by the standard
deviation of the income covariate. For example, for the best model which is Model 2, the slope
parameter estimate at the county level is -0.09, i.e., β11 = −0.09 (see Table 2). The standard
deviation of income is 10.659. The transformed estimate will be -0.09/10.659=-0.008. Moreover,
To obtain the odds ratio estimate, we have to use the exponential function to the transformed
estimate, i.e., odds ratio=exp(−0.008) = 0.992. This result indicates that for every one thou-
sand dollars increase in the median household income, we expect to see about 0.8% (1-0.992)
decrease in the odds of having a LBW birth. Hence, counties with high income are less likely
to have LBW births as compared to the counties with low income. Similarly, we can calculate
the odds ratio at the PH level using the transformed estimates. The slope parameter estimate
at the PH level (β12; see Table 2) is equal to -0.06 and the standard deviation of the income
covariate at the PH level is 8.264. The odds ratio for the transformed estimate can be calculated
as exp(−0.06/8.264) = 0.993. Thus, at the PH level, for one thousand dollar increase in the
median household income, we expect to see about 0.7% (1-0.993) decrease in the odds of having
a LBW birth. Note that the odds ratio estimate at the PH district is similar to the odds ratio
estimate at the county level.

Table 1. Model fit and predictive accuracy results for Georgia LBW data.
Model 1 represents an independent multiscale model that ignores the scaling
effect and Model 2 denotes a shared multiscale model which handles scaling
effect.

Models PD DIC MSPE

county PH district county PH district county PH district

Model 1 75.64 17.29 1076.15 184.93 163.1 1439.0
Model 2 62.32 14.76 1072.63 181.35 162.5 1418.0
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Table 2. Georgia LBW rate data. Posterior mean estimates and standard
error. Model 1 represents an independent multiscale model that ignores the
scaling effect and Model 2 denotes a shared multiscale model which handles
scaling effect.

Models Mean 95% CI

β01 β02 β11 β12 σv1 σε1 σv2 σε2 β01 β02 β11 β12 σv1 σε1 σv2 σε2
Model 1 -2.21 -2.24 -0.12 -0.01 0.24 0.10 0.28 0.09 (-2.25,-2.18) (-2.30,-2.18) (-0.16,-0.07) (-0.13,0.10) (0.15,0.35) (0.04,0.16) (0.05,0.48) (0.001,0.23)
Model 2 -2.19 -2.24 -0.09 -0.06 0.06 0.12 0.32 0.04 (-2.23,-2.16) (-2.27,-2.21) (-0.13,-0.06) (-0.12,-0.01) (0.01,0.16) (0.08,0.16) (0.21,0.49) (0.001,0.09)

Figure 3. Probability of LBW outcome obtained from Model 1 (top figure)
and probability of LBW obtained from Model 2 (bottom figure) at both the
county and PH levels.

5. Discussion and Conclusion

In this paper, we have applied the shared multiscale model proposed by Aregay et al [9] to
examine the relationship between income and LBW incidence obtained from the state of Georgia
with two levels: county and PH levels. For the purpose of comparison, we have also employed an
independent multiscale model which does not take into account the scale effect. As such, we have
found that using the shared multiscale model improves the model fit and predictive accuracy
as compared to the independent multiscale model. In addition, the shared multiscale model
provides consistent results at the county and PH levels, whereas the independent multiscale
model produces inconsistent results between those levels. In particular, the shared multiscale
model shows that income has a negative impact on LBW incidence at both the county and
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PH levels. At the county and PH level, for every one thousand dollars increase in the median
household income, we expect to see about 0.8% and 0.7% decrease in the odds of having a LBW
birth, respectively. On the other hand, using the independent multiscale model, we have found
that income has a negative impact only at the county level.

In both developed and developing countries, LBW is an important cause of short-term mor-
bidities such as respiratory distress syndrome and long-term morbidity like blindness, and mental
retardation. This results in excessive medical cost to treat the infants. LBW can also cause child-
hood mortality. In the US, in 2009, 5.3% of Low birth weight infants died as compared to 0.2%
normal birth weight infants [16]. In 2006, the rate of LBW was peaked to 8.26% and has de-
creased slightly since then [17]. Although there is a slight decline in the LBW rate globally, it is
as high as 30% in many developing countries [18]. There are many important risk factors which
play a significant role in the incidence of LBW.

The two main causes of LBW are premature birth and intrauterine growth restrictions
(IUGR). In addition, there are risk factors related with LBW such as smoking, poor nutri-
tion, stress, alcohol and drug use. There are also studies which show that LBW-income women
who suffer from chronic psychological stress are at increased risk of having a LBW baby [19].
For the counties within the Georgia and South Carolina states, Kirby et al [8] have found that
income has a negative impact on LBW rate. Our results are in agreement with the results ob-
tained by Kirby et al [8] at the county level of the Georgia state. Moreover, we have calculated
the LBW incidence at the PH level. Still, income predicts the LBW outcome at the PH district.

There are many strategies that can be adopted to reduce the LBW birth rate at both the
individual and population levels. To take an appropriate decision, the risk factors which can
increase LBW incidence should be identified and well studied. To achieve this goal, there should
be statistical methods that are flexible enough to address the data structure in a reasonable
way. In this paper, we have applied a method that accommodates a scale effect which could
occur during data aggregation from a lower to a higher geographical level. To this end, we
found that income is negatively associated with LBW rate at both the county and PH levels.
Further, we have shown that if the scaling effect is not properly handled, it can lead to erroneous
conclusions. Hence, we recommend that the shared multiscale model should be used in practice
for small area aggregated data. There are other complex multiscale models that can be used for
aggregated data at different geographical levels [20-23]. The advantage of the shared multiscale
model employed in this paper is that it can be easily implemented in standard software such as
WinBUGS. Thus, it is very useful and valid for public health practitioners to adapt this method
for similar problems that are encountered in practice.

Using multiscale model to handle the information at different scale levels is very important
to answer different research questions: If some one is interested to study the relative risk at
multiple scale levels, our multiscale model is useful to answer such research question. Further,
the multiscale model can be used to estimate the relative risk at a single scale level. In particular,
our method is useful to study whether or not a covariate effect at the finer level will hold true
at the coarser level.

Although we have shown that income has a negative impact on LBW rate at both county and
PH levels, further research is needed to investigate the validity of these results after including
other important risk factors in the model. It is known that other risk factors such as smok-
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ing, poor nutrition, alcohol and drug use, race, and maternal stress are associated with LBW
incidence. The effect of income on LBW incidence may be changed when we incorporate these
risk factors to the multiscale model. The method which we applied here can be easily extended
to include those risk factors. Therefore, further work should be done to assess whether or not
income and other risk factors jointly affect LBW incidence.

Finally, we conclude that using the shared multiscale model is a useful and a novel method for
public health application to get an accurate risk estimate that can be used for planning purpose.
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Supplementary

A WinBUGS program invoked via the R package for Model 1 is as follows:
###Code for Model 1###############

model

{

######### county level#########

for (i in 1:m)

AIMS Public Health Volume 2, Issue 4, 667–680.



678

{

yc[i]~dbin(muc[i],nc[i]) #likelihood

muc[i]<-thc[i] #Probability of LBW

logit(thc[i])<-a0+v[i]+u[i]+beta1*(incomeS[i])#Convolution Model

v[i]~dnorm(0,tauV) #Uncorrelated random effect

ypred[i] ~ dbin(muc[i],nc[i]) #Predicted Value

PPL[i] <- pow(ypred[i]-yc[i],2)

}

######### PH level#########

for (j in 1:p)

{

yph[j]~dbin(mph[j],nph[j]) #likelihood

mph[j]<-thp[j] #Probability of LBW

logit(thp[j])<-a0ph+vph[j]+uph[j]+alpha1*(incomePHS[j])#Convolution Model

vph[j]~dnorm(0,tauVPH) #UH

ypredph[j] ~dbin(mph[j],nph[j]) #Predicted Value

PPLph[j] <- pow(ypredph[j]-yph[j],2)

}

#####County level####

for (k in 1: nsumc)

{

weic[k]<-1 #Weight for ICAR

}

#####PH level####

for (k in 1 :nsumph)

{

weiph[k]<-1 #Weight for ICAR

}

#####County level####

mspec <- mean(PPL[]) #MSPE

u[1:m]~car.normal(adjc[],weic[],numc[],tauU) #ICAR prior distribution

a0~dflat() #Flat prior for the intercept

beta1~dnorm(0,taubeta1) #Normal prior for the slope

taubeta1<-pow(sdbeta1,-2)

sdbeta1~dunif(0,100)

tauV<-1/pow(sdV,2)

sdV~dunif(0,100) #Uniform prior distribution

sdU~dunif(0,100)

tauU<-1/pow(sdU,2)

#####PH level####

mspecph <- mean(PPLph[]) #MSPE

uph[1:18]~car.normal(adjph[],weiph[],numph[],tauph)#ICAR prior distribution

a0ph~dflat() #Flat prior for the intercept
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tauph<-1/pow(sdph,2)

sdph~dunif(0,100)

sdVPH~dunif(0,100) #Uniform prior distribution

tauVPH<-1/pow(sdVPH,2)

alpha1~dnorm(0,taualpha1) #Normal prior for the slope

taualpha1<-pow(sdalpha1,-2)

sdalpha1~dunif(0,100)

}

A WinBUGS program invoked via the R package for Model 2 is as follows:

###Code for Model 1###############

model

{

######### county level#########

for (i in 1:m)

{

yc[i]~dbin(muc[i],nc[i]) #likelihood

muc[i]<-thc[i] #Probability of LBW

logit(thc[i])<-a0+v[i]+u[i]+beta1*(incomeS[i])+uph[phc[i]#Convolution Model

v[i]~dnorm(0,tauV) #UH

ypred[i] ~ dbin(muc[i],nc[i]) #Predicted Value

PPL[i] <- pow(ypred[i]-yc[i],2)

}

######### PH level#########

for (j in 1:p)

{

yph[j]~dbin(mph[j],nph[j]) #likelihood

mph[j]<-thp[j] #Probability of LBW

logit(thp[j])<-a0ph+vph[j]+uph[j]+alpha1*(incomePHS[j]) #Convolution Model

vph[j]~dnorm(0,tauVPH) #UH

ypredph[j] ~dbin(mph[j],nph[j]) #Predicted Value

PPLph[j] <- pow(ypredph[j]-yph[j],2)

}

#####County level####

for (k in 1: nsumc)

{

weic[k]<-1 #Weight for ICAR structure

}

#####PH level####

for (k in 1 :nsumph)

{

weiph[k]<-1 #Weight for ICAR structure

}
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#####County level####

mspec <- mean(PPL[]) #MSPE

u[1:m]~car.normal(adjc[],weic[],numc[],tauU) #ICAR prior distribution

a0~dflat() #Flat prior for the intercept

beta1~dnorm(0,taubeta1) #Normal prior for the slope

taubeta1<-pow(sdbeta1,-2)

sdbeta1~dunif(0,100)

tauV<-1/pow(sdV,2)

sdV~dunif(0,100) #Uniform prior distribution

sdU~dunif(0,100)

tauU<-1/pow(sdU,2)

#####PH level####

mspecph <- mean(PPLph[]) #MSPE

uph[1:18]~car.normal(adjph[],weiph[],numph[],tauph)#ICAR prior distribution

a0ph~dflat() #Flat prior for the intercept

tauph<-1/pow(sdph,2)

sdph~dunif(0,100)

sdVPH~dunif(0,100) #Uniform prior distribution

tauVPH<-1/pow(sdVPH,2)

alpha1~dnorm(0,taualpha1) #Normal prior for the slope

taualpha1<-pow(sdalpha1,-2)

sdalpha1~dunif(0,100)

}

#uph[phc[i] represents the shared correlated random effect,

#i.e., the common random effect for the counties within a given PH district

#phc is a vector of indices that represents

#which county belong to which public health district (PH)

#Note that we have 159 counties that are grouped into 18 PH districts.

#phc=c(18,18,18,3,17,10,5,9,7,7,17,13,18,7,1,18,16,15,3,1,18,12,9,18,1,

8,9,14,5,8,2,18,11,18,3,16,7,12,17,8,9,10,3,4,13,8,3,11,3,7,1,5,16,18,

14,15,9,10,10,6,14,16,1,9,3,5,12,10,10,17,9,8,10,15,15,17,7,5,17,18,16,

16,13,2,15,7,13,3,1,16,1,7,10,8,5,8,16,1,15,3,3,17,13,5,14,8,12,5,5,9,

17,14,18,15,9,13,17,8,10,8,16,12,8,16,3,15,10,8,8,8,16,18,8,13,3,3,7,

18,10,13,15,7,17,10,15,9,5,18,16,17,18,8,13,10,14,13,16,17,3)
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