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Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that are related to a number of com-
plicated biological processes, and numerous studies have demonstrated that miRNAs are closely
associated with many human diseases. In this study, we present a matrix decomposition and
similarity-constrained matrix factorization (MDSCMF) to predict potential miRNA–disease associa-
tions. First of all, we utilized a matrix decomposition (MD) algorithm to get rid of outliers from the
miRNA–disease association matrix. Then, miRNA similarity was determined by utilizing similarity
kernel fusion (SKF) to integrate miRNA function similarity and Gaussian interaction profile (GIP)
kernel similarity, and disease similarity was determined by utilizing SKF to integrate disease semantic
similarity and GIP kernel similarity. Furthermore, we added L2 regularization terms and similarity
constraint terms to non-negative matrix factorization to form a similarity-constrained matrix factor-
ization (SCMF) algorithm, which was applied to make prediction. MDSCMF achieved AUC values
of 0.9488, 0.9540, and 0.8672 based on fivefold cross-validation (5-CV), global leave-one-out cross-
validation (global LOOCV), and local leave-one-out cross-validation (local LOOCV), respectively.
Case studies on three common human diseases were also implemented to demonstrate the prediction
ability of MDSCMF. All experimental results confirmed that MDSCMF was effective in predicting
underlying associations between miRNAs and diseases.

Keywords: miRNA; disease; miRNA–disease association; matrix decomposition; similarity-constrained
matrix factorization

1. Introduction

MiRNAs are 17–24 nt non-coding RNAs that play a pivotal role in controlling the
expression of genes through RNA cleavage or translation repression [1–3]. Lin-4 was the
first miRNA inspected experimentally, by Lee et al. [4] in 1993. Since that time, a large
number of miRNAs have been discovered experimentally by researchers [4–6]. Researchers
have found that various miRNAs are bound up with several crucial biological processes,
such as cell development, cell differentiation, cell proliferation, etc. [7–10]. Developmental
defects can be the result of the dysregulation of miRNAs that are associated with the pro-
gression of diseases [11]. In the meantime, numerous studies have indicated that miRNAs
are connected with a serious of human neoplasms, including breast neoplasms, lung neo-
plasms, prostate neoplasms, etc. [12–14]. Hence, distinguishing miRNAs associated with
diseases can deepen the understanding of the genetic causes of complex diseases. Strong
connections between miRNAs and diseases have been found by a variety of traditional
experiments in the past few years [15,16]. Traditional manual models can infer the associa-
tions between miRNAs and diseases, but these are time-consuming, laborious, and have
a high failure rate. Therefore, showing the potential relationships between miRNAs and
diseases requires effective and stable computational methods, which can obtain increasingly
reliable miRNA–disease associations.
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In the past, a great number of heterogeneous-network-based algorithms and methods
have been applied to predict potential miRNA–disease relationships [17–19]. Under the
assumption that miRNAs with similar functions have a high probability of being related
to diseases with similar phenotypes, and vice versa [20], Jiang et al. [21] established a
new calculation-based model that identified potential miRNA–disease connections by
applying hypergeometric distribution. However, the similarity information utilized in this
model excluded similarity scores. Li et al. [22] constructed a new model that could be
used to prioritize human cancer miRNAs by measuring the associations between cancer
and miRNAs based on the functional consistency scores of the miRNA target genes and
the cancer-related genes. To infer the miRNA–protein connections and disease–protein
connections, Mørk et al. [23] built the miPRD model. This model used selective connections
to predict the relationships between miRNAs and diseases. Chen et al. [24] utilized the
within and between scores of each miRNA–disease combination in the WBSMDA model to
predict underlying miRNAs related to diseases. The WBSMDA model also predicted the
possible relationships between new diseases and new miRNAs. Yu et al. [25] proposed an
identifiable model to infer potential miRNA–disease relationships. This model combined
miRNA functional similarity, disease semantic similarity and disease phenotypic similarity
to create a modified information flow method. In a phenome–microRNAome network,
possible connections and validated relationships between miRNAs and diseases were
adopted. Chen et al. [26] introduced the Jaccard similarity between miRNAs and diseases
into the BLHARMDA model to investigate prospective miRNA–disease relationships. For
improving the prediction efficiency, BLHARMDA used a bipartite local model with a KNN
architecture. Ha et al. [27] proposed a computational framework of metric learning named
MLMD for predicting potential miRNA–disease associations. MLMD exploited distance
metric learning on a miRNA–disease bipartite graph to infer unconfirmed miRNA–disease
associations. The excellent performance of MLMD could be attributed to two factors: On
the one hand, the implementation of metric learning overcame the violation of triangle in-
equality. On the other hand, the miRNA expression data were adequately trained in metric
learning. Li et al. [28] proposed a similarity-constrained matrix factorization method to
infer unconfirmed disease-associated miRNAs. To construct an information-rich similarity
matrix, they utilized similarity network fusion to integrate various kinds of similarities.
Then, similarity-based regularization terms were added to common non-negative matrix
factorization to form a similarity-constrained matrix factorization algorithm, which was
applied to make accuracy predictions. The above methods are mainly based on the construc-
tion of heterogeneous networks to identify and speculate on the potential disease-related
miRNAs, and after cross-validation and case analysis experiments, it was proven that they
can be used to observe the potential association between miRNA and disease, but their
prediction performance still needs to be improved.

Recently, methods based on the random walk method have gradually been proposed,
and more accurate prediction results have been obtained. Shi et al. [29] utilized the func-
tion links between human disease genes and miRNA targets to devise a novel model. A
random walk algorithm and global network distance measurement were applied to search
for feasible miRNA–disease relationships. Chen et al. [30] utilized a random walk with
restart algorithm to construct the RWRMDA model. Because the prediction performance
calculated by global network similarity was better than the of the local network [31], RWR-
MDA employed global network similarity to determine the feasible interactions between
microRNAs and diseases. Unfortunately, RWRMDA was inappropriate for the diseases
without known associated miRNAs. Liu et al. [32] also implemented a random walk with
restart algorithm in their model to make prediction results to a higher degree. They em-
ployed the random walk with restart algorithm on a heterogeneous graph established by
utilizing disease similarity and miRNA similarity. Luo et al. [33] employed an imbalanced
bi-random walk method on a heterogeneous network with information on miRNAs and
diseases to identify feasible miRNA–disease interactions. When the random walk algorithm
is used for association prediction, the initial state of disease nodes and miRNA nodes in



Genes 2022, 13, 1021 3 of 17

the network is very important. Researchers have proposed many design methods for the
initial state of nodes in recent years, but the prediction performance has not been greatly
improved.

As artificial intelligence technology has developed, machine-learning-based models
have increasingly been employed for the accurate prediction of miRNA–disease relation-
ships. To obtain accurate results in matrix completion for miRNA–disease association
prediction, Li et al. [34] avoided using negative samples in MCMDA. To infer unknown
miRNA–disease interactions, the probabilistic matrix factorization (PMF) algorithm was
applied [35] to make predictions. The PMF algorithm is a machine learning technique
commonly employed in recommender systems, and can effectively utilize all available data
to recommend miRNAs linked to the disease in question. Ha et al. [36] utilized a matrix
completion with network regularization method to recognize potential disease-related
miRNAs. They considered an miRNA network as additional implicit feedback, and made
predictions for disease associations with a given miRNA relying on its direct neighbors.
Guo et al. [37] introduced MLPMDA—a novel model for predicting miRNA–disease as-
sociations using multilayer linear projection. They processed miRNA–disease interaction
information by processing the top nearest neighbors of entities, and then used the updated
miRNA–disease interactions and disease similarity to construct a heterogeneous matrix.
In this heterogeneous matrix, the multilayer projection and layer-stacking strategy were
employed to make predictions. However, in order to obtain dependable and steady per-
formance, MLPMDA requires high-quality biological data. Ding et al. [38] presented a
novel computational model named VGAMF for predicting miRNA–disease associations.
VGAMF first integrated several different types of information about miRNAs and diseases
into comprehensive similarity networks of miRNAs and diseases, which were used to
extract the nonlinear representations of miRNAs and diseases based on the variational
graph autoencoders. Then, VGAMF obtained the linear representations of miRNAs and
diseases by implementing non-negative matrix factorization to process the miRNA–disease
association matrix. Finally, a fully connected neural network combined linear representa-
tions with nonlinear representations to generate the predicted miRNA–disease association
scores. Wang et al. [39] presented a novel method called NMCMDA to observe unknown
disease-related miRNAs. The encoder and decoder were the two essential components in
NMCMDA. The encoder was developed using a graph neural network to extract latent
miRNA and disease characteristics from a heterogeneous miRNA–disease network. These
latent features were used by the decoder to generate miRNA–disease association scores. For
NMCMDA, a variety of encoders and decoders have been proposed. Finally, in NMCMDA,
the combination of a relational graph convolutional network encoder and a neural multire-
lational decoder achieved the best prediction results. In summary, machine-learning-based
models can produce more accurate prediction results, but most of them have difficulties in
adjusting the optimal parameters and selecting negative samples, which seriously affect
the training efficiency of the model.

Despite their outstandingly good performance, the abovementioned prediction mod-
els have several limitations, such as inadequate measurement of similarity, excessive noise
in experimental data, and inaccurate prediction results. To overcome these limitations,
we present a novel model called MDSCMF, which combines matrix decomposition with
similarity-constrained matrix factorization to predict unobserved miRNA–disease associa-
tions. To construct information-rich miRNA similarity and disease similarity, we applied
SKF to integrate various kinds of miRNA similarity data and disease similarity data. In
addition, because the unknown miRNA–disease associations were much more numerous
than the known associations, an MD algorithm was used to get rid of outliers from the
miRNA–disease association matrix. Furthermore, we added L2 regularization terms and
similarity constraint terms to non-negative matrix factorization to form an SCMF algorithm,
which was implemented to obtain the final association scores of each miRNA–disease
pair. To evaluate the effectiveness of MDSCMF, 5-CV, global LOOCV, and local LOOCV
were carried out on the known miRNA–disease association data downloaded from HMDD
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v3.2 [40]. Furthermore, we performed case studies on colon neoplasms, breast neoplasms,
and lung neoplasms for prediction. As a result, 29, 29, and 28 out of the top 30 miRNAs
potentially connected to these high-risk human diseases, respectively, were confirmed by
miR2Disease [41] and dbDEMC v2.0 [42]. Experimental results showed that MDSCMF was
effective for inferring possible relationships between miRNAs and diseases.

2. Results
2.1. Performance Evaluation

In this section, based on the verified associations between miRNAs and diseases in
the HMDD v3.2 database, 5-CV, global LOOCV, and local LOOCV were implemented to
evaluate the prediction performance of MDSCMF.

In the framework of 5-CV, we compared MDSCMF with other previous compu-
tational methods, including GCAEMDA [43], MSCHLMDA [44], NIMCGCN [45], and
HFHLMDA [46]. The full set of verified miRNA–disease associations were divided into
five parts in a random manner, where the test set was held by each part in turn, while the
training set consisted of the other four parts. The full set of unknown miRNA–disease
associations were considered as candidate samples. We applied our method to determine
the ranking of the test set relative to candidate samples. Furthermore, for the purpose
of reducing potential deviations resulting in random sample segmentations, we applied
100 repeated segmentations to verify the miRNA–disease associations. When the ranking
of all test samples was higher than a certain threshold, MDSCMF was regarded as a valid
method. Then we could utilize the receiver operating characteristic (ROC) curve that was
obtained by plotting the true positive rate (TPR) against the false positive rate (FPR) to
effectively evaluate the performance of MDSCMF. We could calculate the areas under
the ROC curve (AUCs) of these methods, whose values were between 0 and 1. Figure 1
indicates that MDSCMF, GCAEMDA, MSCHLMDA, NIMCGCN, and HFHLMDA had
AUC values of 0.9488, 0.9415, 0.9324, 0.9378, and 0.9301, respectively. The AUC value of
MDSCMF was clearly higher than that of the other methods.
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Figure 1. AUC of 5-CV compared with those of GCAEMDA, MSCHLMDA, NIMCGCN, and
HFHLMDA.

In the framework of global LOOCV, MDSCMF was also compared with GCAEMDA,
MSCHLMDA, NIMCGCN, and HFHLMDA. The test set was held by each verified miRNA–
disease association in turn, while the training set was composed of the other verified
associations. The full set of unknown miRNA–disease associations were considered as can-
didate samples. In addition, we applied MDSCMF to obtain all predicted association scores
so that the ranking of the test set relative to the candidate samples could be determined.
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Similar to 5-CV, we also calculated the AUCs of these methods so as to effectively evaluate
their performance. From Figure 2, we can see that MDSCMF, GCAEMDA, MSCHLMDA,
NIMCGCN, and HFHLMDA had AUC values of 0.9540, 0.9505, 0.9378, 0.9410, and 0.9321,
respectively. Hence, the AUC value of MDSCMF was also higher than that of the other
methods.
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Figure 2. AUC of global LOOCV compared with those of GCAEMDA, MSCHLMDA, NIMCGCN,
and HFHLMDA.

In the framework of local LOOCV, we also compared MDSCMF with other previous
models (i.e., RFMDA [47], BNPMDA [48], ABMDA [49] and VGAMF [38]) to objectively
evaluate its performance. In this way, we could determine the ability of MDSCMF to predict
the associations between miRNAs and diseases without any verified related miRNAs. For
random diseases in the HMDD v3.2 database, the confirmed associations between each
disease and all miRNAs were considered as the test set, and remaining associations were
regarded as the training set. Similar to the previous two cross-validation methods, the
AUC value in local LOOCV still served as the evaluation criterion to reflect the ability of
these models. The specific results are shown in Figure 3, which shows that the prediction
performance of MDSCMF was better than that of the other models.
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2.2. Parameter Analysis

In this section, the parameters ϑ and σ were quantitatively analyzed to research their
effects on the prediction performance. ϑ and σ were set as the regularization parameters,
which were applied to control the overfitting degree and the smoothness of similarity
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consistency, respectively. We utilized all combinations of two values ϑ ∈
{

2−3, 2−2, . . . , 23}
and σ ∈

{
2−3, 2−2, . . . , 23} to conduct MDSCMF. The AUC values of 5-CV were applied to

evaluate the performance of the model under different combinations of parameters. After
various tests were conducted, we concluded that the model obtained the best performance
when ϑ = 22 and σ = 20, as shown in Figure 4.
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2.3. Effects of Matrix Decomposition Analysis

In this section, we evaluated the effect of the pre-processing MD step for known
miRNA–disease association matrix A on the model’s performance. The AUC values of
5-CV were considered as indicators, and the corresponding ROC curves are shown in
Figure 5. In MDSCMF, MD considers the sparsity of the miRNA–disease association matrix,
thereby improving the prediction ability of the model. Conversely, MDSCMF without
MD disregards the sparsity of the original association matrix; thus, the noise data in the
matrix may reduce the accuracy of the prediction. As shown in Figure 5, the AUC value of
MDSCMF under the 5-CV framework was 0.9488. In contrast, the AUC value of MDSCMF
without MD under the 5-CV framework was 0.9291. The results of the comparison distinctly
show that MDSCMF with MD has a higher AUC value compared to that without MD.
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2.4. Case Studies

For the purpose of demonstrating the effectiveness and accuracy of MDSCMF, we
applied an evaluation experiment in this study. We implemented several types of human
diseases—i.e., colon neoplasms, breast neoplasms, and lung neoplasms—as case studies to
validate the performance of our method. Colon neoplasms are malignancies in the field of
medicine that have been confirmed to be associated with several miRNAs [50,51]. Breast
neoplasms, which have been observed to be associated with several miRNAs in clinical
experiments, have a high incidence rate among women [52]. Lung neoplasms are among
the most dangerous malignancies, with the fastest increases in morbidity and mortality [53].
A growing body of evidence indicates that these diseases have close relationships with
several miRNAs. The miRNAs associated with these diseases were ranked in line with the
prediction scores. Moreover, we utilized two databases—miR2Disease [41] and dbDEMC
v2.0 [42]—to check miRNAs that had been ranked.

As a result, 29, 29, and 28 of the top 30 miRNAs inferred by our model were individ-
ually confirmed to be associated with colon neoplasms, breast neoplasms, and lung neo-
plasms, respectively, according to the miR2Disease [41] and dbDEMC v2.0 [42] databases.
Tables 1–3 show the corresponding prediction results.

Table 1. The top 30 potential miRNAs associated with colon neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-630 d hsa-mir-29b m; d
hsa-mir-20a m; d hsa-mir-141 m; d
hsa-mir-143 m; d hsa-mir-132 m; d
hsa-mir-584 d hsa-mir-19b m; d
hsa-mir-506 d hsa-mir-29a m; d
hsa-mir-552 d hsa-mir-223 d
hsa-mir-128 unconfirmed hsa-let-125b d
hsa-mir-7i m; d hsa-mir-622 d

hsa-mir-127 m; d hsa-mir-18a d
hsa-mir-1290 d hsa-mir-143 d
hsa-mir-493 d hsa-mir-125a m; d
hsa-mir-498 d hsa-mir-21 m; d
hsa-mir-107 m; d hsa-mir-137 m; d
hsa-mir-191 m; d hsa-mir-424 d
hsa-mir-32 m; d hsa-mir-200b d

m: miR2Disease database; d: dbDEMC v2.0 database.

Table 2. The top 30 potential miRNAs associated with breast neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-99a m; d hsa-mir-663 m
hsa-mir-542 d hsa-mir-520h d
hsa-mir-96 d hsa-mir-519d d
hsa-mir-98 m; d hsa-mir-186 d

hsa-mir-185 d hsa-mir-381 d
hsa-mir-130a d hsa-mir-32 d
hsa-mir-708 d hsa-mir-590 unconfirmed
hsa-mir-150 d hsa-mir-330 d
hsa-mir-192 d hsa-mir-433 d

hsa-mir-196b d hsa-mir-942 d
hsa-mir-888 d hsa-mir-661 m; d

hsa-mir-9 m; d hsa-mir-337 d
hsa-mir-130b d hsa-mir-494 d
hsa-mir-592 d hsa-mir-212 d
hsa-mir-99b d hsa-mir-618 d

m: miR2Disease database; d: dbDEMC v2.0 database.
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Table 3. The top 30 potential miRNAs associated with lung neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-96 d hsa-mir-937 unconfirmed
hsa-mir-145 m; d hsa-mir-30e m
hsa-mir-99a m; d hsa-mir-151 d

hsa-mir-9 m; d hsa-mir-614 d
hsa-mir-185 d hsa-mir-1323 d
hsa-mir-130a d hsa-mir-32 d

hsa-mir-7 m; d hsa-mir-1298 d
hsa-mir-150 m; d hsa-mir-330 d
hsa-mir-192 m; d hsa-mir-433 d
hsa-mir-769 unconfirmed hsa-mir-522 d
hsa-mir-939 d hsa-mir-449a d
hsa-mir-98 m; d hsa-mir-143 m; d

hsa-mir-130b m; d hsa-mir-564 d
hsa-mir-638 d hsa-mir-212 m; d
hsa-mir-99b d hsa-mir-615 unconfirmed

m: miR2Disease; d: dbDEMC v2.0 database.

3. Materials and Methods

In this paper, we utilized the biological information of miRNAs and diseases to
propose a novel method called MDSCMF, which fully extends the advantages of matrix
decomposition and similarity-constrained matrix factorization to predict possible miRNA–
disease associations. The flowchart of MDSCMF is clearly shown in Figure 6.
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3.1. Human miRNA–Disease Associations

In this study, we took advantage of miRNA–disease association data from the HMDD
v3.2 database [40], which contained 12,446 verified associations between 853 miRNAs and
591 diseases. To make calculation more convenient, we constructed an adjacency matrix
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A ∈ Rnm×nd to indicate the miRNA–disease relationships. We set nd and nm to stand for
the numbers of diseases and miRNAs, respectively. Specifically, the element A(i, j) is equal
to 1 when miRNA mi is proved to be connected with disease dj, and otherwise it is equal to
0. Therefore, the matrix A contains 12,446 entries that are equal to 1.

3.2. MiRNA Functional Similarity

The miRNAs with similar functions have a high probability of being related to diseases
that are similar, and vice versa [20]. Therefore, we downloaded the miRNA functional
similarity data from http://www.cuilab.cn/files/images/cuilab/misim.zip, accessed on 1
June 2022. For ease of calculation, we constructed the matrix SM1 to store the data. The
element SM1

(
mi, mj

)
represents the value of similarity between miRNA mi and miRNA mj.

3.3. Disease Semantic Similarity

The directed acyclic graph (DAG) based on the MeSH descriptor [54] can be utilized
to describe diseases. DAG(D) = (D, T(D), E(D)) represents the DAG of disease D. T(D)
denotes the nodes in the DAG that include D itself and its ancestor nodes. E(D) denotes
the edges in the DAG that connect child nodes with parent nodes directly. The formula to
calculate the semantic score of disease D is defined as follows:

DV1(D) = ∑dεT(D)
DD1(d), (1)

where the formula to calculate the contribution value DD1(d) of disease d is as follows:

DD1(d) =
{

1 i f d = D
max{∆ ∗ DD1(d′)|d′εchildren o f d} i f d 6= D

, (2)

where ∆ is the semantic contribution factor, which was equal to 0.5 in our paper, based on
previous literature [55].

The formula to obtain the semantic similarity score between disease di and disease dj
is defined as follows:

SS1
(
di, dj

)
=

∑t∈T(di)∩T(dj)

(
Ddi

1(t) + Ddj
1(t)

)
DV1(di) + DV1

(
dj
) . (3)

Furthermore, for the two diseases of the same layer in a DAG, assuming they have
different occurrences in DAGs, it does not make sense to define the semantic contributions
of the two diseases for this DAG to be consistent. Objectively speaking, the semantic
contribution of high-incidence diseases should be less than that of low-incidence diseases.
Consequently, to further optimize the similarity information between diseases, another
strategy was introduced to calculate disease semantic similarity following this method [56].
Specifically, the formulae to calculate the semantic score of disease D and the contribution
values of disease d are as follows:

DV2(D) = ∑ dεT(D)DD2(d), (4)

DD2(d) = − log
(

the number o f DAGs including d
the number o f diseases

)
. (5)

Then, the formula to obtain the semantic similarity score between di and disease dj is
as follows:

SS2
(
di, dj

)
=

∑t∈T(di)∩T(dj)

(
Ddi

2(t) + Ddj
2(t)

)
DV2(di) + DV2

(
dj
) . (6)

For the purpose of making the results more accurate, we set two kinds of semantic
similarity that were equally important. Therefore, if disease di and dj had semantic simi-

http://www.cuilab.cn/files/images/cuilab/misim.zip
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larity, we calculated the average SD1
(
di, dj

)
of SS1

(
di, dj

)
and SS2

(
di, dj

)
by the following

formula:

SD1
(
di, dj

)
=

SS1
(
di, dj

)
+ SS2

(
di, dj

)
2

. (7)

3.4. Gaussian Interaction Profile Kernel Similarity

The miRNAs with similar functions have a high probability of being related to similar
diseases, and vice versa [20]. Therefore, the Gaussian interaction profile kernel similarity
was applied to determine the miRNA similarity and disease similarity [57,58]. We made
vector K(di) to represent the interaction profile of disease di in accordance with whether
or not di had a verified association with each miRNA. Similarly, we made vector K(mi) to
represent the interaction profile mi in accordance with whether or not mi had a verified
association with each disease. The equation to calculate the GIP kernel similarity of diseases
is defined as follows:

SD2
(
di, dj

)
= exp

(
−ρd ‖ K(di)− K

(
dj
)
‖2
)

, (8)

where ρd is applied to control the kernel bandwidth. The ρd is obtained by normalizing
the original bandwidth ρ′d by the average number of verified associations with miRNAs
per disease, as follows:

ρd = ρ′d/(
1

nd

nd

∑
i=1
‖ K(di) ‖2). (9)

Similarly, we used the following equations to calculate the GIP kernel similarity of
miRNAs:

SM2
(
mi, mj

)
= exp

(
−ρm ‖ K(mi)− K

(
mj
)
‖2
)

, (10)

ρm = ρ′m/(
1

nm ∑ nm
i=1 ‖ K(mi) ‖2). (11)

3.5. Integrating Similarity for miRNAs and Diseases

In this section, the similarity kernel fusion [59] was implemented to integrate miRNA
functional similarity and GIP kernel similarity into ultimate miRNA similarity. The concrete
integration process of miRNA similarity matrices can be divided into the following major
steps:

In the first step, two different miRNA similarities are treated as original miRNA
similarity kernels, which are defined as SMn, n = 1, 2 in the above sections. Each miRNA
similarity is normalized by the following equation:

Fn
(
mi, mj

)
=

SMn
(
mi, mj

)
∑mk∈M SMn

(
mk, mj

) , (12)

where Fn
(
mi, mj

)
denotes the normalized kernel that satisfies ∑mk∈M Fn

(
mi, mj

)
= 1, and

M = {mi}nm
i=1 indicates the set of miRNAs.

In the second step, the neighbor-constraint kernel for each miRNA original kernel can
be constructed as follows:

Sn
(
mi, mj

)
=


SMn(mi ,mj)

∑mk∈Ni
SMn(mi ,mk)

i f mj ∈ Ni

0 i f mj /∈ Ni

, (13)

where Sn
(
mi, mj

)
denotes a neighbor-constraint kernel that obeys ∑mk∈M Sn

(
mi, mj

)
= 1,

and Ni denotes the collection of all neighbors of miRNA mi, including itself.
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In the third step, the normalized kernels and neighbor-constraint kernels are integrated
as follows:

Fl+1
n = τ

(
Sn ×

∑t 6=n Fl
t

2
× ST

n

)
+ (1− τ)

∑t 6=n F0
t

2
, (14)

where Fl+1
n represents the value of n-th kernel after l + 1 iterations, P0

t represents the initial
value of Ft, and the weight parameter τ ∈ (0, 1) is used to balance the rate. After Fl+1

n ,
n = 1, 2 is obtained, the overall kernel SM∗ can be calculated by the following formula:

SM∗ =
1
2 ∑2

n=1 Fl+1
n . (15)

In the fourth step, a weighted matrix W is applied to further eliminate noises in the
overall kernel SM∗. The construction process of W is as follows:

W
(
mi, mj

)
=


1 i f mi ∈ Nj ∩mj ∈ Ni
0 i f mi /∈ Nj ∩mj /∈ Ni

0.5 otherwise
. (16)

In the last step, the ultimate miRNA similarity kernel SM ∈ Rnm×nm can be calculated
by the following formula:

SM = W × SM∗. (17)

In the same light, we could obtain the ultimate disease similarity kernel as SD ∈
Rnd×nd.

3.6. Matrix Decomposition

From the published literature [60], we found that the data used in experiments were
far from perfect. Several real data of miRNA–disease associations were redundant and/or
missing. Therefore, we decomposed the adjacency matrix A into two sections: The linear
combination of the adjacency matrix A and low-rank matrix Y was the first section. The
second section was the sparse matrix X, which included a large number of zero values.
Clearly, the data of the sparse matrix X can be regarded as outliers. The matrix decom-
position method was applied to acquire the lowest-rank matrix, which was employed to
reconstruct a novel adjacency matrix. The formula to decompose the adjacency matrix A is
defined as follows:

A = AY + X. (18)

For the purpose of making the Y become low-rank, we could enforce nuclear norm on
Y. In addition, the L2,1 norm was enforced on the X so that X became sparse. The specific
process can be represented by the following formula:

min
Y,X
‖ Y ‖∗ +ϕ ‖ X ‖2,1 s.t. A = AY + X, (19)

where ‖ Y ‖∗ = ∑
i

βi(i.e., βi is the sigular values o f Y) represents the nuclear norm of Y,

‖ X ‖2,1 =
n
∑

j=1

√
n
∑

i=1

(
Xij
)2 represents the L2,1 norm of X, and the positive free parameter

ϕ is applied to balance the weights of ‖ Y ‖∗ and ‖ X ‖2,1. Furthermore, minimizing the
nuclear norm of Y and the L2,1 norm of X contributes to convenient calculation.

If the matrix A combined with Y is treated as an identity matrix, the algorithm
will become the robust PCA. Therefore, Equation (19) can be treated as a robust PCA
generalization [61] and changed into a comparable problem, as follows:

min
Y,X,J
‖ J ‖∗ + ϕ‖ X ‖2,1s.t.A = AY + X, Y = J. (20)
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Equation (20) is a constraint and convex optimization problem. Therefore, both the
first-order information and the special properties of these convex optimization problems can
be employed to solve the issue of scalability. The inexact augmented Lagrange multipliers
(IALM) algorithm [62] can be utilized to convert Equation (20) to an unconstraint problem.
Then, the augmented Lagrange function is adopted to minimize this problem, as follows:

L = ‖ J ‖∗ + ϕ‖ X ‖2,1 + tr
(

FT
1 (A− AY− X)

)
+ tr

(
FT

2 (Y− J)
)
+

α

2

(
‖ A− AY− X ‖2

F + ‖ Y− J ‖2
F

)
, (21)

where the penalty parameter α ≥ 0. After minimization with respect to J, Y, and X, the
above problem can be settled effectively. In addition, Equation (21) can be solved when the
other variables are fixed and the Lagrange multipliers F1 and F2 are updated. The specific
steps for solving Equation (21) are displayed in Algorithm 1.

Algorithm 1: Solving Equation (21) by IALM

Input: Given an incomplete matrix A and parameters ϕ ∈ {0, 1}
Output: Y∗ and X∗

Initialize: Y = 0, X = 0, F1 = 0, F2 = 0, α = 10−4, maxα = 1010, γ = 1.1, ε = 10−8

while not converged do

1: Fix the other and update J by J = arg min 1
α‖ J ‖∗+ ‖ 1

2 J −
(

Y + F2
α

)
‖2

F

2: Fix the other and update Y by Y =
(

I + AT A
)−1(AT A− AT X + J +

(
AT F1 − F2

)
/α)

3: Fix the other and update X by X = argmin ϕ
α ||X||2,1+ ‖ 1

2 X− (AY + F1/α) ‖2
F

4: Update the multiplier F1 = F1 + α(A− AY− X); F2 = F2 + α(Y− J)
5: Update parameter α by α = min(γα, maxα)
6: Check the convergence condition ||A− AY− X||∞ < ε and ||Y− J||∞ < ε

end while

We defined the solution of Equation (21) as Y∗ and X∗. The A(i, j) was used to represent
the association between miRNA mi and disease dj, so Y∗ ∈ Rnd×nd could be applied to
represent the similarity between diseases. When Y∗ was obtained, the adjacency matrix A∗

denoted new associations between miRNAs and diseases that could be calculated by the
following equation:

A∗ = AY∗. (22)

3.7. Similarity-Constrained Matrix Factorization

In this section, the L2 regularization terms and similarity constraint terms were added
to a traditional non-negative matrix factorization algorithm to form similarity-constrained
matrix factorization, which was applied to observe more unknown miRNA–disease in-
teractions. The matrix A∗ ∈ Rnm×nd can be factorized into U ∈ Rnm×γ and V ∈ Rnd×γ,
where γ represents the dimensions of miRNA features and disease features. Concretely,
the miRNA–disease association can be regarded as the inner product between the miRNA
feature vector and the disease feature vector: a∗ ij ≈ uivT

j , where a∗ ij indicates the (i, j)th
element of matrix A∗, while ui and vj indicate the ith row of U and the jth row of V,
respectively. The corresponding objective function is defined as follows:

min
1
2 ∑

ij

(
a∗ ij − uivT

j

)2
. (23)

In what follows, the L2 regularization terms of ui and vj are added to above function
for preventing overfitting in the model:

min
1
2 ∑

ij

(
a∗ ij − uivT

j

)2
+

ϑ

2 ∑
i
‖ ui ‖2 +

ϑ

2 ∑
j
‖ vj ‖2, (24)

where ϑ denotes the regularization parameter for controlling the balance.
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When data points are mapped from high-rank space into low-rank space, the geometric
properties of the data points will most likely stay the same [63,64]. Owing to the miRNA
similarity SM and disease similarity SD being able to represent the geometric structure of
the data points, the similarity constraint terms SU and SV are proposed as follows:

SU =
1
2 ∑

ij
‖ ui − uj ‖2 SMij, (25)

SV =
1
2 ∑

ij
‖ vi − vj ‖2 SDij, (26)

where SMij represents the similarity between miRNAs mi and mj, while SDij denotes the
similarity between diseases di and dj. Because the degree of similarity between two random
data points is determined by the distance between them, SU will incur a heavy penalty if the
distance between mi and mj is close in the miRNA feature space. Thus, we minimized the
SU to keep the geometric structure of the miRNA data points, which would give rise to mi
and mj being mapped closely in low-dimensional space. The same is true for disease data
nodes, so we also minimized the SV . Based on the above analysis, the objective function of
SCMF can be defined by adding SU and SV to Equation (24) as follows:

min
U,V

L =
1
2 ∑

ij

(
a∗ ij − uivT

j

)2
+

ϑ

2 ∑
i
‖ ui ‖2 +

ϑ

2 ∑
j
‖ vj ‖2 +

σ

2 ∑
ij
‖ ui − uj ‖2 SMij +

σ

2 ∑
ij
‖ vi − vj ‖2 SDij, (27)

where σ denotes the hyperparameter to control the smoothness degree of similarity con-
sistency. Subsequently, an efficacious optimization algorithm is proposed to calculate the
objective function of SCMF.

First, the partial derivatives of L with respect to ui and vj can be calculated by the
following formulae:

∇ui L = ∑
j

(
uivT

j − a∗ ij

)
vj + ϑui + σ

(
∑
j

(
ui − uj

)
SMij −∑

j

(
uj − ui

)
SMji

)

= ui

(
VTV + ϑI + σ

(
∑
j

SMij + ∑
j

SMji

)
I

)
− A∗(i, :)V − σ ∑

j

(
SMij + SMji

)
uj,

(28)

∇vj L = ∑
j

(
vjuT

i − a∗ ij
)
ui + ϑvj + σ

(
∑
i

(
vj − vi

)
SDji −∑

i

(
vi − vj

)
SDij

)
= vj

(
UTU + ϑI + σ

(
∑
i

SDij + ∑
i

SDji

)
I
)
− A∗(:, j)TU − σ ∑

i

(
SDij + SDji

)
vi,

(29)

where A∗(i, :) and A∗(:, j) indicate the ith row and jth column of matrix A∗, respectively.
Next, the calculation of the second derivatives of L with respect to ui and vj is presented

as follows:

∇2
ui

L = VTV + ϑI + σ

(
∑

j
SMij + ∑

j
SMji

)
I, (30)

∇2
vj

L = UTU + ϑI + σ

(
∑

i
SDij + ∑

i
SDji

)
I. (31)

Then, ui and vj can be iteratively updated according to Newton’s method, as follows:

ui ← ui −∇ui L
(
∇2

ui
L
)−1

, (32)

vj ← vj −∇vj L
(
∇2

vj
L
)−1

. (33)
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More specifically, the update of ui and vj can be performed by the below formulas:

ui ←
(

A∗(i, :)V + σ ∑
j

(
SMij + SMji

)
uj

)(
VTV + ϑI + σ

(
∑

j
SMij + ∑

j
SMji

)
I

)−1

, (34)

vj ←
(

A∗(:, j)TU + σ ∑
i

(
SDij + SDji

)
vi

)(
UTU + ϑI + σ

(
∑

i
SDij + ∑

i
SDji

)
I

)−1

. (35)

The update of ui and vj will stop when the convergence condition is satisfied. After
that, the predicted association matrix can be calculated by the following formula:

A′ = UVT . (36)

The value of A′ij denotes the predicted association score between miRNA mi and
disease dj. The higher the prediction score, the greater the association probability.

4. Discussion

To solve the problems of inadequate measurement of similarity, excessive noise in
experimental data, and inaccurate prediction results existing in previous prediction models,
we developed a computational model for predicting miRNA–disease associations based on
matrix decomposition and similarity-constrained matrix factorization (MDSCMF). Because
the miRNA–disease association matrix was a sparse matrix, we applied the MD algorithm to
complete it. Our results demonstrated that the MD algorithm could improve the prediction
performance to some extent. In addition, we applied SKF to integrate various types of
similarities for constructing information-rich miRNA similarity and disease similarity.
Furthermore, L2 regularization terms and similarity constraint terms were added to non-
negative matrix factorization to form the SCMF algorithm, which was utilized to generate
association scores of each miRNA–disease pair. In the frameworks of 5-CV, global LOOCV,
and local LOOCV, the AUCs of MDSCMF achieved 0.9488, 0.9540, and 0.8672, respectively,
indicating that the performance of our method had a significant improvement relative
to previous methods. Furthermore, the predicted miRNAs related to colon neoplasms,
prostate neoplasms, and lung neoplasms were confirmed by the experimental literature, so
the prediction results generated by our method were proven to be reliable.

It should be noted that the following factors may contribute to the reliable performance
of MDSCMF: First of all, the MD algorithm, which greatly alleviated the influence of the
inherent noise existing in the current dataset, was utilized to refine the miRNA–disease
association matrix. In addition, when we used SCMF to make predictions, the L2 regular-
ization terms and similarity constraint terms could avoid overfitting problems and generate
robustness of the data richness, respectively.

However, several limitations may influence the performance of MDSCMF. First of all,
although the amount of data had increased, we still ought to spare no effort to expand the
experimental data. Furthermore, the data we utilized included miRNA function similarity
data and disease semantic similarity data, which may contain noise and outliers. Therefore,
we should continuously optimize our model to improve its performance in the future.
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