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Abstract

Motivation: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embed-
ding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current imple-
mentations scale poorly to massive datasets and often require downsampling or interpolative approximations,
which can leave less-frequent populations undiscovered and much information unexploited.

Results: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic
convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements
make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as
mass cytometry data, without downsampling.

Availability and implementation: Source code and documentation are openly available at https://bitbucket.org/
anthakki/qsne/.

Contact: antti.e.hakkinen@helsinki.fi or sampsa.hautaniemi@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell measurement technologies have become routinely used
tools in medical research (Heath et al., 2016; Shalek and Benson,
2017; Stuart and Satija, 2019). While these technologies offer unpre-
cedented opportunities to understand diseases at a single-cell reso-
lution, the vast quantity and the high dimension of the data pose
challenges for the analysis. For example, mass cytometry allows sim-
ultaneously quantification of tens of proteins from hundreds of
thousands of individual cells (Amir et al., 2013; Levine et al., 2015;
Spitzer and Nolan, 2016) and single-cell RNA-seq technology tens
of thousands of genes in thousands of cells (Heath et al., 2016;
Shalek and Benson, 2017; Stuart and Satija, 2019). As a research
project commonly features hundreds of samples, the paucity of ana-
lysis tools designed to scale to these dimensions hinders the exploit-
ation of the information in the data to the fullest.

Non-parametric dimensionality reduction techniques, such as t-
distributed stochastic neighbor embedding (t-SNE) (Amir et al.,

2013; Linderman et al., 2019; van der Maaten and Hinton, 2008)
and uniform manifold approximation and projection (UMAP)
(Becht et al., 2019; McInnes et al., 2018) are the most frequently
used methods in exploratory single-cell data analysis (Becht et al.,
2019; Butler et al., 2018; Cao et al., 2019; Levine et al., 2015; Tasic
et al., 2018). Despite being derived from different assumptions, in
fact, the methods are very similar in nature and the differences can
be attributed to hyperparameter choices and approximation schemes
(McInnes et al., 2018, see Supplementary Material). While t-SNE
seems to retain clusters qualitatively better, UMAP tends to be better
on continuous trajectories in practice (Becht et al., 2019), but this
has been suggested to be solely due to different initialization (Kobak
and Linderman, 2019). Currently, t-SNE is the most commonly used
method, especially in the mass cytometry field (Amir et al., 2013;
Becht et al., 2019; Levine et al., 2015; Spitzer and Nolan, 2016).

The main issue with the standard t-SNE is that the optimization
process is naive (gradient descent) and slow. To counter this, down-
sampling has been traditionally used (Amir et al., 2013; Bendall
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et al., 2012; Qiu et al., 2011) and, more recently, interpolation
schemes have been proposed (Gisbrecht et al., 2015; Linderman
et al., 2019; van der Maaten, 2014). However, these strategies re-
main problematic, as less-frequent populations are likely filtered out
or get intermixed in the larger patterns (as interpolation omits high-
frequency features, and thus information). This can be a problem, as
e.g. even a small malignant population can give rise to cancer pro-
gression due to evolutionary pressure (Agarwal and Kaye, 2003;
Heath et al., 2016; Shaffer et al., 2017). Further, the algorithm is
sensitive to the selection of a fixed perplexity (a scale or level of de-
tail parameter), which necessitates parameter tuning from the data
analyst. Combined with poor performance on large datasets
(Belkina et al., 2019; Linderman et al., 2019), this makes the whole
process of analyzing the data laborious. Finally, the original t-SNE
algorithm makes no attempt to evaluate how faithfully the visualiza-
tion represents the underlying data.

To address these issues, we implemented (i) a solver that con-
verges methodologically faster and requires no tuning of the gradi-
ent descent parameters; (ii) an automatic parameter selection
process, which removes the need for manual perplexity tuning; and
(iii) a quality metric, which can be used to assess whether the pro-
jected model captures the original high-dimensional data. Our
improvements are complementary and can be combined with previ-
ous efforts (Belkina et al., 2019; Gisbrecht et al., 2015; Linderman
et al., 2019; van der Maaten, 2014), and they are general enough to
be combined with GPU acceleration schemes (Chan et al., 2019;
Pezzotti et al., 2020). We show that the improvements alone enable
full analysis of large mass cytometry datasets, which reveals novel
phenotypic structures not visible in the downsampled data. Our im-
plementation, qSNE, is available at https://bitbucket.org/anthakki/
qsne/ under an open (BSD) license.

2 Materials and methods

2.1 The t-SNE algorithm
The t-distributed stochastic neighbor embedding (t-SNE) finds a
lower-dimensional representation of a dataset such that the distribu-
tion of local distances between the samples is maintained (van der
Maaten and Hinton, 2008). More specifically, it optimizes the infor-
mation lost (Kullback–Leibler divergence) when using a low-
dimensional distribution Q to approximate the high-dimensional
neighbor distribution P:

C¼: DKLðP jjQÞ ¼
Xm

i¼1

Xm

j¼1

�pij log
qij

pij
(1)

where m is the number of samples and pij (qij) are the high (low)-di-
mensional densities of the distribution P (Q) between the samples i
and j. t-SNE uses a normal distribution for P and a t-distribution for
Q (van der Maaten and Hinton, 2008; see Supplementary Material
for details), but other distributions are possible, the normal distribu-
tion representing a diffusive random walk between the samples (see
Supplementary Material). The diffusivity of the input space P is con-
trolled by the standard deviation ri of the normal distribution
around the sample i, which is set by a global perplexity parameter p
representing the number of relevant neighbors (van der Maaten and
Hinton, 2008). The original algorithm by van der Maaten and
Hinton (2008) uses gradient descent and a momentum term to opti-
mize the intricate cost function.

2.2 The L-BFGS algorithm
A gradient descent scheme only allows linear convergence, which
can be prohibitively slow on large datasets. Quadratic methods
(such as Newton’s method) permit quadratic convergence, but eval-
uating the Hessian matrix directly is too expensive, so we use the
limited-memory Broyden–Fletcher–Goldfarb–Shanno method (L-
BFGS) (Liu and Nocedal, 1989), which uses rank-1 updates inferred
from the previous updates and their gradients to numerically esti-
mate a Newton search vector [see Supplementary Material,
Algorithm (SA1)]. This combines potentially quadratic convergence

with low computational overhead as the full Hessian matrix need
not to be evaluated, but a low-rank approximation is used, and even
that need not to be explicitly formed in the memory. Provided that
the low-rank approximation can retain most of the power of the
true Hessian matrix, the performance remains comparable to a true
Newton method. A Newton method is also in advantageous in the
sense that the step size is naturally set by the Hessian matrix
magnitude.

2.3 Automatic perplexity selection
The neighborhood entropy HðPiÞ is a monotonic increasing curve
from 0 to log ðm� 1Þ as the bandwidth ri varies from 0 to 1. This
entropy curve is used to locate the bandwidth corresponding to the
specified perplexity value p. However, the curve can be also
exploited to identify the bandwidths where the neighborhood struc-
ture remains insensitive. This holds also in the presence of multiple
local scales, as a scale only contributes to the entropy gradient at the
sensitive regions. In practice, this results in a staircase-like figure
(see e.g. Fig. 3) where flat regions correspond to uninteresting per-
plexity values and highly transient sensitive. Given a perplexity
range, the optimum can be located using sectioning [see
Supplementary Material, Algorithm (SA3)]. We denote the opti-
mized bandwidths by r�i and the corresponding perplexity values p�i ,
and the latter no longer need to be fixed over the dataset, which also
allows different (optimal) perplexity at different regions of the
space.

2.4 Quality of an acquired mapping
For any mapping in the t-SNE framework, the source entropy H(P)
represents the average number of bits needed to encode a sample of
the original neighbor relationship, while the Kullback–Leibler diver-
gence between the source and destination distributions DKLðP jjQÞ
is the average number of extra bits needed if the output model is
used encode the samples instead. These are readily available during
the optimization, and can be evaluated once the optimal mapping
has been obtained.

To quantify the quality of the mapping, we propose the follow-
ing normalized statistic:

q¼: 1�

Pm

i¼1

HðP�i Þ

Pm

i¼1

HðP�i Þ þDKLðP�i jj Q̂iÞ
(2)

where P�i is the distribution around the ith sample for its optimal
bandwidth and Q̂i is the optimal embedding distribution. This
quantity has the following rationale: HðP�Þ quantifies the bits
needed to represent the samples in the original space, while the
cross-entropy HðP�Þ þDKLðP� jj Q̂Þ represents the number of bits
needed to encode the data using the low-dimensional model, their
ratio being the fraction of samples encoded in the same space with
the output model. As expected, q is zero for one-to-one correspond-
ence between the source and destination distributions (DKL ¼ 0),
and unity if all the information is lost (DKL ¼ 1). In practice, HðP�i Þ
is obtained as a side product of the automatic perplexity selection
[through Equation (S5) after Algorithm (SA3)] and DKLðP�i jj Q̂iÞ as
a side product of obtaining the t-SNE mapping for the optimized
bandwidths [through Equation (S4) after Algorithm (SA4)].

2.5 Datasets used for evaluation
To illustrate the advantages of our method, qSNE, we used two pub-
licly available (human bone marrow and MNIST) and one unpub-
lished high-grade ovarian cancer (HGSOC) dataset. The advantage
of the bone marrow and MNIST datasets is that they are manually
labeled and thus it is possible to quantify whether the visualization
is meaningful. For the purposes of comparison, the datasets were
downsampled as it is not practical to run the original t-SNE algo-
rithm on 100 000 s of samples, especially with various parameters.
Meanwhile, the HGSOC dataset demonstrates that the improve-
ments in qSNE enable discovering novel biomedical insights from
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cancer patient samples. We also analyzed a Splatter generated
(Zappia et al., 2017) single-cell RNA-seq dataset in the
Supplementary Material, which features a much higher dimension
(18 726 genes).

The first dataset, available at https://github.com/lmweber/bench
mark-data-Levine-32-dim, quantifies a panel of surface protein
markers for single cells from human bone marrow profiled using
time-of-flight mass cytometry (CyTOF) measurements, which were
originally used to study phenotypic heterogeneity of acute myeloid
leukemia (AML) patients (Levine et al., 2015). The data features a
total of 104 184 manually gated (labeled) cells with 32 protein
markers from two individuals, and represents a typical experimental
setting for a CyTOF measurement.

Second, we use the MNIST database (Lecun et al., 1998), avail-
able at http://yann.lecun.com/exdb/mnist/, which is a collection of
handwritten digits (from 0 to 9). We only used the training set part
of the dataset, featuring 60 000 labeled samples, which are 28�28
pixel images of 256 gray levels each (regarded as 784-dimensional
vectors). This dataset has been frequently used to benchmark ma-
chine learning methods, and was used for evaluation e.g. by van der
Maaten and Hinton (2008).

The third dataset consists of CyTOF measurements of ascites
samples harvested from a single HGSOC patient, before and after
administering chemotherapy. These data contains 27 surface protein
markers in 98 512 single cells in the primary (before chemotherapy)
and 127 874 cells in the interval (after chemotherapy) sample.

3 Results and discussion

3.1 Faster t-SNE mapping through quasi-Newton

optimization
We implemented a quasi-Newton optimizer, based on the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
(Liu and Nocedal, 1989), on the t-distributed stochastic neighbor
embedding (t-SNE) objective, which permits quadratic convergence
(Liu and Nocedal, 1989) as opposed to the linear convergence of the
gradient descent used in the original implementation (van der
Maaten and Hinton, 2008). The L-BFGS optimizer exploits a nu-
merical estimate of the local curvature to allow converge in �30
iterations (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 000
p

) versus the 1000 of the original variant, which
yields an order of magnitude speedup even on modestly sized
datasets.

To evaluate the performance of qSNE, we used a human bone
marrow mass cytometry dataset (Levine) (Levine et al., 2015),
which well represents the experimental setting of a mass cytometry
measurement and has also been manually gated, which provides
ground truth for performance evaluation (Levine et al., 2015). The
corresponding results for the MNIST dataset (Lecun et al., 1998)
are shown in Supplementary Figures S1 and S2, and Splatter-
generated (Zappia et al., 2017) single-cell RNA-seq data in
Supplementary Figures S5 and S6.

To verify that the L-BFGS optimizer operates in the quadratic
converge region in a typical setting, we compared how the t-SNE ob-
jective—Kullback–Leibler (K–L) divergence between distributions of
the pairwise distances of the points in the input and output space—
evolves as a function of the iteration count. The results in Figure 1
suggest that in the initial region the L-BFGS optimizer attains a
superlinear convergence, while no such effect can be observed with a
gradient descent optimizer, as expected. By comparing the iteration
counts required for equal progress, as shown in Figure 1, we verified
that the convergence of the L-BFGS optimizer is indeed quadratic
with respect to that of the gradient descent in the beginning of the
optimization. We report that typically the convergence of the L-
BFGS optimizer is quadratic in the beginning, but as the optimizer
quickly arrives near to the optimum, the rate drops to linear as pre-
cision starts to limit the process. Still, the linear rate of convergence
remains faster with the L-BFGS optimizer, likely as the learning rate
is optimized rather than fixed. We also note that there is a natural
warm-up of few iterations, as the L-BFGS optimizer needs to collect
curvature information before quadratic speed can be attained.

The results show also that the exact rank of the Hessian matrix
approximation plays a minor role in the qualitative behavior of the
convergence on these data. While a larger rank generally allows
faster convergence, even constant-rank approximations feature the
benefit of quadratic convergence and only incur a constant overhead
per iteration, suggesting that the strategy is viable for speeding up
practical large-scale problems. This is of course only possible if the
data are inherently locally, but not necessarily globally, low-
dimensional but embedded in a higher-dimensional space, which
often is the case and can be expected, for example, in gene expres-
sion datasets due to inherent correlations.

Often the cost surface features multiple local optima, which may
imply convergence to a different optimum for different optimization
paths. To evaluate whether the obtained visualizations are useful
after the short quadratic walk, we visualized the projections for the
two methods. The results are illustrated in Figure 2 and
Supplementary Figure S1. The obtained projections appear qualita-
tively similar: the bone marrow data captures the hematopoietic de-
velopmental lineages in both the qSNE and Rtsne mappings (Levine
et al., 2015). Specifically, the hematopoietic stem cells and progeni-
tors map in the center of the projection, while the more differenti-
ated and matured cells are located at the exterior of the plot, and
mature T-cells map to the furthest distance from the center. As
shown in Supplementary Figure S2, the conclusions regarding the
convergence and quality of mappings hold for various datasets,
downsampling factors, and for various perplexity and optimization
parameters.

In terms of consumed CPU time qSNE is much faster than Rtsne
(v0.15, using van der Maaten’s Cþþ implementation, see
Supplementary Material), as shown in Supplementary Figure S3.
With a single thread, an analysis for qSNE takes �15 min to 2 h,
while the same analyses for Rtsne take �2–25 h. The main benefit
comes from the fact that qSNE requires an order of magnitude fewer
iterations for convergence, but on the other hand the cost per iter-
ation is slightly larger (by a constant factor if the Hessian matrix
rank is Oð1Þ), but small enough to give a distinct benefit and to be
insignificant even when considering an equal number of iterations.
Furthermore, qSNE can fully utilize parallelization at both vector in-
struction and thread levels, which can give yet another order of mag-
nitude of advantage for practical analyses in terms of wall clock
time.

3.2 Automatic bandwidth selection reduces parameter

tuning
The choice of the perplexity parameter can have big impact to the
resulting t-SNE mapping and finding an optimal value through trial
and error is tedious. We show that most perplexity values are not
very interesting, exerting very little changes on the acquired map-
ping, and such regions can be automatically detected (detailed in the
Section 2). This allows the analyst to focus on the relevant perplex-
ity values. On the other hand, the perplexity parameter can be fine-
tuned to an optimal value around a chosen bandwidth, provided
that a sufficiently narrow range with a single optimum is selected.
Moreover, a variable bandwidth across the sample space can be ad-
vantageous in case the space is not uniform, but contains clusters
with various bandwidths.

To exemplify the operation of the automatic perplexity selection,
we generated a 10-dimensional synthetic dataset with five clusters
[with standard deviation (SD) of 1] each having five subclusters
(with SD of 0.25) with a total of 1000 samples (with SD of 0.01).
Depending on the selected perplexity range, qSNE results in one of
the possible representation of the dataset: the least perplexity opti-
mum corresponds to the setting where each sample is separated into
a separate cluster; the next one reveals each of the 25 subclusters;
and the third the five high-level clusters, as shown in Figure 3. The
highest perplexity setting will opt to form a single cluster for all the
data points. The question which one of these is the most useful is of
course up to the data analyst, but the number of embeddings with
differing structure can be analyzed in the perplexity-bandwidth plot
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and fine tuning of the perplexity value can be automatically per-
formed and allows discovering this hierarchy.

To demonstrate that the automated perplexity tuning is useful in
practice, we performed perplexity analysis on the Levine dataset.
For these data, the interesting levels of detail regarding a 2-D projec-
tion correspond to (i) 3-clustering into B-cells, T-cells and in less
tissue-specific cells; or (ii) into a more detailed clustering including
hematopoietic stem and progenitor cells and their differentiated
forms (as shown in Fig. 2). Specifically, for the dataset downsampled
to 15 000 points, these two clusterings are attracted roughly from
the perplexity regions [20, 100] and [2000, 10 000]. The perplexity-
bandwidth plot for the Levine dataset is shown in Figure 3, where
the insets indicate the optimal projections.

3.3 Information lost in the t-SNE mappings
A projection from a high-dimensional dataset into lowerdimension
loses information, so it is useful to evaluate how well the projection
represents the original data. For this, we suggest to compute the
fraction of information lost in the projection [see Section 2, specific-
ally Equation (2)], and show that this statistic can capture both the
loss of local and of a more global level structure.

For comparison, we evaluated the average number of retained n-
nearest neighbors for various values of n (Jaccard index of the n
nearest neighbors before and after projection). Small and large n
represent how well the local relationships (i.e. order of the nearby
samples) and global relationship (i.e. order of long-distance sam-
ples), respectively, are preserved. The Jaccard index-based metric is
expensive to calculate for high-dimensional data (Lee and Verleysen,
2009), while our metric is produced as a side product of t-SNE map-
ping (see Section 2).

We analyzed synthetic datasets (k-dimensional multivariate nor-
mal data) with varying inherent dimension of the data embedded in
a 10-D space (see Supplementary Material), and evaluated the infor-
mation loss metric. In these, the structure is random, the complexity
being set by the inherent dimension, which is easier to generate and
harder to capture than a more realistic data. As shown in Figure 4,
the metric correlates well with maintaining both local and global
structures. For inherently 2-D problems, a very high degree of infor-
mation is retained, which is also reflected by the number of retained
neighbors at all scales. For higher-dimensional problems, less infor-
mation is captured by the projection, as expected. We also verified
that the metric performs well with practical problems at varying per-
plexity as evaluated at the characteristic level of detail as shown for
the Levine and MNIST datasets.

3.4 High-resolution analysis reveals putative chemore-

sistant and chemosensitive phenotypes in ovarian can-

cer tumors
To show the benefits of qSNE on a large mass cytometry dataset, we
analyzed the levels of 18 proteins in high-grade serous ovarian can-
cer (HGSOC) patient ascites samples before and after chemother-
apy. The proteins were selected to span HGSOC cancer markers
(CA-125 and HE4) (Ferraro et al., 2013); epithelial cell markers
(MUC1, E-cadherin, EpCAM); immune and inflammatory markers
(CD8a, CD45, CD3 and PD1); stromal markers (CD90, CD44 and
CD146) and stemness and other markers (CD117, Sox2, CD24,
CD133-APC, N-cadherin and CD166-PE). The dataset consists of
173 374 cells, which is impractical to analyze using the traditional t-
SNE algorithm. However, a dataset of this scale poses no challenge
to qSNE, which generated a full-resolution mapping in �2 h 15 min
of computation.

To compare the full-resolution mapping to the traditional sub-
sampling, we acquired a mapping using Rtsne using 10 000 random-
ly subsampled cells. The mappings are shown in Figure 5 on a
similar scale, and a higher fidelity version of the full dataset is shown
in Supplementary Figure S4, the color encoding the most prominent
marker. The full resolution analysis by qSNE revealed several
phenotypic clusters that were not identifiable in the downsampled
data. For example, various likely stromal (e.g. CD90, CD44 and

Fig. 1. Convergence of qSNE versus a linear t-SNE implementation. Left panels:

Progress, as quantified by the excess objective value above the optimum (determined

experimentally) as a function of number of iterations for the Levine (Levine et al.,

2015) and MNIST (Lecun et al., 1998) datasets, randomly downsampled to 10 000

samples at perplexity 100, for both our quadratic implementation (Q) with various

ranks of Hessian matrix approximation (hr) and for a linear Rtsne implementation

(R). Right panels: Number of consumed iterations for equal progress (objective

value) for the two methods (magenta curve). The dashed black lines indicate a linear

or a quadratic fit. (Color version of this figure is available at Bioinformatics online.)

Fig. 2. Levine bone marrow data mapped into 2-D. Left panel: qSNE with rank-11 Hessian matrix approximation after only 150 quasi-Newton iterations; and right panel: t-

SNE after 7280 iterations (cf. Fig. 1). The datasets were randomly downsampled to 10 000 samples and perplexity is set to 100 in both cases
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CD146 high; yellow color; around the bottom of the plot; see
Supplementary Fig. S4) and immune cell clusters (e.g. CD8a, CD45
and CD3 high; red to orange color; bottom right) are visible in both
mappings, but unlike in the full-resolution mapping, the cluster sub-
structure is not revealed and the various smaller clusters in between
the larger ones appear missing in the lower-resolution analysis.
Further analysis of these high-resolution substructures showed that
they correlate with whether the cells were subject to the chemother-
apy or not (see Fig. 5), which suggests that a full-resolution analysis
can aid to distinguish the chemotherapy-sensitive and -resistant
phenotypes.

Our expert manually annotated clusters (clusters 1–6) that were
dominantly enriched in either of the HGSOC markers CA-125 or
HE4 in the full-resolution analysis (see Supplementary Fig. S4) and
were rich (>50%) in interval (treated sample) cells (see inset of
Supplementary Fig. S4). These clusters are highlighted in Figure 5
along with a heatmap of their average expression. The correspond-
ing cells in the downsampled data were found to be scattered in the
several clusters, and consequently not identifiable using the lower
resolution analysis alone. Of these, cluster 1 is located near the
CD3-positive putative T-cell cluster, while cluster 4 is located within

the CD8a positive T-cell cluster, which suggests cancer-interacting
immune cell phenotypes. Meanwhile, the other clusters are unlikely
to be immune cells, as they are enriched in the epithelial markers,
particularly the clusters 2 and 3 located on the opposite side of the
visualization. Clusters 2 and 3 are also enriched in the cancer stem-
ness marker CD166, while clusters 5 and 6 are enriched in the
leukocytic CD45 marker and in CD44, which has been associated
with epithelial ovarian cancer cells with a more favorable treatment
response (Sillanpaa et al., 2003). Each of the clusters is specific to
the interval (after chemotherapy) sample rather than to the treat-
ment naive sample, featuring significantly more interval cells than
expected (P-values < 1:6� 10�2 in a conditioned binomial test).

4 Conclusion

Single-cell measurement technologies generate massive, high-
resolution datasets. However, most of the current analysis softwares
are not directly able to analyze these data and resort to downsam-
pling, which hinders fully exploiting the high-resolution nature of
the data.

We report a novel implementation of the non-parametric dimen-
sionality reduction method t-SNE, called qSNE, which utilizes a
quasi-Newton t-SNE optimizer. We show that for many practical
problems and parameter settings qSNE allows convergence at quad-
ratic rate, and consequently, an order of magnitude less computa-
tion. Importantly, qSNE produces comparable visualizations,
despite that it might convergence to a different optimum. In add-
ition, we present a method optimize the input distribution band-
width, or the perplexity parameter, automatically. This enables the
data analyst to focus on only specifying the desired level of detail,
and letting the optimizer to deal with parameter tuning. The per-
plexity tuning also opens up an avenue toward analyzing heterosce-
dastic data in the complex input space, where no single parameter
value can produce satisfactory result. Finally, we proposed a quality
metric, which can be obtained as a side product of computing the
mapping. This feature is particularly important because at the mo-
ment t-SNE visualizations are used without any analysis of the
model fitness, which implies that important details of a dataset may
remain uncaptured by the model without any sign reported to the
analyst. Herein, we propose that a quality metric should be used
routinely to assess immediately whether the acquired mapping well
represents the original data, which cannot be evaluated using the
lower dimensional mapping alone. qSNE is best suited for datasets
with 100 000 s samples with 10 to 100 features, such as large mass
cytometry data, but we also demonstrated its applicability on single-
cell RNA-seq data with 10 000 samples and 18 726 genes.

Fig. 3. Perplexity versus bandwidth with fixed and automatic perplexity selection. Left panel: an artificial dataset of 10-D hierarchically normal data with five clusters with five

subclusters each. The blue dots visualize the effective bandwidth (the chosen ri parameter) for each sample with the blue curve showing their median. Meanwhile, the green

dots visualize the effective perplexity versus the effective bandwidth for each sample when the perplexity is automatically tuned by a factor of [2–1, 2]. The gray arrows indicate

the estimated gradient field for the perplexity tuning process. The dashed black lines indicate the true bandwidths in the generated data. Visualizations of the resulting map-

pings are shown in insets. Right panel: the corresponding plot for Levine data downsampled to 15 000 samples. (Color version of this figure is available at Bioinformatics

online.)

Fig. 4. Average number of retained neighbors versus fraction of retained informa-

tion. The lines indicate 10-D normal problems with 5000 samples, with inherent di-

mension varying from 2 to 10 (2-D being closest to (1, 1) and 10-D furthest), colors

indicating varying perplexity from 1 to 4999 at logarithmically equispaced intervals.

The curves with pluses indicate how well local structure is maintained (n¼20) and

x: s the global structure (n¼4000). The Levine and MNIST datasets are evaluated

at their characteristic level of detail (i.e. n equal to the perplexity) for various per-

plexity values
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Our improvements are general enough to be combined with fu-
ture improvements, such as alternative input and output models

(Hinton and Roweis, 2003); tree-based spatial subdivision (van der
Maaten, 2014); out of sample extensions, like kernel t-SNE
(Gisbrecht et al., 2015) and other interpolation schemes (Linderman

et al., 2019; Pezzotti et al., 2020); hyperparameter optimization
(Belkina et al., 2019); and GPU parallelization schemes (Chan et al.,
2019; Pezzotti et al., 2020). Unlike some of these approaches, we
focused here on the exact instead of an approximate problem, as it
is application specific whether the approximate schemes allow an

analysis at a comparable level of detail.
We demonstrated that such improvements are critical in analyz-

ing large datasets containing complex, infrequent features.
Specifically, we demonstrated the utility by analyzing HGSOC mass
cytometry data, which was not previously feasible at the attained

level of detail. Our analysis revealed cluster of cells which are only
identifiable at the higher level of detail, which can aid in developing

efficient interventions to overcome HGSOC chemoresistance. qSNE
is freely available with documentation.
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