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The recent rapid development of high-throughput technology enables the study of molecular signatures for cancer
diagnosis and prognosis at multiple levels, from genomic and epigenomic to transcriptomic. These unbiased large-scale
scans provide important insights into the detection of cancer-related signatures. In addition to single-layer signatures,
such as gene expression and somatic mutations, integrating data from multiple heterogeneous platforms using a
systematic approach has been proven to be particularly effective for the identification of classification markers. This
approach not only helps to uncover essential driver genes and pathways in the cancer network that are responsible for
the mechanisms of cancer development, but will also lead us closer to the ultimate goal of personalized cancer therapy.

Introduction

Cancer is a major human health problem worldwide and is
related to one-fourth of deaths in the United States.1 Decades of
cancer research have revealed many specific details, as well as
some general features shared among different cancers. Although
the rate of cancer deaths in the United States has declined in
recent decades,1,2 the rate of acquisition of cancer is continuously
increasing.1,3 Early detection of cancer diagnosis signatures
decreases both morbidity and mortality. Moreover, studying the
signatures associated with cancer prognosis (quantified by 5-year
survival time in clinical trials) not only helps to predict patient
outcome, but also holds a key to understanding the genetic
mechanisms of cancer development.4,5

With the development of high-throughput technology, signa-
tures existing at multiple levels have been identified for cancer
diagnosis and prognosis, including genomic, epigenomic, and
transcriptomic signatures. For example, genome-wide single nucle-
otide polymorphism (SNP) profiling and array-based comparative

genomic hybridization have been applied to identify germline and
somatic lesions in several cancers. Additionally, hundreds of SNPs
or haplotypes have been reported to be significantly associated
with cancers. In a study of 1,599 cases and 11,546 controls, Stacey
et al.6 found that rs3803662, which is associated with the TOX3
gene, is also significantly associated with breast cancer. The DNA
methylome is also under intense study, providing global pictures
of epigenetic changes in cancers.7 Transcriptome analyses have
successfully demonstrated that the expression of multiple genes,
rather than single genes, can serve as effective subtype or prognosis
classifiers for many cancers, such as leukemia8 and breast cancer.9

Although different layers of genome-wide analysis have revealed
global features of cancers, integration of multilayer information
facilitates more accurate cancer subtyping and more comprehen-
sive mechanistic insights. Within such a panorama, the systematic
approach has led to identification of the hallmarks of cancers.10

In this review, we aim to provide an insight into the data
and methods available for systems level analysis of cancer
subtypes and their characterization. We have organized the
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review into 3 parts: first, we introduce general features and
web-based resources for molecular signatures of cancer diag-
nosis and prognosis; second, we summarize existing methods
for detecting such signatures; and, finally, we discuss poten-
tial methods for interpreting these signatures, such as network
and module analysis.

Cancer-related high-throughput data types
and web resources

Although it is feasible to collect raw cancer-related high-
throughput data, such as from GEO11 and ArrayExpress,12 sev-
eral databases and web services provide rich cancer-related data
in a curated or integrated manner.

The Cancer Genome Atlas (TCGA) project has generated a
myriad of cancer “omic” data. To date, more than 8,913 tumor
samples across 30 types of cancer have been collected and
sequenced. The TCGA provides raw and processed data covering
layers of genome, epigenome, and transcriptome data, together
with clinical information. The recently established cBioPortal13

provides not only downloadable large-scale cancer genomic data,
but also online visualization and analysis services for TCGA
datasets.

In addition to these comprehensive resources, there are sev-
eral databases focusing on 1 or 2 specific areas. For example,
COSMIC14 stores somatic mutations. Its latest version presents
a cancer mutation landscape of 132 known cancer genes and
208 fusion gene pairs, based on nearly 8,000 cancer genomes.
With a convenient interface, COSMICMart15 helps to filter
COSMIC data sets into categories. Oncomine16 is a database
for target identification and validation, drug development, and
clinical research. Oncotator (http://www.broadinstitute.org/
oncotator/) provides annotation for cancer genes, mutations,
and amplification or deletion regions. Tumorscape17 provides
both a portal to query copy number alterations across multiple
cancer types, and a web interface visualizing the results based
on the GISTIC18 algorithm. IntOgen19 integrates somatic
mutations, copy number changes, and expression in cancer into
3 query-and-download modules, in addition to providing an
interface to TCGA.

These valuable resources have facilitated various efforts in can-
cer studies and have broadened our perspectives of cancer
(Table 1). At the present time most resources are based on iso-
lated samples but we expect that there will be an increase in

replicated data for advanced analyses, such as multiple (and even
time series) samples from the same patient or from a homoge-
nous population.

Over the past few years, multiple types of signatures have been
reported to associate with cancer diagnosis and prognosis. Most
of these studies focused on common somatic mutations,20

mRNA21,22 and microRNA expression,23,24 and protein level
changes.25,26 With the popularization of high-throughput
sequencing technologies and the refinement of bioinformatics
pipelines, these features have helped to identify credible markers.

In addition to general genomic and transcriptomic features,
various other features could be used to improve the confidence.
For example, long non-coding RNA (lncRNA) is an emerging
new paradigm in cancer research that can be either oncogenic or
tumor suppressive, indicating its possible application for diagnos-
tics and prognosis. One typical example for practical diagnostics
is PCA3,27 which is widely used in urine testing to determine
prostate cancer risk. HOTAIR, which has a chromatin-remodel-
ing effect, serves as an oncogenic biomarker and has been vali-
dated in a variety of cancers, such as lung cancer28 and liver
cancer.29 MEG3 acts as a tumor suppressor that is frequently
downregulated in pituitary cancer30 and glioma.31 lncRNAs have
advantages over protein-coding RNAs in cancer diagnosis and
prognosis because of their expression specificity and direct molec-
ular function.

The methylome, or DNA methylation status on genome-wide
CpG sites, has been intensively studied in developmental biology.
However, despite the fact that cancer shares key properties with
development, albeit inversely, the methylome was only recently
applied to cancer diagnosis or prognosis. It has been reported
that GSTP1 gains hypermethylation in prostate cancer, indicat-
ing its role as a diagnostic marker.32 A recent study showed that
DNA methylation valleys (DMVs) in stem cells are hypermethy-
lated in cancer33 and therefore provide novel aberrant signatures.
Nearly 8,000 cancer methylomes are available through public
databases,34 facilitating future studies to reveal the specific DNA
methylation signatures that drive carcinogenesis.

Clinical features are useful tools for diagnosis and prognosis.
In particular, imaging has been widely applied in cancer diagnosis
using various systems35 such as X-ray, computed tomography
scan, magnetic resonance imaging, tumor biopsy, and endoscopic
examination. The Cancer Imaging Archive (TCIA)36 contains
medical images of both the National Lung Screening Trial

Table 1. Summary of cancer data resources

Web Resource Raw data Preprocessed data Features Clinical information

TCGA and cBioPortal Yes Yes Genomic, transcriptomic,
epigenomic, proteomic

Yes

COSMIC & COSMICMart No Yes Mutation No
Oncomine Yes Yes Microarray-based gene expression

and copy number variation
Yes

Oncotator No Yes Gene, mutation, cancer amplification,
and deletion region

No

Tumorscape No Yes Copy number variation No
TCIA Yes Yes Medical images Yes
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project37 and the Prostate, Lung, Colorectal, and Ovarian Cancer
Screening Trial project.38 These clinical features reflect obvious
biological outcomes and should also assist molecular signature
identification.

Approaches
As resources and signature types of cancers keep emerging, so

do various bioinformatics methods for analyzing such data. We
will introduce the approaches that are most frequently used for
either associative or mechanistic inferences.

Associative inference
Cancer diagnosis and prognosis have benefitted from the

application of multiple molecular markers. However, given the
heterogeneous nature of cancers, prognosis-related subtype classi-
fication is more, or at least equally, important for personalized
treatment.39 Methods for subtype detection and classification
can be generally grouped into supervised and unsupervised
approaches, by which subtypes are characterized by certain signa-
tures (Fig. 1). When differentiating clinically well-defined sub-
types, supervised approaches are often used. However, for
identification of unknown subtypes or when classifying clinically
less well-defined subtypes, unsupervised methods are required.40

Supervised learning of molecular signatures
Supervised learning is quite straightforward when the samples

are well categorized, for example between cancer samples and
controls. In this approach, known subtype-related signals are
extracted from noise or confounding factors.

Genetic variation in the human genome provides an abundant
resource for cancer research. The
study of genetic variation can
reveal susceptibility to cancer
associated with distinct varia-
tions.41 Genome-wide association
studies (GWAS) have identified
many genetic risk factors for dif-
ferent common human cancers,
which are available in the NHGRI
GWAS catalog.42 The most fre-
quently used statistics in GWAS
are the Chi-square test and Fish-
er’s exact test, although the Chi-
square test is not suitable when
the sample size is small (fewer
than 10 samples). As the Pearson
Chi square test cannot handle a
variable with more than 2 catego-
ries, the Cochran-Armitage test
for trend may be applied in such
cases. All of these statistics tests
are integrated in PLINK,43 a pop-
ular tool for GWAS. Not all
SNPs can be accurately geno-
typed, and SNPTEST44 uses Fre-
quentist and Bayesian tests to

solve this problem. As GWAS datasets generally involve more
than 100,000 SNPs, multiple testing correction is needed. The
commonly used correction method is the Bonferroni correction
but this may be too strong in some cases, for which the Holm–
Bonferroni method might be more suitable. There is no generic
bridge that links SNPs to cancers; only when integrated with
functional data can a cancer-related SNP be deemed to be
responsible for the cancer process.45 Phenome-wide association
studies (PheWAS)46 can be viewed as a variant of GWAS to
investigate the associations between SNPs and phenotypes. This
method, especially when accompanied by imaging, is a promising
approach to explore cancer genome–phenome associations.

Unlike genomic data, the most general approach to tran-
scriptome data is to identify differentially expressed genes
(DEGs). The Student’s t test is frequently used for analysis of
DEGs. The t statistic assumes homogeneity of examined sam-
ples; however, this does not always hold true in cancer sam-
ples. For example, an unstable genome may lead to the same
translocations (and subsequent abnormal expression) in some,
but not all, cancer samples, and not in the control samples.47

To solve this problem, methods that are sensitive to “outliers”
have been developed. Cancer outlier profile analysis (COPA)
was proposed and applied to prostate cancer,47,48 and then
implemented as a part of the abovementioned Oncomine. In
addition to COPA, several statistics have been sequentially
proposed, including OS,49 ORT,50 MOST,51 and GTI.52

These statistics may work differently depending on the type of
data and thus should be carefully compared.53

Alternatively, sometimes the data may itself contain homoge-
neity (e.g., after proper subtyping), or researchers may be
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Figure 1. Overview of strategies to detect cancer subtypes related to cancer diagnosis and prognosis.
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interested in only the signatures with high penetrance. In these
cases, in addition to the Student’s t test there are many well-
developed tools that could be applied, such as SAM,54 limma,55

edgeR,56 DESeq,57 and Cuffdiff.58 If researchers are unsure
about the homogeneity, machine-learning approaches may be
more robust. For example, we have applied Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) to identify
markers of pediatric acute lymphoblastic leukemia.59

When data come from multiple resources, either generated in
different batches or compared across multiple layers, it is essential
to properly preprocess the pooled data and extract signals from
noise and confounding factors using so-called “meta-
analysis”.60,61 Based on the extent of noise reduction, preprocess-
ing methods can be divided into 3 categories, as follows: (1)
Moderate approaches smooth data with different relative intensi-
ties either by z-score normalization or quantile normalization.
Z-score normalization requires the original data to have an
approximately Gaussian distribution whereas quantile normali-
zation is non-parametric and especially efficient in microarray
data analysis (implemented in RMA).62 Although both work on
sample noise reduction, z-score normalization could also be
applied to features, transforming expression intensities to expres-
sion patterns.59 This is often a necessary preprocessing step to
integrate time-series or multilayer data.59,63 (2) Known con-
founding factors, typically batch effects, can be reduced after
being incorporated into the null model using a generalized lin-
ear model such as in DESeq,57 or an empirical Bayes method
such as in Combat.64 (3) It is also possible to further exclude
unknown confounding factors, as implemented in SVA65 and
ISVA.66

Unsupervised learning of molecular signatures
Unsupervised methods for subtyping may be more intrinsic

and more robust for experimental designs. Clustering is widely
used for omics data, to divide features or samples into subgroups.
Since the first application of hierarchical clustering in microarray
gene expression datasets,67 the approach has rapidly been applied
to cancer gene expression datasets.8,68 K-means clustering and
Self-Organizing Maps (SOMs) are often applied in similar ways.
At the present time hierarchical clustering remains the typical
choice; however, it is challenged by multilayer data. Efforts have
therefore been made to improve clustering for integrative analy-
sis, for example classic hierarchical clustering of the correlation
matrix between mRNA and microRNA expression69 and biclus-
tering on the correlation matrix between mRNA expression and
DNA copy number.70 More sophisticated tools were also devel-
oped, such as iCluster71 and its extended version iClusterPlus,72

PSDF,73 MDI,74 JIVE,75 and SNF.76 iCluster is intensely used
with TCGA77,78 to discover subtypes with distinct clinical out-
comes, whereas iClusterPlus is able to handle both discrete
(somatic mutations) and continuous variables. Most cluster
methods cannot automatically determine the optimal number of
sample and feature clusters. We proposed an adaptive clustering
algorithm incorporating the Bayesian information criterion
(BIC) and an unsupervised “Super k-means” method. With this
approach, we detected 7 subtypes for ovarian cancer with

significantly different clinical outcomes based on the combina-
tion of mRNA and miRNA expression, DNA methylation, and
copy number variation. Accordingly, we also developed a useful
framework to detect modular signatures for prognosis.79

Mechanism inference
As mentioned above, there are various features and resources

that provide multiple dimensions of signatures for cancer diagno-
sis and prognosis. However, association only provides a pool of
molecules, including false positives, unimportant candidates that
should be ignored, and false negatives. Moreover, cancer arises
from a complex origin composed of genomic, transcriptomic,
and epigenomic variations.80 Disease-specific genes do not func-
tion independently; instead, they usually act as a network module
that associates with a certain biological function.81,82 In several
cases, a single type of molecular signature cannot uncover the
molecular mechanism of cancer prognosis to predict clinical out-
come.83 In order to either accurately diagnose disease at an early
stage or pursue the cause of prognosis, careful refinement of these
candidate signatures is required, especially approaches based on
networks with modularity analysis or causality inference.84

Modularity analysis
Modularity is an important feature of networks. A network

module is a context-coherent sub-network with conditionally
comparable temporal and spatial profiles, and ideally with
defined inputs and outputs.85 In practice, modules are often
described without the exact inputs and outputs defined (but
instead assumed) and evaluated by relative functional homogene-
ity within the module.82 Based on the static structure of a net-
work, a module can be defined and dissected as a sub-network
whose nodes are more densely connected within the sub-network
than toward the outside, or that has more than random expecta-
tion as measured by the modularity metric86 or the clustering
coefficient.87

The cancer signaling network, for example, can be topologi-
cally divided into 12 blocks or modules.88 Edge type consistency
has been used to find epistatic modules,89 although gene expres-
sion profile similarity and dissimilarity are most frequently used
to define dynamic modules that are active under a certain biologi-
cal context.90

With no exception, classification markers are modularly
organized and reflect dysregulation or driver mutations
through network analysis. An unbiased search for markers of
pediatric acute lymphoblastic leukemia subtype classification
yielded a group of 62 genes that segregate into several net-
work modules for different subtypes and are potentially con-
trolled by subtype-specific transcriptional regulators.59 Such
modularity in cancer marker genes has been used to identify
network-based classifiers that have been demonstrated to out-
perform classical single gene or non-network module-based
classifiers. Compared with gene expression networks, markers
identified as sub-networks from protein-protein interaction
networks are more reproducible and achieve significantly
higher accuracy for classifying metastatic versus non-meta-
static breast tumors.91 Martin et al. have found that high-
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quality breast cancer prognosis markers can only be identified
within subtypes, and that combinations of various markers
can optimize the performance of the marker gene set. Most
surprisingly, they found that each marker gene signature
forms a network module, within which the marker genes
interact intensively with genes that are frequently mutated in
breast cancers, although the marker genes themselves are
mostly not mutated. Moreover, the mutated interacting genes
in the modules can also distinguish metastatic versus non-
metastatic samples, implying that these might be driver muta-
tions within each module.92 Therefore, the modularity of dis-
ease-associated genes in molecular interaction networks allows
prediction of new disease-associated genes through their
direct or indirect interactions with known disease-associated
genes.

Uncovering the cancer regulatory network without a prede-
fined reference set will reduce study bias and facilitate more
objective analysis of all potential features involved in the net-
work properties. To this end, Andreas Califano’s group has
developed an algorithm called “ARACNe” which can ab initio
infer regulatory interactions based on mutual information
between 2 genes across a set of measurements.93 In particular,
they have successfully applied the algorithm to predict transcrip-
tional interactions specific for high-grade glioma.93 In combina-
tion with searches for transcription factors whose targets overlap
significantly with genes that are overexpressed in mesenchymal
cells, they narrowed down a key regulatory module.94 Also
using an approach based on mutual information, Mani et al.
developed a new algorithm that can identify dysregulated inter-
actions in B-cell lymphoma using a Bayesian analysis that pre-
dicted a B-cell specific interactome as the backbone. The
dysregulation is defined as loss/gain of a correlation in gene
expression comparing lymphoma versus normal B cells.95 Com-
pared with candidate gene-based reverse engineering approaches,
such de novo network reverse engineering can identify not only
dysregulated interactions, but also coherently dysregulated net-
work modules that arise from the interactions, in an unbiased
manner.95

Most of the abovementioned methods of network modularity
analysis have been implemented in Cytoscape96 and its rich
plugin apps.97 Cytoscape is an expanding computational plat-
form for the integration, visualization, statistical modeling, and
annotation of biological networks.98 The apps are well organized
and categorized within http://apps.cytoscape.org/, which makes
its convenient for users to access and use to compile an analysis
pipeline.

After modularity inference the general network modules
are always compared to specific biology “pathways,” such as
widely used Gene Ontology (GO) terms99 and KEGG path-
ways.100 This comparison is termed enrichment analysis, and
often uses Fisher’s exact test or hypergeometric test to draw
statistical significance for the selected enriched terms. For
GO analysis only, AmiGO101 and BiNGO102 implemented
in Cytoscape are good choices. DAVID103 is highly recom-
mended for multisource integration. The IntOGen web
application allows evaluation of the contribution of

biological modules such as KEGG pathways to a cancer by
testing the significance of overlap between genes that are
changed in the cancer and genes in a defined module.104

More general-purpose applications such as Gene set enrich-
ment analysis (GSEA)105 or its modified version Parametric
analysis of gene set enrichment (PAGE)106 can also reveal
whether a pathway, module, or signature set is significantly
changed based on the rank or average expression intensity of
genes within a gene set.

Bayesian networks and causality inference
Compared with mutual information or correlation-based

methods, Bayesian network (BN) inference as a network reverse
engineering approach has higher theoretical consistency, is able
to distinguish direct and indirect interactions, and can identify
both strong and weak and linear and non-linear dependencies
as well as potential causal relationships.107,108 BN is a network
or graph representation of the joint probability distribution
over a set of variables (nodes) or conditional dependencies
between variables. The BN structural learning algorithm
searches for the network structure that has the best fit of joint
probability distribution to the data using a scoring function
such as the BIC. BIC contains 2 terms: one to evaluate the like-
lihood that the data are generated by the model, and another to
penalize the complexity of the model.109 Recently, BN has
been used for the diagnosis and prognosis of several cancer
types,110 including breast cancer111 and lung cancer.112 Olivier
et al. applied BN to integrate clinical and microarray data.111

Evaluation of the performance of BN showed that this method
performed well in predicting prognosis of breast cancer
patients.

One restriction of BN learning is that the graph must be
acyclic; that is, no loops are allowed even though they truly
exist. Such feedback relationships can sometimes be resolved
by additional temporal information, for example by the so-
called “dynamic BN” approach. Potential causal relationships
can also be identified from the consistently directed edges
(irreversible edges) within the whole set of equivalent BN
structures.113 Data from gene perturbation experiments can
provide more direct evidence for inferring causal relation-
ships. For example, a directed signaling network of 11 mole-
cules can be reverse engineered by BN learning on thousands
of single-cell flow cytometry measurements of the level of the
molecules in human primary T cells after gene perturbations
in the network.108

The requirement for a large number of data points for BN
inference has been a limiting factor in directly inferring gene
regulatory networks from gene expression measurements. The
recent rapid accumulation of microarray and deep sequencing
data has made such approaches more practical. In pursuing key
signatures, “early” changes may arise from system instability and
thus have low penetrance, whereas a few function-related “late”
changes are causal to cancer development. Therefore, the
“intermediate” mediators and potential causality inferred by
BNs will facilitate both early diagnoses and accurate prognoses
when the core of the network is found to be affected by
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perturbation.110 The approaches discussed here are summarized
in Table 2.

Discussion and Perspectives

With the huge amount of high-throughput data that is
already available or is being generated at an accelerated rate for
different layers of the cancer molecular interaction network,
obtaining a global picture of the full cancer molecular network
for each cancer type, or even each individual tumor, will be
completely feasible in the near future. The genomic, transcrip-
tomic, epigenomic, and even proteomic and metabolomic
changes in various cancers can be viewed as heterogeneous
molecular phenotypes of the cancer cells. Many of these changes

might be by-products resulting from genome instability or tran-
scriptional and metabolic dysregulation and thus reflect the state
of the underlying molecular and metabolic networks. Among
these changes, some are necessary for the cancer cells to over-
come multiple checkpoints and surveillance mechanisms and
expand through clonal selection and expansion, and therefore
ultimately enable invasive growth.10

There are 2 key points regarding cancer diagnosis and
prognosis that should be addressed in the near future: (1)
How to sift through numerous multilayer changes within the
molecular network of cancer and find critical steps driving
the cancer development and metastasis; and (2) How to find
essential controllers, better interpret the hallmarks of cancer,
and design successful treatment strategies. Toward these goals,
both experimental and computational approaches should be

Table 2.Methods for the detection of molecular signatures of cancer diagnosis and prognosis

　 Approach Summary Data type

Associative inference–Supervised learning
GWAS PLINK An open-source whole genome

association tool, including statistics such
as Chi-square test, Cochran-Armitage
test, and Fisher’s exact test.

Genotype, CNV, and haplotype

SNPTEST Incorporates imputation methods for
genotype association test

Genotype

PheWAS Investigates the association between SNP
and phenotypes

Genotype and phenotype

DEGs Student’s t-test, SAM, limma, edgeR,
DESeq, Cuffdiff

Identifies DEGs, assuming homogeneity of
examined samples

Gene expression

COPA, OS, ORT, MOST, GTI, SVM-RFE Identifies DEGs, robust to heterogeneity
of examined samples

Noise reduction Z-score normalization Preprocess expression data with relative
intensities

Multiple-layer data integration

Quantile normalization
Combat Handles known confounding factors such

as batch effects
Single-layer data

SVA and ISVA Excludes unknown confounding factors Single-layer data

Associative inference–Unsupervised learning
Clustering analysis Hierarchical clustering, Kmeans

clustering, SOM
Partitions features or samples into
subgroups

Single-layer data

Biclustering, iCluster, iClusterPlus,
PSDF, MDI, JIVE, SNF, Super
k-means

Discovers subtypes with clinical
outcomes, integrating multiple types
of data

Multiple-layer data integration

Mechanism inference–Modularity analysis
Subnetwork function analysis IntOGen Evaluates the contribution of biological

modules to a cancer
Gene-gene association

DAVID, GSEA, PAGE Reveals whether a cancer-related module
is significantly enriched for a known
pathway

Gene expression

ARACNe Infers regulatory interactions based on
mutual information between genes

Gene expression

Cytoscape Network and modularity analysis Multiple-layer data integration

Mechanism inference—Bayesian network and causality inference
De novo network Bayesian network Infers a network by detecting potential

causal relationships between genes
Multiple-layer data integration

　 Dynamic BN Allows feedback relationship compared to
regular Bayesian network

Multiple-layer data integration

Abbreviations: BN, Bayesian network; CNV, copy number variation; COPA, cancer outlier profile analysis; DEG, differentially expressed genes; GSEA, gene set
enrichment analysis; PAGE, parametric analysis of gene set enrichment.
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investigated to annotate the multilayer cancer network. By
taking advantage of the ever-increasing rate and reduced cost
of accumulating data, more efforts should be made to achieve
the ultimate goal of personal cancer genomics and individual-
ized cancer treatment.

Recent research based on TCGA projects, such as the Pan
Cancer Project,114 have started to integrate cancer types and offer
a comprehensive set of cancer systems biology data and new tools
for cancer genomics and bioinformatics analysis. In addition to
clinical classification of different tumors, this will help to repur-
pose targeted therapies for cancers under the direction of their
molecular pathologies.
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