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Abstract

We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy
genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as
having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study.
Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic
Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain
Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show
replicable prioritization results using these three independent gene expression resources, two of which are brain-specific,
with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the
nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and
GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an
established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known
and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network
derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions
between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic
targets.
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Introduction

The Epileptic Encephalopathies are a clinically and etiologically

heterogeneous group of devastating infantile and childhood-onset

epilepsies, broadly characterized by refractory seizures and

developmental slowing or regression [1]. Following the seminal

discovery of de novo SCN1A mutations as the cause in .80% of

patients with Dravet syndrome [2], a paradigmatic epileptic

encephalopathy, a number of other genes have been shown to

account for other hitherto unexplained Epileptic Encephalopathies

[3–6].

Massively parallel sequencing has recently accelerated gene

discovery, revealed unexpected genetic heterogeneity and cement-

ed the role played by de novo mutations in causing Epileptic

Encephalopathies. In particular, Carvill and colleagues [3]

recently performed targeted massively parallel re-sequencing of

19 known and 46 candidate genes in 500 Epileptic Encephalop-

athy cases. They identified pathogenic mutations in 10% of

patients in their cohort and established CHD2 and SYNGAP1 as

novel Epileptic Encephalopathy genes. Another study employed a

whole exome sequencing ‘trio design’ of 264 probands with

Epileptic Encephalopathies and their parents in search of de novo

variants [4]. Using a likelihood analysis to evaluate statistical

evidence of association, they determined GABRB3 and ALG13 to

be novel Epileptic Encephalopathy genes. These four genes join

KCNT1 [7] and GRIN2A [8–10] as new Epileptic Encephalopathy

genes and add to the growing number of genes responsible for

these devastating disorders.

Along with discovering new ‘definite’ Epileptic Encephalopathy

genes, large cohort studies, such as the Epi4K and EPGP

Consortia [4] and Carvill et al [3], have also identified variants

in many ‘likely’ Epileptic Encephalopathy genes in single subjects.

The expectation is that a proportion of these candidate genes will

represent true Epileptic Encephalopathy genes, however this

determination will require finding additional cases, sufficient to

provide statistical evidence of association, and/or supportive

functional evidence [11]. The prospect of identifying second and

subsequent cases with ‘hits’ in these candidate genes are limited by

the very nature that these variants are rare. Moreover the high

costs involved in performing functional studies make this

impossible for all ‘likely’ Epileptic Encephalopathy genes. There-

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e102079

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0102079&domain=pdf


fore innovative methods are required to identify the ‘‘best’’

candidates on which to focus these follow-up efforts.

There are currently at least 29 ‘definite’ Epileptic Encephalop-

athy genes. The observation that a number of these known genes

are biologically associated (e.g., ion-channel encoding), make it

reasonable to hypothesize that true candidate Epileptic Enceph-

alopathy genes will form part of the same or related biological

networks. These biological networks are identified and described

by looking for evidence of association between genes. This

evidence can be gathered using diverse resources including

publicly available data such as gene expression, protein-protein

interaction (PPI) networks or even literature based searches (i.e.,

text-mining). Gene networks can be examined and analyzed in

their own right to identify modules of co-expression, or as sub-

networks, as well as overarching networks with the aid of gene

ontology annotation. Another application is their use in an

approach known as ‘‘guilt by association’’, which can be used to

prioritize candidate genes according to their level of association

with known disease-causing genes (reference set). Alternatively, a

genome-wide approach has the potential advantage of identifying

novel gene networks, however, it will lack the power gained by

utilizing a reference set.

The concept of candidate gene prioritization is well-established

and the ‘‘guilt by association’’ principle widely applied [12–14].

Many of the current approaches share the same limitations; not

least an often heavy reliance on text-mining, which biases against

candidate genes with little known about their function and limited

published material [12]. Another consideration is that the data

sources, utilized by current prioritization methods, typically derive

from non-specific resources resulting in ‘generic’ methods that are

applied to all disease groups [13]. This is important because data

sources are at the core of the gene prioritization problem; the

quality of the derived associations directly correlates with the

quality of the data used to make these predicted connections. We

therefore reasoned that a powerful data source for the prioritiza-

tion of Epileptic Encephalopathy candidate genes would be gene

brain-expression data with the knowledge that gene expression is

highly tissue specific. In turn, the large number of known Epileptic

Encephalopathy genes (n = 29) allows us to exploit the ‘‘guilt by

association’’ principle where these genes will form our reference

(or training) set and define our networks. With a focus on brain-

expression data the approach will remain unbiased whilst being

specific to the Epileptic Encephalopathies as neurological diseases.

The Allen Human Brain Atlas (AHBA) has generated large-

scale brain expression data that has been carefully curated and

processed, allowing downloading of normalized gene expression

data, ready for analysis [15]. The AHBA contains gene expression

data from six adult (aged 24–57 years) and four developing (aged

15–21 post-conception weeks) brains. Each brain was dissected

carefully and hundreds of arrays were generated for each brain

substructure encompassing the whole brain. This contrasts with

other gene expression resources where data is typically derived

from arbitrarily distributed samples across many individuals. For

example, the Celsius resource has gathered thousands of

Affymetrix expression data sets from the scientific community

into one warehouse. These large sample sizes provide the power to

overcome tissue-specific limitations [16] and technical artifacts.

UGET (UCLA Gene Expression Tool) is a freely available online

tool developed to facilitate data exploration within Celsius [17].

We explore and compare the application of both the AHBA and

Celsius expression data to known and candidate Epileptic

Encephalopathy gene sets. We use Pearson’s and Spearman’s

correlation coefficient to summarize the linear relationship

between gene pairs based on their gene expression data. We also

know that negatively correlated genes play an important role in

neurological gene networks [18] and a linear relationship fit will

allow detection of both positively and negatively correlated genes.

Pearson’s sample correlation coefficient is the best estimator for

the correlation if the underlying data is bivariate normally

distributed and the sample size is adequate. However, in the

presence of outliers Spearman’s correlation coefficient is more

robust. In recent years new methods for detecting non-linear

relationships have been proposed [19,20] but initial enthusiasm for

these computationally intensive methods has waned, with dem-

onstrations of non-robustness to outliers and the recognition of a

severe loss in power if normality and linearity hold approximately

for some of these measures [21].

Using methods analogous to leave-one-out cross-validation we

show that the known set of 29 Epileptic Encephalopathy genes are

substantially co-expressed as a network. We exploit this to

prioritize 182 candidate Epileptic Encephalopathy genes resulting

from the recent Epi4K and EPGP Consortia study [4]. Empirical

false discovery rate (eFDR) thresholds determined the best

candidate genes. We argue that these prioritized genes are those

most likely to be true Epileptic Encephalopathy genes and merit

follow-up studies that may not be possible for all 182 candidates.

Methods

Statistical analysis and visualization were performed in the

statistical programming language R (http://www.r-project.org/)

making use of the specific packages gtools [22], qgraph [23],

corrplot [24], MASS [25] and reshape [26]. Our methods are

implemented in an R package, BrainGEP, and can be downloaded

from http://bioinf.wehi.edu.au/software/BrainGEP.

Expression data sets
Allen Human Brain Atlas. We downloaded the normalized

microarray gene expression data from the AHBA website (http://

www.brain-map.org/) for all six adult and four developing brains.

Gene expression data was generated using a custom-made Agilent

8660K array with 58,692 probes covering 20,782 genes. The

design of the array, the normalization procedure and selection of

brain samples and dissection protocols are described in white-

papers available from the AHBA website. The probe with the

highest median expression value for each gene was chosen to

represent the gene expression value for that gene.

Celsius. We employed UGET (http://genome.ucla.edu/

projects/UGET/) to explore the Celsius gene expression data

available for the HG-U133_Plus_2 array design: the largest

human dataset with 5,954 CEL files. Approximately 25% of these

arrays are of ‘‘nervous system origin’’, presumably from brain

[16]. In the case of genes represented by more than one transcript

we chose the longest in base pair length.

Selection of Epileptic Encephalopathy genes
Reference Epileptic Encephalopathy genes. Well-estab-

lished, known Epileptic Encephalopathy genes were chosen from

the literature for our reference set (n = 29); ALG13, ARHGEF9,

ARX, CDKL5, CHD2, FOXG1, GABRA1, GABRB3, GABRG2,

GRIN2A, HNRNPU, KCNQ2, KCNT1, MBD5, MECP2, MEF2C,

PCDH19, PLCB1, PNKP, PNPO, SCN1A, SCN2A, SCN8A, SLC2A1,

SLC25A22, SPTAN1, STXBP1, SYNGAP1 and UBE3A (see Table

S1).

Candidate Epileptic Encephalopathy genes. Candidate

genes were selected from a list of genes reported by the Epi4K &

EPGP Consortia typically with ‘single hit’ de novo variants in their

Epileptic Encephalopathy cohort [4]. We limited our selection to

Epileptic Encephalopathy Gene Expression Networks
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182 genes with variants likely to result in a functional effect (i.e.,

missense, nonsense, splice-site) (see Table S2 for full list of

candidate gene names).

Detecting co-expression between known and candidate
Epileptic Encephalopathy genes

The pairwise Pearson’s correlation coefficient (r) for any two

genes determined their level of co-expression. We performed these

statistical analyses for both AHBA time periods (developing and

adult) in R. These analyses were all repeated using Spearman’s

sample correlation coefficient. We did not have direct access to the

Celsius expression data; however, using UGET we were able to

generate pairwise Pearson’s correlation coefficients for gene pairs.

Pairwise Pearson sample correlation coefficients |r| were

calculated for each known Epileptic Encephalopathy gene pair

(n = 406). For the AHBA resource, the correlation coefficients

were found within each individual, using all brain samples, and

then combined within their respective time periods (n = 4 for the

developing brain, n = 6 for the adult brains) using a weighting

scheme based on the sample variance of the correlation

coefficients derived from the gene expression data within each

individual. Details can be found in Supporting Information (see

Methods S1).

We generated three gene expression correlation matrices

(developing AHBA, adult AHBA and Celsius) for all possible

gene pairs in the reference set of 29 Epileptic Encephalopathy

genes. These results were compared to a list of 1,000 randomly

chosen genes (499,500 gene pairs), representing the null distribu-

tion, by comparing empirical cumulative distribution functions

(ECDFs).

The gene expression correlation matrices for the reference sets

were visualized with the corrplot R package [24]. We observed

more than one principal component of interest after performing

principal component analysis (PCA) on the correlation matrices.

We ordered genes based on the angle between the first two

principal components, thus summarizing the relationship between

them.

Exploring expression networks between known and
candidate Epileptic Encephalopathy genes

A discrete (K*) and continuous (K) connectivity score was

generated for each candidate gene (see Methods S1). The

connectivity score is a function of the number of significant

connections (edges). An edge between a pair of genes is defined as

being significant if the Pearson’s sample correlation coefficient of

pairwise gene expression exceeds a statistically determined

threshold. Based on the distribution of all genes available in each

dataset we determined the top 5% of |r| cut-off values for each of

the three data resources.

Significant correlation networks were generated using the

qgraph package [23] in R using Pearson’s sample correlation

coefficient (r).

Comparing candidate Epileptic Encephalopathy gene
connectivity scores with other predictive resources

We compared connectivity scores between candidates predicted

to be pathogenic versus those that were not according to four

alternative resources. The chosen resources are a combination of

gene and variant-based approaches where we classified results as

supporting pathogenicity for each as follows: 1) genic intolerance

score (GIT) [28] – genes within the 25th percentile for intolerance,

2) review of the current literature for a gene’s prior association

with neurological disease, 3) PolyPhen-2 results for gene variants

[29] – genes with variants predicted to be damaging (nonsense and

splice-site variants classified as damaging), and 4) the recently

published CADD (Combined Annotation-Dependent Depletion)

[30] resource for variant prioritization – genes with variants

determined to have a ‘‘scaled’’ CADD score .25.

For each of the predictive resources of GIT, prior neurological

evidence, PolyPhen-2 and CADD predictions, the connectivity

scores for candidate genes with evidence for pathogenicity versus

those without were compared using one-sided, two-sample Mann-

Whitney rank sum tests with continuity correction. P-values were

determined using both reference tables and permutation tests

where the group membership labels were permuted 1000 times.

This was performed for results from the three gene expression

resources, and for both the discrete (K*) and continuous (K)

connectivity scores.

In silico prioritization of candidate Epileptic
Encephalopathy genes

Our method prioritizes candidate genes based on their

connectivity scores with known Epileptic Encephalopathy genes.

We applied a false discovery rate [31] of 0.25 to determine a

connectivity score threshold required for candidates to meet in

order to be deemed those most likely true Epileptic Encephalop-

athy genes. In brief, we derived empirical false discovery rates

(eFDR) based on sampling sets of 179 candidate gene sets for both

the developing and adult AHBA (3 genes not present on the

AHBA array) and 172 candidate genes for the Celsius resource (10

genes not present on the Celsius array), 1000 times. We generated

both discrete and continuous connectivities (K* and K) for all 1000

sample sets, based on the 5% cut-off applied to |r|. We then

estimated the eFDR for thresholds (T) of K and K* for all three

resources (developing AHBA, adult AHBA and CELSIUS) by

calculating the ratio of the mean number of genes that exceeded

the threshold T to the observed number of genes in the test set that

exceeded T. Examination of the eFDR led to the choice of T that

yielded an eFDR = 0.25 as a suitable threshold for determining

where to place the cut-off for connectivity.

Gene prioritization with Endeavour
Finally we compared our prioritization results for the candidate

genes to those obtained by an established in silico prioritization

approach called Endeavour (http://homes.esat.kuleuven.be/

,bioiuser/endeavour/index.php) [27]. Endeavour utilizes

KEGG, Blast and literature-based resources in addition to non-

tissue specific gene expression data for gene prioritization. We

compared the rank positions for candidates based on our

connectivity scores versus Endeavour’s global score and deter-

mined Endeavour’s score threshold for eFDR = 0.25 using the

same approach as that applied to our connectivity scores.

Results

Selection of reference and candidate Epileptic
Encephalopathy gene sets

The 29 reference Epileptic Encephalopathy genes were all

represented on the AHBA gene expression array and in the Celsius

resource accessed via UGET.

Of the 182 candidate genes, C15orf-AP3S2, TNNI3K, WHSCIL1

were not present on the AHBA array, nor could alternative gene

names be found for them, hence they were excluded from the

analysis, leaving 179 candidate Epileptic Encephalopathy genes.

Similarly we were unable to identify transcripts representing

candidate genes C15orf-AP3S2, LCE1A, LDLRAD1, MSANTD1,

OR10S1, SGK223, SLCO1B7, TNNI3K, TPTE2, WHSC1L1 in the

Epileptic Encephalopathy Gene Expression Networks
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Celsius gene expression data (Affymetrix HG-U133_Plus_2 array),

leaving 172 candidate Epileptic Encephalopathy genes to explore

in this resource.

Results for Pearson’s and Spearman’s sample correlation

coefficients were very similar but with a loss of power for

Spearman’s due to the rank transformation. We thus focus on the

Pearson’s correlation coefficient results, using the Spearman’s

results as a test for robustness.

Empirical cumulative distribution function (ECDF) curves
for known Epileptic Encephalopathy genes

The weightings used for each individual to derive both

Pearson’s and Spearman’s correlations for the AHBA data are

given in Table S3 and reflect the variability observed for each

individual, with lower weights for individuals with greater gene

expression correlation variability. The weights are very similar for

the two correlation measures. This is not surprising as examination

of gene expression of 1000 random genes using a quantile-quantile

(Q-Q) plot with theoretical quantiles derived from the normal

distribution show a good fit for both the gene expression data and

the weighted sums of correlation coefficients for Pearson’s

correlation coefficient (data not shown). Using Pearson’s sample

correlation coefficient, we generated ECDF plots for |r| for the 29

reference genes against the null background using expression data

from the two AHBA time periods and Celsius (Figure 1). The null

distributions (black lines) had median r values of 0.02, 0.05 and 2

0.01 for the developing AHBA, adult AHBA and Celsius resources

respectively (with respective median |r| values of 0.12, 0.13 and

0.07).

The adult AHBA gene expression data showed a greater shift to

the right in the ECDF compared to the developing AHBA data

suggesting that the reference Epileptic Encephalopathy genes co-

express more strongly as a network in adulthood. However, the

Celsius resource showed the greatest shift in the ECDF overall.

This is reflected in Table 1 with the greatest number of significant

connections between Epileptic Encephalopathy genes detected

using expression data from Celsius.

Ordered correlation matrices identifying patterns of co-
expression amongst known Epileptic Encephalopathy
genes

The ordered correlation matrices revealed some striking

patterns (Figure 2).

For the adult AHBA data (Figure 2-A) we observed two clusters

of positively correlated sets for the 29 known genes. Cluster one is

small containing six genes HNRNPU, SLC2A1, CHD2, ALG13,

PNPO and MECP2, connected by negative co-expression with the

larger cluster containing 23 genes. The average correlation for

cluster one is 0.445 and the average correlation for cluster two is

0.380, with an average inter-cluster correlation of 20.100. There

are two genes on the fringe of both clusters, PNKP and SPTAN1,

showing weak co-expression with the majority of Epileptic

Encephalopathy genes. It is interesting then to note that these

genes are both involved in DNA repair. This shared and distinct

biological role perhaps can explain their co-expression together

and overall relative isolation from the other Epileptic Encepha-

lopathy genes.

The ordered correlation matrix for the developing AHBA data

(Figure 2-B) also showed some clustering but it was not as striking

as the adult human brain data. This is consistent with the ECDF

curves (Figure 1) where the shift in the distribution was not as

pronounced. Importantly, when the ordering derived from the

clustering of the expression correlations in the adult brain was

used, the clustering pattern of two clusters disappeared, and the

main cluster correlation was largely eroded (Figure 2-C).

The major adult AHBA cluster of positively correlated genes

was recapitulated using the correlation matrix derived from the

large, generic gene expression Celsius dataset (Figure 2-D), again

consistent with the ECDF shift seen for this dataset (Figure 1).

However the second, smaller cluster, containing genes such as

MECP2, was not detected, suggesting that this is a brain specific

signature. Nonetheless both the adult AHBA and Celsius

correlation matrices contained clusters of the same co-regulated

genes, demonstrating biological replication between two indepen-

dent gene expression resources. This supports our hypothesis that

these 29 known genes show genetic network structure and allows

the application of ‘‘guilt by association’’ in prioritizing true

Epileptic Encephalopathy genes based on their co-expression with

one or more of the genes in this network.

Comparing candidate Epileptic Encephalopathy gene
connectivity scores with other predictive resources

Connectivity scores were generated for each candidate gene.

We were interested to compare connectivity scores between those

candidates predicted to be pathogenic versus those that were not

according to three alternative predictive resources. The permuta-

tion test values and standard distribution P-values were very

similar for the Mann-Whitney tests, indicating that the lack of

Figure 1. ECDF of Pearson’s pairwise correlations shown for 1000 random genes and 29 Epileptic Encephalopathy genes. (A)
Developing AHBA (B) Adult AHBA (C) Celsius resource.
doi:10.1371/journal.pone.0102079.g001

Epileptic Encephalopathy Gene Expression Networks
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Table 1. Summary table detailing the |r| 5% significance cut-off values and the number of Epileptic Encephalopathy reference
gene pairs reaching this cut-off from a total of n = 406 total gene pairs based on Pearson’s correlation coefficient.

Expression data resource |r| threshold Number of significant gene pairs (%)

AHBA Developing 0.44 53 (13%)

AHBA Adult 0.48 97 (24%)

Celsius (UGET) 0.30 181 (45%)

doi:10.1371/journal.pone.0102079.t001

Figure 2. Pairwise Pearson’s correlations between pairs of known Epileptic Encephalopathy genes represented as a matrix. (A) Adult
AHBA correlation matrix with genes ordered according to the angular distance between the first two principal components. (B) Developing AHBA
correlation matrix with genes ordered according to the angular distance between the first two principal components. (C) Developing AHBA
correlation matrix with genes ordered according to the angular distance between the first two principal components based on the adult AHBA data.
(D) Celsius derived correlation matrix with genes ordered according to the angular distance between the first two principal components of the adult
AHBA.
doi:10.1371/journal.pone.0102079.g002

Epileptic Encephalopathy Gene Expression Networks

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e102079



independence between data points was not adversely affecting the

null distribution. Thus we report the P-values based on the Mann-

Whitney distribution.

Discrete (K*) and continuous (K) connectivity scores were

significantly higher for candidate genes with gene intolerance

scores [28] in the top quartile across all gene expression resources

(P-values ranging from 0.012–0.017). In the case of genes that

have been previously implicated in other neurological disorders,

connectivity scores differed significantly for both the adult AHBA

(P-values 0.007 (K*) and 0.006 (K)) and Celsius (P-values 0.006

(K*) and 0.008 (K)) gene expression data results. No significant

results were seen between connectivity scores for those genes with

variants predicted by PolyPhen-2 [29] to be damaging versus not

for any data resource (P-values ranging from 0.060–0.475).

Discrete (K*) and continuous (K) connectivity scores were

significantly higher for genes with variants whose CADD scores

were .25 based on adult AHBA gene expression data only (P-

values 0.015 (K*) and 0.013 (K)). In general the discrete

connectivity (K*) scores had slightly less power to detect these

differences with P-values being slightly larger. Additional Mann-

Whitney results are presented in Table S4.

In silico prioritization of candidate Epileptic
Encephalopathy genes

A total of 19 genes were prioritized using Pearson’s correlation

coefficient; seven of these genes were prioritized by more than one

of the three gene expression resources utilized. The adult AHBA,

developing AHBA and Celsius resource prioritized 4, 10 and 12

candidate genes respectively. These candidates attained the

empirical false discovery rate (eFDR) of 0.25 with thresholds of

8.4 (adult AHBA), 7.4 (developing AHBA) and 10.6 (Celsius) using

the continuous connectivity measure K only (Figure S1-A,

Table 2). Both the developing AHBA and the Celsius resources

prioritized GNAO1, RALGPS1, ANK3, GRIN1 and MAST1, with

PLXNA1 prioritized by the developing and adult AHBA resources

and GRIN2B by the adult AHBA and Celsius.

The results were very similar for Spearman’s correlation

coefficient. Again we applied an eFDR of 0.25 to determine a

connectivity score threshold for the two AHBA gene expression

resources. For the adult AHBA resource, this cutoff resulted in

only the top candidate, KCNB1, being prioritized (n = 1) and two

fewer genes were prioritized with the developing AHBA data

(n = 8); six in common with Pearson’s (TRIO, GRIN1, RALGPS1,

GNAO1, DNM1 and MAST1) and two differing (CEP55 and

SMURF1). We were unable to apply Spearman’s correlation

coefficient to the Celsius resource since the data is provided as

Pearson’s sample correlation coefficients by UGET.

For almost all of these prioritized candidate genes (18 out of 19)

there is additional evidence from other sources of information that

also implicates them as true Epileptic Encephalopathy genes, such

as being predicted damaging by Polyphen-2 or CADD, having a

high Gene Intolerance Score or already known to play a role in

other neurological disorders such as intellectual disability, autism

and malformations of cortical development (Table 2).

Interestingly, the developing AHBA had much greater specific-

ity (more genes prioritized for the same eFDR level chosen) than

the adult AHBA, and the Celsius resource in turn shows greater

specificity than the developing AHBA with the most number of

genes prioritized. This highlights the power of large sample sizes in

reducing biological and technical variability and thus detecting

signal with a lower false positive rate. See Table S5 for complete

set of results for all candidate genes.

Networks and expression patterns for known and
candidate Epileptic Encephalopathy genes

Networks of the known and prioritized Epileptic Encephalop-

athy genes show how highly connected the candidate genes are,

commensurate with their prioritization (developing AHBA,

Figure 3-A; adult AHBA, Figure S2-A and Celsius, Figure S3-

A). Both positive (green) and negative (red) correlations are evident

with only those reaching a top 5% cut-off represented graphically.

The clustering observed in the graphical networks also agreed

with the ordered sample correlation matrices with similar patterns

emerging (developing AHBA, Figure 3-B; adult AHBA, Figure S2-

B and Celsius, Figure S3-B).

Gene prioritization with Endeavour
Endeavour was able to detect all 29 known Epileptic

Encephalopathy genes to form a training set in the prioritization

of 155 candidate genes (27 candidates were not assessed by

Endeavour). Exceeding an eFDR of 0.25 (Figure S1-B), the nine

top ranked candidates by Endeavour were GRIN2B, GRIN1,

GABRB1, KCNQ3, STK36, MYO5A, CACNA1A, PCDHB13 and

CAMK4. The Endeavour rank positions for the 19 genes

prioritized by our approach are listed in Table 2.

Discussion

We have shown that 29 known Epileptic Encephalopathy genes

show significant co-expression using data from three independent

resources, demonstrating important biological replication. In turn

we used this information to prioritize a large list of candidate

Epileptic Encephalopathy genes based on their co-expression with

known causative genes. We demonstrated that our prioritization

measure correlated with others that can implicate variants

(PolyPhen-2, CADD) or genes (GIT, prior neurological involve-

ment) in disease causality. Confirmation that our prioritization

approach works came with two recent publications reporting

GNAO1 [32] and GRIN2B [33] as a true Epileptic Encephalopathy

genes. Our approach had prioritized GNAO1 with rank 1 in the

developing AHBA and rank 2 in the Celsius resource and GRIN2B

was ranked 2 with the adult AHBA data and 11 using the Celsius

resource (Table 2).

This study has highlighted the strengths and weaknesses of two

large-scale gene expression resources, based on markedly different

study designs. The Allen Human Brain Atlas (AHBA) is a highly

curated, carefully designed study, and although it has many data

points (n = 4,904 arrays), these are sampled from only 10

individuals. The resulting data has lower technical variability

(reduced artifacts) at the cost of biological variability. Thus this

data set represents a lower level of biological and technical

variation than that represented by Celsius. However, it is clear

from our results that larger sample sizes, such as the thousands of

arrays from Celsius, can be beneficial for teasing out true

biological signals from technical effects. The advantage of using

a brain specific resource, such as the AHBA, is the detection of

brain specific signatures that can be incorporated into the in silico

gene expression analysis providing an even more powerful way of

finding relationships between genes. Refinement of the in silico

prioritization analysis methods should enable better use of smaller

sub-networks such as the smaller of the two clusters discovered in

the adult AHBA resource. Our analysis is based on a weighted

sum of correlation coefficients to derive connectivity, which would

benefit from an approach based on principal components, rather

than the direct gene-gene correlations [21], representing one such

refinement.
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Table 2. The 19 candidate Epileptic Encephalopathy genes prioritized with connectivity measures (K) that met the 0.25 eFDR
threshold for at least one of three different gene expression data resources (shown in bold) based on Pearson’s correlation
coefficient.

Gene Resource (rank)* PolyPhen-2 GIT PE CADD score .25

GNAO1 Developing AHBA (1) Damaging Intolerant Yes

Adult AHBA (32)

Celsius (2)

Endeavour (42)

TRIO Developing AHBA (2) Damaging Intolerant

Adult AHBA (37)

Celsius (49)

Endeavour (23)

PLXNA1 Developing AHBA (3) Intolerant

Adult AHBA (4)

Celsius (61)

Endeavour (95)

RALGPS1 Developing AHBA (4) Damaging Intolerant

Adult AHBA (74)

Celsius (4)

Endeavour (27)

DNM1 Developing AHBA (5) Damaging Intolerant Yes

Adult AHBA (7)

Celsius (16)

Endeavour (30)

ANK3 Developing AHBA (6) Damaging Intolerant

Adult AHBA (-)

Celsius (10)

Endeavour (75)

IQSEC2 Developing AHBA (7) Damaging Intolerant Yes Yes

Adult AHBA (108)

Celsius (15)

Endeavour (80)

GRIN1 Developing AHBA (8) Damaging Intolerant Yes

Adult AHBA (23)

Celsius (5)

Endeavour (3)

MAST1 Developing AHBA (9) Intolerant

Adult AHBA (39)

Celsius (3)

Endeavour (46)

PACS2 Developing AHBA (10) Damaging Intolerant

Adult AHBA (63)

Celsius (-)

Endeavour (88)

KCNB1 Developing AHBA (16) Damaging

Adult AHBA (1)

Celsius (14)

Endeavour (40)

GRIN2B Developing AHBA (46) Damaging Intolerant Yes Yes

Adult AHBA (2)

Celsius (11)

Endeavour (2)
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Through further analysis of data from the AHBA, we observed

for the first time that gene correlation networks for known

Epileptic Encephalopathy genes have distinctive brain co-expres-

sion patterns at the two very different time periods available (15–

20 post-conception weeks versus adulthood). The adult brain

shows stronger co-expression signals in comparison to the

developing brain, yet prioritizes a smaller number of candidate

Epileptic Encephalopathy genes at an equivalent false discovery

rate. This suggests much greater variability in the adult brains

(derived from just six individuals). The adult brain shows more

structured gene co-expression with two gene co-expression

modules emerging (Figure 1-A), in comparison to the co-

expression networks derived from either of the Celsius or

developing AHBA resources. This suggests that more individuals

are needed and that currently the large sample sizes of the Celsius

resource (N = 5,954) outperform the gain in tissue specificity made

by utilizing a brain specific gene expression resource with

specificity the highest for this resource (12 Epileptic Encephalop-

athy genes prioritized at eFDR = 0.25).

Interestingly we have also examined gene expression networks

in the AHBA for genes known to be involved in Malformations of

Cortical Development and for these we see the developing brain

data showing stronger correlation patterns compared to the adult

brain (data not shown) representing greater sensitivity. This is

consistent with our understanding of when these genes are likely to

be of importance (pre-migrational versus post-migrational) and

again suggests that disease and time specific resources do add

important signal and information.

In silico gene prioritization approaches have been promising with

many already used in practice. However, the results are variable

and real applications with tailored analysis (tissue-specific, with the

ability to check data sources) are missing. Popular resource

databases such as STRING [34,35] (http://string-db.org/) show

publication-age bias (data not shown), indicative of a strong

reliance on text-mining. Addressing this limitation, in silico

Table 2. Cont.

Gene Resource (rank)* PolyPhen-2 GIT PE CADD score .25

DAO Developing AHBA (-) Intolerant

Adult AHBA (3)

Celsius (-)

Endeavour (65)

AKAP6 Developing AHBA (52)

Adult AHBA (48)

Celsius (1)

Endeavour (28)

GABRB1 Developing AHBA (81) Damaging Yes

Adult AHBA (25)

Celsius (6)

Endeavour (1)

SLC1A2 Developing AHBA (97) Damaging Intolerant Yes

Adult AHBA (14)

Celsius (7)

Endeavour (39)

YWHAG Developing AHBA (13) Damaging

Adult AHBA (15)

Celsius (8)

Endeavour (20)

NBEA Developing AHBA (22) Damaging Intolerant Yes

Adult AHBA (13)

Celsius (9)

Endeavour (33)

CRTAC1 Developing AHBA (36) Damaging Intolerant

Adult AHBA (70)

Celsius (12)

Endeavour (104)

The single ‘hit’ variants detected in all of these genes were missense changes.
*Rank attained for each data resource (maximum of 179 for the two AHBA resources and a maximum of 172 for Celsius) with a ‘-’ indicating no significant correlations
and therefore no possible ranking.
GIT: Gene Intolerance Score.
PE: Prior Evidence for pathological involvement in other neurological disorders.
CADD: Combined Annotation-Dependent Depletion raw score.
doi:10.1371/journal.pone.0102079.t002
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prioritization methods now often include multiple data sources

(e.g., Endeavour [27]) but typically remain disease agnostic and

are still influenced by text-mining. We were interested to compare

our prioritization results with the Endeavour approach and note

that only GRIN2B of the two now known true positive candidate

genes was prioritized (Table 2), whereas our approach prioritized

both GRIN2B and GNAO1. Additionally, our approach was able to

explore 179 of the 182 candidate genes (98%) but in comparison

only 155 (85%) candidates were available for prioritization by

Endeavour, an important limitation for researchers to be aware of

when considering in silico prioritization methods.

Several in silico prioritization methods have been applied to the

epilepsy field [36–39]. When Chen and colleagues used their

method in the familial epilepsy syndrome of Genetic Epilepsy with

Febrile Seizures plus (GEFS+), they found that gene expression

was the most powerful data source for determining association

between five known GEFS+ genes, with little information gained

from PPI networks [37]. Consistent with this, Piro and colleagues

also considered the known GEFS+ genes and explored an early

release of the AHBA, again showing high co-expression between a

small reference set of six genes [39]. These studies support our

decision to focus on gene expression data and reinforce the notion

that unbiased resources are desirable for these types of studies.

Some bias still remains in expression array-based resources with

only known genes typically represented by array probe sets. This

overlooks the many short RNAs which are now gaining greater

understanding and promise as candidates for pathogenicity [40].

These array-based resources will be superseded by RNA-seq

datasets, promising superior data source options in the future.

Large cohort, massively parallel sequencing studies provide an

ideal resource in which to apply in silico prioritization, potentially

giving an edge to laboratories who can only explore one or a few

‘‘best’’ candidate genes. We have applied in silico analysis to

putative Epileptic Encephalopathy variant discovery results from

recent large-scale studies. Whilst able to show evidence that our

prioritization has yielded highly plausible results it is important to

note that our findings do not mean that those candidate genes not

prioritized should be discounted. It is possible that they represent

the first Epileptic Encephalopathy genes in entirely new pathways

that would not be discovered using an approach based on known

genes. Pragmatically, however, the gathering of functional

evidence in support of candidate gene pathogenicity remains

costly [11]. This work provides additional support for a small

handful of genes that we believe have a stronger case for being true

Epileptic Encephalopathy genes and therefore warrant further

investment above other candidates.

Supporting Information

Methods S1 Extended description of methods for weighted

correlation matrices and connectivity measures.

(DOCX)

Figure S1 eFDR estimates as a function (A) of the
continuous connectivity (K) for all three gene expression
data sets and (B) of Endeavour’s 1-Rank scores. Dotted

red line indicates an eFDR = 0.25 with dots near the eFDR plots

near 0 to 0.05 indicating the observed connectivities for the top

ranked candidate Epileptic Encephalopathy genes for each

dataset. The number of discovered variants for each dataset for

an eFDR = 0.25 is the number of dots that have been plotted.

(TIFF)

Figure S2 Adult AHBA gene co-expression network and
correlation matrix for known and prioritized Epileptic
Encephalopathy genes. Gene co-expression networks for the

known Epileptic Encephalopathy genes that are involved in any of

Figure 3. Developing AHBA gene co-expression network and correlation matrix for known and prioritized Epileptic
Encephalopathy genes. Gene co-expression networks for the known Epileptic Encephalopathy genes in the top 5% of overall connections of
the developing AHBA along with the 10 prioritized candidate Epileptic Encephalopathy genes (shown in blue) as determined by the connectivity
measures that are estimated to have an eFDR = 0.25 (thresholded r) using qgraph (A) or represented as an ordered sample correlation (all r values)
matrix (B) with ordering based on angular distance. See Figures S2 and S3 for adult AHBA and Celsius results respectively.
doi:10.1371/journal.pone.0102079.g003
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the top 5% of overall connections of the adult AHBA along with

the 4 candidate Epileptic Encephalopathy genes (shown in blue) as

determined by the connectivity measures that are estimated to

have an eFDR = 0.25 (thresholded r) using qgraph (A) or

represented as an ordered sample correlation (all r values) matrix

(B), with ordering based on angular distance.

(TIFF)

Figure S3 Celsius gene co-expression network and
correlation matrix for known and prioritized Epileptic
Encephalopathy genes. Gene co-expression networks for the

known Epileptic Encephalopathy genes that are involved in any of

the top 5% of overall connections of the Celsius resource along

with the 12 candidate Epileptic Encephalopathy genes (shown in

blue) as determined by the connectivity measures that are

estimated to have an eFDR = 0.25 (thresholded r) using qgraph

(A) or represented as an ordered sample correlation (all r values)

matrix (B), with ordering based on angular distance.

(TIFF)

Table S1 List of known Epileptic Encephalopathy genes chosen

from the literature with relevant reference details.

(DOCX)

Table S2 List of 182 candidate Epileptic Encephalopathy genes

for prioritization.

(DOCX)

Table S3 Weights derived for each individual AHBA brain for

both Pearson’s and Spearman’s correlation coefficient. The sum of

the weights add to one within each of the two time periods.

(DOCX)

Table S4 Extended Mann-Whitney results (P-values). P-values

in brackets are those derived using a permutation test with 1000

permutations.

(DOCX)

Table S5 The connectivity (K) and rank position for 179

candidate genes according to the developing AHBA, adult AHBA

and Celsius expression data resources and the Endeavour

approach. Sheet one shows the results based on Pearson’s

correlation coefficient and sheet two has Spearman’s.

(XLS)
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